Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irredminply Structured version   Visualization version   GIF version

Theorem irredminply 33689
Description: An irreducible, monic, annihilating polynomial is the minimal polynomial. (Contributed by Thierry Arnoux, 27-Apr-2025.)
Hypotheses
Ref Expression
irredminply.o 𝑂 = (𝐸 evalSub1 𝐹)
irredminply.p 𝑃 = (Poly1‘(𝐸s 𝐹))
irredminply.b 𝐵 = (Base‘𝐸)
irredminply.e (𝜑𝐸 ∈ Field)
irredminply.f (𝜑𝐹 ∈ (SubDRing‘𝐸))
irredminply.a (𝜑𝐴𝐵)
irredminply.0 0 = (0g𝐸)
irredminply.m 𝑀 = (𝐸 minPoly 𝐹)
irredminply.z 𝑍 = (0g𝑃)
irredminply.1 (𝜑 → ((𝑂𝐺)‘𝐴) = 0 )
irredminply.2 (𝜑𝐺 ∈ (Irred‘𝑃))
irredminply.3 (𝜑𝐺 ∈ (Monic1p‘(𝐸s 𝐹)))
Assertion
Ref Expression
irredminply (𝜑𝐺 = (𝑀𝐴))

Proof of Theorem irredminply
Dummy variables 𝑞 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 irredminply.p . 2 𝑃 = (Poly1‘(𝐸s 𝐹))
2 eqid 2729 . 2 (Monic1p‘(𝐸s 𝐹)) = (Monic1p‘(𝐸s 𝐹))
3 eqid 2729 . 2 (Unit‘𝑃) = (Unit‘𝑃)
4 eqid 2729 . 2 (.r𝑃) = (.r𝑃)
5 irredminply.e . . 3 (𝜑𝐸 ∈ Field)
6 irredminply.f . . 3 (𝜑𝐹 ∈ (SubDRing‘𝐸))
7 fldsdrgfld 20683 . . 3 ((𝐸 ∈ Field ∧ 𝐹 ∈ (SubDRing‘𝐸)) → (𝐸s 𝐹) ∈ Field)
85, 6, 7syl2anc 584 . 2 (𝜑 → (𝐸s 𝐹) ∈ Field)
9 irredminply.3 . 2 (𝜑𝐺 ∈ (Monic1p‘(𝐸s 𝐹)))
10 eqid 2729 . . 3 (0g‘(Poly1𝐸)) = (0g‘(Poly1𝐸))
11 irredminply.m . . 3 𝑀 = (𝐸 minPoly 𝐹)
12 irredminply.a . . . 4 (𝜑𝐴𝐵)
13 fveq2 6822 . . . . . . 7 (𝑔 = 𝐺 → (𝑂𝑔) = (𝑂𝐺))
1413fveq1d 6824 . . . . . 6 (𝑔 = 𝐺 → ((𝑂𝑔)‘𝐴) = ((𝑂𝐺)‘𝐴))
1514eqeq1d 2731 . . . . 5 (𝑔 = 𝐺 → (((𝑂𝑔)‘𝐴) = 0 ↔ ((𝑂𝐺)‘𝐴) = 0 ))
16 irredminply.1 . . . . 5 (𝜑 → ((𝑂𝐺)‘𝐴) = 0 )
1715, 9, 16rspcedvdw 3580 . . . 4 (𝜑 → ∃𝑔 ∈ (Monic1p‘(𝐸s 𝐹))((𝑂𝑔)‘𝐴) = 0 )
18 irredminply.o . . . . 5 𝑂 = (𝐸 evalSub1 𝐹)
19 eqid 2729 . . . . 5 (𝐸s 𝐹) = (𝐸s 𝐹)
20 irredminply.b . . . . 5 𝐵 = (Base‘𝐸)
21 irredminply.0 . . . . 5 0 = (0g𝐸)
225fldcrngd 20627 . . . . 5 (𝜑𝐸 ∈ CRing)
23 sdrgsubrg 20676 . . . . . 6 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸))
246, 23syl 17 . . . . 5 (𝜑𝐹 ∈ (SubRing‘𝐸))
2518, 19, 20, 21, 22, 24elirng 33659 . . . 4 (𝜑 → (𝐴 ∈ (𝐸 IntgRing 𝐹) ↔ (𝐴𝐵 ∧ ∃𝑔 ∈ (Monic1p‘(𝐸s 𝐹))((𝑂𝑔)‘𝐴) = 0 )))
2612, 17, 25mpbir2and 713 . . 3 (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))
2710, 5, 6, 11, 26, 2minplym1p 33686 . 2 (𝜑 → (𝑀𝐴) ∈ (Monic1p‘(𝐸s 𝐹)))
2819sdrgdrng 20675 . . . . . . 7 (𝐹 ∈ (SubDRing‘𝐸) → (𝐸s 𝐹) ∈ DivRing)
296, 28syl 17 . . . . . 6 (𝜑 → (𝐸s 𝐹) ∈ DivRing)
3029drngringd 20622 . . . . 5 (𝜑 → (𝐸s 𝐹) ∈ Ring)
31 irredminply.2 . . . . . 6 (𝜑𝐺 ∈ (Irred‘𝑃))
32 eqid 2729 . . . . . . 7 (Irred‘𝑃) = (Irred‘𝑃)
33 eqid 2729 . . . . . . 7 (Base‘𝑃) = (Base‘𝑃)
3432, 33irredcl 20309 . . . . . 6 (𝐺 ∈ (Irred‘𝑃) → 𝐺 ∈ (Base‘𝑃))
3531, 34syl 17 . . . . 5 (𝜑𝐺 ∈ (Base‘𝑃))
361, 33, 2mon1pcl 26048 . . . . . . 7 ((𝑀𝐴) ∈ (Monic1p‘(𝐸s 𝐹)) → (𝑀𝐴) ∈ (Base‘𝑃))
3727, 36syl 17 . . . . . 6 (𝜑 → (𝑀𝐴) ∈ (Base‘𝑃))
3810, 5, 6, 11, 26irngnminplynz 33685 . . . . . . 7 (𝜑 → (𝑀𝐴) ≠ (0g‘(Poly1𝐸)))
39 irredminply.z . . . . . . . 8 𝑍 = (0g𝑃)
40 eqid 2729 . . . . . . . . 9 (Poly1𝐸) = (Poly1𝐸)
4140, 19, 1, 33, 24, 10ressply10g 33503 . . . . . . . 8 (𝜑 → (0g‘(Poly1𝐸)) = (0g𝑃))
4239, 41eqtr4id 2783 . . . . . . 7 (𝜑𝑍 = (0g‘(Poly1𝐸)))
4338, 42neeqtrrd 2999 . . . . . 6 (𝜑 → (𝑀𝐴) ≠ 𝑍)
44 eqid 2729 . . . . . . 7 (Unic1p‘(𝐸s 𝐹)) = (Unic1p‘(𝐸s 𝐹))
451, 33, 39, 44drnguc1p 26077 . . . . . 6 (((𝐸s 𝐹) ∈ DivRing ∧ (𝑀𝐴) ∈ (Base‘𝑃) ∧ (𝑀𝐴) ≠ 𝑍) → (𝑀𝐴) ∈ (Unic1p‘(𝐸s 𝐹)))
4629, 37, 43, 45syl3anc 1373 . . . . 5 (𝜑 → (𝑀𝐴) ∈ (Unic1p‘(𝐸s 𝐹)))
47 eqidd 2730 . . . . 5 (𝜑 → (𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) = (𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)))
48 eqid 2729 . . . . . . 7 (quot1p‘(𝐸s 𝐹)) = (quot1p‘(𝐸s 𝐹))
49 eqid 2729 . . . . . . 7 (deg1‘(𝐸s 𝐹)) = (deg1‘(𝐸s 𝐹))
50 eqid 2729 . . . . . . 7 (-g𝑃) = (-g𝑃)
5148, 1, 33, 49, 50, 4, 44q1peqb 26059 . . . . . 6 (((𝐸s 𝐹) ∈ Ring ∧ 𝐺 ∈ (Base‘𝑃) ∧ (𝑀𝐴) ∈ (Unic1p‘(𝐸s 𝐹))) → (((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Base‘𝑃) ∧ ((deg1‘(𝐸s 𝐹))‘(𝐺(-g𝑃)((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)))) < ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴))) ↔ (𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) = (𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))))
5251biimpar 477 . . . . 5 ((((𝐸s 𝐹) ∈ Ring ∧ 𝐺 ∈ (Base‘𝑃) ∧ (𝑀𝐴) ∈ (Unic1p‘(𝐸s 𝐹))) ∧ (𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) = (𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))) → ((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Base‘𝑃) ∧ ((deg1‘(𝐸s 𝐹))‘(𝐺(-g𝑃)((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)))) < ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴))))
5330, 35, 46, 47, 52syl31anc 1375 . . . 4 (𝜑 → ((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Base‘𝑃) ∧ ((deg1‘(𝐸s 𝐹))‘(𝐺(-g𝑃)((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)))) < ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴))))
5453simpld 494 . . 3 (𝜑 → (𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Base‘𝑃))
55 eqid 2729 . . . . . . 7 (rem1p‘(𝐸s 𝐹)) = (rem1p‘(𝐸s 𝐹))
56 eqid 2729 . . . . . . 7 (+g𝑃) = (+g𝑃)
571, 33, 44, 48, 55, 4, 56r1pid 26064 . . . . . 6 (((𝐸s 𝐹) ∈ Ring ∧ 𝐺 ∈ (Base‘𝑃) ∧ (𝑀𝐴) ∈ (Unic1p‘(𝐸s 𝐹))) → 𝐺 = (((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴))(+g𝑃)(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))))
5830, 35, 46, 57syl3anc 1373 . . . . 5 (𝜑𝐺 = (((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴))(+g𝑃)(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))))
5955, 1, 33, 44, 49r1pdeglt 26063 . . . . . . . . . 10 (((𝐸s 𝐹) ∈ Ring ∧ 𝐺 ∈ (Base‘𝑃) ∧ (𝑀𝐴) ∈ (Unic1p‘(𝐸s 𝐹))) → ((deg1‘(𝐸s 𝐹))‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))) < ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴)))
6030, 35, 46, 59syl3anc 1373 . . . . . . . . 9 (𝜑 → ((deg1‘(𝐸s 𝐹))‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))) < ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴)))
6160adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → ((deg1‘(𝐸s 𝐹))‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))) < ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴)))
6230adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → (𝐸s 𝐹) ∈ Ring)
6337adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → (𝑀𝐴) ∈ (Base‘𝑃))
6443adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → (𝑀𝐴) ≠ 𝑍)
6549, 1, 39, 33deg1nn0cl 25991 . . . . . . . . . . 11 (((𝐸s 𝐹) ∈ Ring ∧ (𝑀𝐴) ∈ (Base‘𝑃) ∧ (𝑀𝐴) ≠ 𝑍) → ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴)) ∈ ℕ0)
6662, 63, 64, 65syl3anc 1373 . . . . . . . . . 10 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴)) ∈ ℕ0)
6766nn0red 12446 . . . . . . . . 9 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴)) ∈ ℝ)
6855, 1, 33, 44r1pcl 26062 . . . . . . . . . . . . 13 (((𝐸s 𝐹) ∈ Ring ∧ 𝐺 ∈ (Base‘𝑃) ∧ (𝑀𝐴) ∈ (Unic1p‘(𝐸s 𝐹))) → (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Base‘𝑃))
6930, 35, 46, 68syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Base‘𝑃))
7069adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Base‘𝑃))
71 simpr 484 . . . . . . . . . . 11 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍)
7249, 1, 39, 33deg1nn0cl 25991 . . . . . . . . . . 11 (((𝐸s 𝐹) ∈ Ring ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Base‘𝑃) ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → ((deg1‘(𝐸s 𝐹))‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))) ∈ ℕ0)
7362, 70, 71, 72syl3anc 1373 . . . . . . . . . 10 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → ((deg1‘(𝐸s 𝐹))‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))) ∈ ℕ0)
7473nn0red 12446 . . . . . . . . 9 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → ((deg1‘(𝐸s 𝐹))‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))) ∈ ℝ)
75 eqid 2729 . . . . . . . . . . . . 13 {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 } = {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 }
76 eqid 2729 . . . . . . . . . . . . 13 (RSpan‘𝑃) = (RSpan‘𝑃)
77 eqid 2729 . . . . . . . . . . . . 13 (idlGen1p‘(𝐸s 𝐹)) = (idlGen1p‘(𝐸s 𝐹))
7818, 1, 20, 5, 6, 12, 21, 75, 76, 77, 11minplyval 33678 . . . . . . . . . . . 12 (𝜑 → (𝑀𝐴) = ((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 }))
7978fveq2d 6826 . . . . . . . . . . 11 (𝜑 → ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴)) = ((deg1‘(𝐸s 𝐹))‘((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 })))
8079adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴)) = ((deg1‘(𝐸s 𝐹))‘((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 })))
816adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → 𝐹 ∈ (SubDRing‘𝐸))
8281, 28syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → (𝐸s 𝐹) ∈ DivRing)
8318, 1, 20, 22, 24, 12, 21, 75ply1annidl 33675 . . . . . . . . . . . 12 (𝜑 → {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 } ∈ (LIdeal‘𝑃))
8483adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 } ∈ (LIdeal‘𝑃))
85 fveq2 6822 . . . . . . . . . . . . . . 15 (𝑞 = (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) → (𝑂𝑞) = (𝑂‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))))
8685fveq1d 6824 . . . . . . . . . . . . . 14 (𝑞 = (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) → ((𝑂𝑞)‘𝐴) = ((𝑂‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)))‘𝐴))
8786eqeq1d 2731 . . . . . . . . . . . . 13 (𝑞 = (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) → (((𝑂𝑞)‘𝐴) = 0 ↔ ((𝑂‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)))‘𝐴) = 0 ))
8818, 1, 33, 22, 24evls1dm 33497 . . . . . . . . . . . . . 14 (𝜑 → dom 𝑂 = (Base‘𝑃))
8969, 88eleqtrrd 2831 . . . . . . . . . . . . 13 (𝜑 → (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ dom 𝑂)
9055, 1, 33, 48, 4, 50r1pval 26061 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ (Base‘𝑃) ∧ (𝑀𝐴) ∈ (Base‘𝑃)) → (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) = (𝐺(-g𝑃)((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴))))
9135, 37, 90syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) = (𝐺(-g𝑃)((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴))))
9291fveq2d 6826 . . . . . . . . . . . . . . 15 (𝜑 → (𝑂‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))) = (𝑂‘(𝐺(-g𝑃)((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)))))
9392fveq1d 6824 . . . . . . . . . . . . . 14 (𝜑 → ((𝑂‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)))‘𝐴) = ((𝑂‘(𝐺(-g𝑃)((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴))))‘𝐴))
94 eqid 2729 . . . . . . . . . . . . . . . 16 (-g𝐸) = (-g𝐸)
951ply1ring 22130 . . . . . . . . . . . . . . . . . 18 ((𝐸s 𝐹) ∈ Ring → 𝑃 ∈ Ring)
9630, 95syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝑃 ∈ Ring)
9733, 4, 96, 54, 37ringcld 20145 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)) ∈ (Base‘𝑃))
9818, 20, 1, 19, 33, 50, 94, 22, 24, 35, 97, 12evls1subd 33508 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑂‘(𝐺(-g𝑃)((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴))))‘𝐴) = (((𝑂𝐺)‘𝐴)(-g𝐸)((𝑂‘((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)))‘𝐴)))
99 eqid 2729 . . . . . . . . . . . . . . . . . 18 (.r𝐸) = (.r𝐸)
10018, 20, 1, 19, 33, 4, 99, 22, 24, 54, 37, 12evls1muld 22257 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑂‘((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)))‘𝐴) = (((𝑂‘(𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)))‘𝐴)(.r𝐸)((𝑂‘(𝑀𝐴))‘𝐴)))
10118, 1, 20, 5, 6, 12, 21, 11minplyann 33682 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑂‘(𝑀𝐴))‘𝐴) = 0 )
102101oveq2d 7365 . . . . . . . . . . . . . . . . 17 (𝜑 → (((𝑂‘(𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)))‘𝐴)(.r𝐸)((𝑂‘(𝑀𝐴))‘𝐴)) = (((𝑂‘(𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)))‘𝐴)(.r𝐸) 0 ))
10322crngringd 20131 . . . . . . . . . . . . . . . . . 18 (𝜑𝐸 ∈ Ring)
10418, 1, 20, 33, 22, 24, 12, 54evls1fvcl 22260 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑂‘(𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)))‘𝐴) ∈ 𝐵)
10520, 99, 21, 103, 104ringrzd 20181 . . . . . . . . . . . . . . . . 17 (𝜑 → (((𝑂‘(𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)))‘𝐴)(.r𝐸) 0 ) = 0 )
106100, 102, 1053eqtrd 2768 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑂‘((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)))‘𝐴) = 0 )
10716, 106oveq12d 7367 . . . . . . . . . . . . . . 15 (𝜑 → (((𝑂𝐺)‘𝐴)(-g𝐸)((𝑂‘((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)))‘𝐴)) = ( 0 (-g𝐸) 0 ))
10822crnggrpd 20132 . . . . . . . . . . . . . . . 16 (𝜑𝐸 ∈ Grp)
10920, 21grpidcl 18844 . . . . . . . . . . . . . . . 16 (𝐸 ∈ Grp → 0𝐵)
11020, 21, 94grpsubid1 18904 . . . . . . . . . . . . . . . 16 ((𝐸 ∈ Grp ∧ 0𝐵) → ( 0 (-g𝐸) 0 ) = 0 )
111108, 109, 110syl2anc2 585 . . . . . . . . . . . . . . 15 (𝜑 → ( 0 (-g𝐸) 0 ) = 0 )
11298, 107, 1113eqtrd 2768 . . . . . . . . . . . . . 14 (𝜑 → ((𝑂‘(𝐺(-g𝑃)((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴))))‘𝐴) = 0 )
11393, 112eqtrd 2764 . . . . . . . . . . . . 13 (𝜑 → ((𝑂‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)))‘𝐴) = 0 )
11487, 89, 113elrabd 3650 . . . . . . . . . . . 12 (𝜑 → (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 })
115114adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 })
1161, 77, 33, 82, 84, 49, 39, 115, 71ig1pmindeg 33535 . . . . . . . . . 10 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → ((deg1‘(𝐸s 𝐹))‘((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 })) ≤ ((deg1‘(𝐸s 𝐹))‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))))
11780, 116eqbrtrd 5114 . . . . . . . . 9 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴)) ≤ ((deg1‘(𝐸s 𝐹))‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))))
11867, 74, 117lensymd 11267 . . . . . . . 8 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → ¬ ((deg1‘(𝐸s 𝐹))‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))) < ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴)))
11961, 118pm2.65da 816 . . . . . . 7 (𝜑 → ¬ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍)
120 nne 2929 . . . . . . 7 (¬ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍 ↔ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) = 𝑍)
121119, 120sylib 218 . . . . . 6 (𝜑 → (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) = 𝑍)
122121oveq2d 7365 . . . . 5 (𝜑 → (((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴))(+g𝑃)(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))) = (((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴))(+g𝑃)𝑍))
12396ringgrpd 20127 . . . . . 6 (𝜑𝑃 ∈ Grp)
12433, 56, 39, 123, 97grpridd 18849 . . . . 5 (𝜑 → (((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴))(+g𝑃)𝑍) = ((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)))
12558, 122, 1243eqtrd 2768 . . . 4 (𝜑𝐺 = ((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)))
126125, 31eqeltrrd 2829 . . 3 (𝜑 → ((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)) ∈ (Irred‘𝑃))
12718, 1, 20, 5, 6, 12, 11, 39, 43minplyirred 33684 . . . 4 (𝜑 → (𝑀𝐴) ∈ (Irred‘𝑃))
12832, 3irrednu 20310 . . . 4 ((𝑀𝐴) ∈ (Irred‘𝑃) → ¬ (𝑀𝐴) ∈ (Unit‘𝑃))
129127, 128syl 17 . . 3 (𝜑 → ¬ (𝑀𝐴) ∈ (Unit‘𝑃))
13032, 33, 3, 4irredmul 20314 . . . . 5 (((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Base‘𝑃) ∧ (𝑀𝐴) ∈ (Base‘𝑃) ∧ ((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)) ∈ (Irred‘𝑃)) → ((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Unit‘𝑃) ∨ (𝑀𝐴) ∈ (Unit‘𝑃)))
131130orcomd 871 . . . 4 (((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Base‘𝑃) ∧ (𝑀𝐴) ∈ (Base‘𝑃) ∧ ((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)) ∈ (Irred‘𝑃)) → ((𝑀𝐴) ∈ (Unit‘𝑃) ∨ (𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Unit‘𝑃)))
132131orcanai 1004 . . 3 ((((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Base‘𝑃) ∧ (𝑀𝐴) ∈ (Base‘𝑃) ∧ ((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)) ∈ (Irred‘𝑃)) ∧ ¬ (𝑀𝐴) ∈ (Unit‘𝑃)) → (𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Unit‘𝑃))
13354, 37, 126, 129, 132syl31anc 1375 . 2 (𝜑 → (𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Unit‘𝑃))
1341, 2, 3, 4, 8, 9, 27, 133, 125m1pmeq 33520 1 (𝜑𝐺 = (𝑀𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  {crab 3394   class class class wbr 5092  dom cdm 5619  cfv 6482  (class class class)co 7349   < clt 11149  cle 11150  0cn0 12384  Basecbs 17120  s cress 17141  +gcplusg 17161  .rcmulr 17162  0gc0g 17343  Grpcgrp 18812  -gcsg 18814  Ringcrg 20118  Unitcui 20240  Irredcir 20241  SubRingcsubrg 20454  DivRingcdr 20614  Fieldcfield 20615  SubDRingcsdrg 20671  LIdealclidl 21113  RSpancrsp 21114  Poly1cpl1 22059   evalSub1 ces1 22198  deg1cdg1 25957  Monic1pcmn1 26029  Unic1pcuc1p 26030  quot1pcq1p 26031  rem1pcr1p 26032  idlGen1pcig1p 26033   IntgRing cirng 33656   minPoly cminply 33672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-ofr 7614  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-fzo 13558  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-mulg 18947  df-subg 19002  df-ghm 19092  df-cntz 19196  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-srg 20072  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-irred 20244  df-invr 20273  df-rhm 20357  df-nzr 20398  df-subrng 20431  df-subrg 20455  df-rlreg 20579  df-domn 20580  df-idom 20581  df-drng 20616  df-field 20617  df-sdrg 20672  df-lmod 20765  df-lss 20835  df-lsp 20875  df-sra 21077  df-rgmod 21078  df-lidl 21115  df-rsp 21116  df-cnfld 21262  df-assa 21760  df-asp 21761  df-ascl 21762  df-psr 21816  df-mvr 21817  df-mpl 21818  df-opsr 21820  df-evls 21979  df-evl 21980  df-psr1 22062  df-vr1 22063  df-ply1 22064  df-coe1 22065  df-evls1 22200  df-evl1 22201  df-mdeg 25958  df-deg1 25959  df-mon1 26034  df-uc1p 26035  df-q1p 26036  df-r1p 26037  df-ig1p 26038  df-irng 33657  df-minply 33673
This theorem is referenced by:  2sqr3minply  33753  cos9thpiminply  33761
  Copyright terms: Public domain W3C validator