Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irredminply Structured version   Visualization version   GIF version

Theorem irredminply 33758
Description: An irreducible, monic, annihilating polynomial is the minimal polynomial. (Contributed by Thierry Arnoux, 27-Apr-2025.)
Hypotheses
Ref Expression
irredminply.o 𝑂 = (𝐸 evalSub1 𝐹)
irredminply.p 𝑃 = (Poly1‘(𝐸s 𝐹))
irredminply.b 𝐵 = (Base‘𝐸)
irredminply.e (𝜑𝐸 ∈ Field)
irredminply.f (𝜑𝐹 ∈ (SubDRing‘𝐸))
irredminply.a (𝜑𝐴𝐵)
irredminply.0 0 = (0g𝐸)
irredminply.m 𝑀 = (𝐸 minPoly 𝐹)
irredminply.z 𝑍 = (0g𝑃)
irredminply.1 (𝜑 → ((𝑂𝐺)‘𝐴) = 0 )
irredminply.2 (𝜑𝐺 ∈ (Irred‘𝑃))
irredminply.3 (𝜑𝐺 ∈ (Monic1p‘(𝐸s 𝐹)))
Assertion
Ref Expression
irredminply (𝜑𝐺 = (𝑀𝐴))

Proof of Theorem irredminply
Dummy variables 𝑞 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 irredminply.p . 2 𝑃 = (Poly1‘(𝐸s 𝐹))
2 eqid 2736 . 2 (Monic1p‘(𝐸s 𝐹)) = (Monic1p‘(𝐸s 𝐹))
3 eqid 2736 . 2 (Unit‘𝑃) = (Unit‘𝑃)
4 eqid 2736 . 2 (.r𝑃) = (.r𝑃)
5 irredminply.e . . 3 (𝜑𝐸 ∈ Field)
6 irredminply.f . . 3 (𝜑𝐹 ∈ (SubDRing‘𝐸))
7 fldsdrgfld 20800 . . 3 ((𝐸 ∈ Field ∧ 𝐹 ∈ (SubDRing‘𝐸)) → (𝐸s 𝐹) ∈ Field)
85, 6, 7syl2anc 584 . 2 (𝜑 → (𝐸s 𝐹) ∈ Field)
9 irredminply.3 . 2 (𝜑𝐺 ∈ (Monic1p‘(𝐸s 𝐹)))
10 eqid 2736 . . 3 (0g‘(Poly1𝐸)) = (0g‘(Poly1𝐸))
11 irredminply.m . . 3 𝑀 = (𝐸 minPoly 𝐹)
12 irredminply.a . . . 4 (𝜑𝐴𝐵)
13 fveq2 6905 . . . . . . 7 (𝑔 = 𝐺 → (𝑂𝑔) = (𝑂𝐺))
1413fveq1d 6907 . . . . . 6 (𝑔 = 𝐺 → ((𝑂𝑔)‘𝐴) = ((𝑂𝐺)‘𝐴))
1514eqeq1d 2738 . . . . 5 (𝑔 = 𝐺 → (((𝑂𝑔)‘𝐴) = 0 ↔ ((𝑂𝐺)‘𝐴) = 0 ))
16 irredminply.1 . . . . 5 (𝜑 → ((𝑂𝐺)‘𝐴) = 0 )
1715, 9, 16rspcedvdw 3624 . . . 4 (𝜑 → ∃𝑔 ∈ (Monic1p‘(𝐸s 𝐹))((𝑂𝑔)‘𝐴) = 0 )
18 irredminply.o . . . . 5 𝑂 = (𝐸 evalSub1 𝐹)
19 eqid 2736 . . . . 5 (𝐸s 𝐹) = (𝐸s 𝐹)
20 irredminply.b . . . . 5 𝐵 = (Base‘𝐸)
21 irredminply.0 . . . . 5 0 = (0g𝐸)
225fldcrngd 20743 . . . . 5 (𝜑𝐸 ∈ CRing)
23 sdrgsubrg 20793 . . . . . 6 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸))
246, 23syl 17 . . . . 5 (𝜑𝐹 ∈ (SubRing‘𝐸))
2518, 19, 20, 21, 22, 24elirng 33737 . . . 4 (𝜑 → (𝐴 ∈ (𝐸 IntgRing 𝐹) ↔ (𝐴𝐵 ∧ ∃𝑔 ∈ (Monic1p‘(𝐸s 𝐹))((𝑂𝑔)‘𝐴) = 0 )))
2612, 17, 25mpbir2and 713 . . 3 (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))
2710, 5, 6, 11, 26, 2minplym1p 33757 . 2 (𝜑 → (𝑀𝐴) ∈ (Monic1p‘(𝐸s 𝐹)))
2819sdrgdrng 20792 . . . . . . 7 (𝐹 ∈ (SubDRing‘𝐸) → (𝐸s 𝐹) ∈ DivRing)
296, 28syl 17 . . . . . 6 (𝜑 → (𝐸s 𝐹) ∈ DivRing)
3029drngringd 20738 . . . . 5 (𝜑 → (𝐸s 𝐹) ∈ Ring)
31 irredminply.2 . . . . . 6 (𝜑𝐺 ∈ (Irred‘𝑃))
32 eqid 2736 . . . . . . 7 (Irred‘𝑃) = (Irred‘𝑃)
33 eqid 2736 . . . . . . 7 (Base‘𝑃) = (Base‘𝑃)
3432, 33irredcl 20425 . . . . . 6 (𝐺 ∈ (Irred‘𝑃) → 𝐺 ∈ (Base‘𝑃))
3531, 34syl 17 . . . . 5 (𝜑𝐺 ∈ (Base‘𝑃))
361, 33, 2mon1pcl 26185 . . . . . . 7 ((𝑀𝐴) ∈ (Monic1p‘(𝐸s 𝐹)) → (𝑀𝐴) ∈ (Base‘𝑃))
3727, 36syl 17 . . . . . 6 (𝜑 → (𝑀𝐴) ∈ (Base‘𝑃))
3810, 5, 6, 11, 26irngnminplynz 33756 . . . . . . 7 (𝜑 → (𝑀𝐴) ≠ (0g‘(Poly1𝐸)))
39 irredminply.z . . . . . . . 8 𝑍 = (0g𝑃)
40 eqid 2736 . . . . . . . . 9 (Poly1𝐸) = (Poly1𝐸)
4140, 19, 1, 33, 24, 10ressply10g 33593 . . . . . . . 8 (𝜑 → (0g‘(Poly1𝐸)) = (0g𝑃))
4239, 41eqtr4id 2795 . . . . . . 7 (𝜑𝑍 = (0g‘(Poly1𝐸)))
4338, 42neeqtrrd 3014 . . . . . 6 (𝜑 → (𝑀𝐴) ≠ 𝑍)
44 eqid 2736 . . . . . . 7 (Unic1p‘(𝐸s 𝐹)) = (Unic1p‘(𝐸s 𝐹))
451, 33, 39, 44drnguc1p 26214 . . . . . 6 (((𝐸s 𝐹) ∈ DivRing ∧ (𝑀𝐴) ∈ (Base‘𝑃) ∧ (𝑀𝐴) ≠ 𝑍) → (𝑀𝐴) ∈ (Unic1p‘(𝐸s 𝐹)))
4629, 37, 43, 45syl3anc 1372 . . . . 5 (𝜑 → (𝑀𝐴) ∈ (Unic1p‘(𝐸s 𝐹)))
47 eqidd 2737 . . . . 5 (𝜑 → (𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) = (𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)))
48 eqid 2736 . . . . . . 7 (quot1p‘(𝐸s 𝐹)) = (quot1p‘(𝐸s 𝐹))
49 eqid 2736 . . . . . . 7 (deg1‘(𝐸s 𝐹)) = (deg1‘(𝐸s 𝐹))
50 eqid 2736 . . . . . . 7 (-g𝑃) = (-g𝑃)
5148, 1, 33, 49, 50, 4, 44q1peqb 26196 . . . . . 6 (((𝐸s 𝐹) ∈ Ring ∧ 𝐺 ∈ (Base‘𝑃) ∧ (𝑀𝐴) ∈ (Unic1p‘(𝐸s 𝐹))) → (((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Base‘𝑃) ∧ ((deg1‘(𝐸s 𝐹))‘(𝐺(-g𝑃)((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)))) < ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴))) ↔ (𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) = (𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))))
5251biimpar 477 . . . . 5 ((((𝐸s 𝐹) ∈ Ring ∧ 𝐺 ∈ (Base‘𝑃) ∧ (𝑀𝐴) ∈ (Unic1p‘(𝐸s 𝐹))) ∧ (𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) = (𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))) → ((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Base‘𝑃) ∧ ((deg1‘(𝐸s 𝐹))‘(𝐺(-g𝑃)((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)))) < ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴))))
5330, 35, 46, 47, 52syl31anc 1374 . . . 4 (𝜑 → ((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Base‘𝑃) ∧ ((deg1‘(𝐸s 𝐹))‘(𝐺(-g𝑃)((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)))) < ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴))))
5453simpld 494 . . 3 (𝜑 → (𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Base‘𝑃))
55 eqid 2736 . . . . . . 7 (rem1p‘(𝐸s 𝐹)) = (rem1p‘(𝐸s 𝐹))
56 eqid 2736 . . . . . . 7 (+g𝑃) = (+g𝑃)
571, 33, 44, 48, 55, 4, 56r1pid 26201 . . . . . 6 (((𝐸s 𝐹) ∈ Ring ∧ 𝐺 ∈ (Base‘𝑃) ∧ (𝑀𝐴) ∈ (Unic1p‘(𝐸s 𝐹))) → 𝐺 = (((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴))(+g𝑃)(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))))
5830, 35, 46, 57syl3anc 1372 . . . . 5 (𝜑𝐺 = (((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴))(+g𝑃)(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))))
5955, 1, 33, 44, 49r1pdeglt 26200 . . . . . . . . . 10 (((𝐸s 𝐹) ∈ Ring ∧ 𝐺 ∈ (Base‘𝑃) ∧ (𝑀𝐴) ∈ (Unic1p‘(𝐸s 𝐹))) → ((deg1‘(𝐸s 𝐹))‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))) < ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴)))
6030, 35, 46, 59syl3anc 1372 . . . . . . . . 9 (𝜑 → ((deg1‘(𝐸s 𝐹))‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))) < ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴)))
6160adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → ((deg1‘(𝐸s 𝐹))‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))) < ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴)))
6230adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → (𝐸s 𝐹) ∈ Ring)
6337adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → (𝑀𝐴) ∈ (Base‘𝑃))
6443adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → (𝑀𝐴) ≠ 𝑍)
6549, 1, 39, 33deg1nn0cl 26128 . . . . . . . . . . 11 (((𝐸s 𝐹) ∈ Ring ∧ (𝑀𝐴) ∈ (Base‘𝑃) ∧ (𝑀𝐴) ≠ 𝑍) → ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴)) ∈ ℕ0)
6662, 63, 64, 65syl3anc 1372 . . . . . . . . . 10 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴)) ∈ ℕ0)
6766nn0red 12590 . . . . . . . . 9 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴)) ∈ ℝ)
6855, 1, 33, 44r1pcl 26199 . . . . . . . . . . . . 13 (((𝐸s 𝐹) ∈ Ring ∧ 𝐺 ∈ (Base‘𝑃) ∧ (𝑀𝐴) ∈ (Unic1p‘(𝐸s 𝐹))) → (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Base‘𝑃))
6930, 35, 46, 68syl3anc 1372 . . . . . . . . . . . 12 (𝜑 → (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Base‘𝑃))
7069adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Base‘𝑃))
71 simpr 484 . . . . . . . . . . 11 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍)
7249, 1, 39, 33deg1nn0cl 26128 . . . . . . . . . . 11 (((𝐸s 𝐹) ∈ Ring ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Base‘𝑃) ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → ((deg1‘(𝐸s 𝐹))‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))) ∈ ℕ0)
7362, 70, 71, 72syl3anc 1372 . . . . . . . . . 10 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → ((deg1‘(𝐸s 𝐹))‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))) ∈ ℕ0)
7473nn0red 12590 . . . . . . . . 9 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → ((deg1‘(𝐸s 𝐹))‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))) ∈ ℝ)
75 eqid 2736 . . . . . . . . . . . . 13 {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 } = {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 }
76 eqid 2736 . . . . . . . . . . . . 13 (RSpan‘𝑃) = (RSpan‘𝑃)
77 eqid 2736 . . . . . . . . . . . . 13 (idlGen1p‘(𝐸s 𝐹)) = (idlGen1p‘(𝐸s 𝐹))
7818, 1, 20, 5, 6, 12, 21, 75, 76, 77, 11minplyval 33749 . . . . . . . . . . . 12 (𝜑 → (𝑀𝐴) = ((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 }))
7978fveq2d 6909 . . . . . . . . . . 11 (𝜑 → ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴)) = ((deg1‘(𝐸s 𝐹))‘((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 })))
8079adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴)) = ((deg1‘(𝐸s 𝐹))‘((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 })))
816adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → 𝐹 ∈ (SubDRing‘𝐸))
8281, 28syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → (𝐸s 𝐹) ∈ DivRing)
8318, 1, 20, 22, 24, 12, 21, 75ply1annidl 33746 . . . . . . . . . . . 12 (𝜑 → {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 } ∈ (LIdeal‘𝑃))
8483adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 } ∈ (LIdeal‘𝑃))
85 fveq2 6905 . . . . . . . . . . . . . . 15 (𝑞 = (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) → (𝑂𝑞) = (𝑂‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))))
8685fveq1d 6907 . . . . . . . . . . . . . 14 (𝑞 = (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) → ((𝑂𝑞)‘𝐴) = ((𝑂‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)))‘𝐴))
8786eqeq1d 2738 . . . . . . . . . . . . 13 (𝑞 = (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) → (((𝑂𝑞)‘𝐴) = 0 ↔ ((𝑂‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)))‘𝐴) = 0 ))
8818, 1, 33, 22, 24evls1dm 33588 . . . . . . . . . . . . . 14 (𝜑 → dom 𝑂 = (Base‘𝑃))
8969, 88eleqtrrd 2843 . . . . . . . . . . . . 13 (𝜑 → (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ dom 𝑂)
9055, 1, 33, 48, 4, 50r1pval 26198 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ (Base‘𝑃) ∧ (𝑀𝐴) ∈ (Base‘𝑃)) → (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) = (𝐺(-g𝑃)((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴))))
9135, 37, 90syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) = (𝐺(-g𝑃)((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴))))
9291fveq2d 6909 . . . . . . . . . . . . . . 15 (𝜑 → (𝑂‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))) = (𝑂‘(𝐺(-g𝑃)((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)))))
9392fveq1d 6907 . . . . . . . . . . . . . 14 (𝜑 → ((𝑂‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)))‘𝐴) = ((𝑂‘(𝐺(-g𝑃)((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴))))‘𝐴))
94 eqid 2736 . . . . . . . . . . . . . . . 16 (-g𝐸) = (-g𝐸)
951ply1ring 22250 . . . . . . . . . . . . . . . . . 18 ((𝐸s 𝐹) ∈ Ring → 𝑃 ∈ Ring)
9630, 95syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝑃 ∈ Ring)
9733, 4, 96, 54, 37ringcld 20258 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)) ∈ (Base‘𝑃))
9818, 20, 1, 19, 33, 50, 94, 22, 24, 35, 97, 12evls1subd 33598 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑂‘(𝐺(-g𝑃)((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴))))‘𝐴) = (((𝑂𝐺)‘𝐴)(-g𝐸)((𝑂‘((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)))‘𝐴)))
99 eqid 2736 . . . . . . . . . . . . . . . . . 18 (.r𝐸) = (.r𝐸)
10018, 20, 1, 19, 33, 4, 99, 22, 24, 54, 37, 12evls1muld 22377 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑂‘((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)))‘𝐴) = (((𝑂‘(𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)))‘𝐴)(.r𝐸)((𝑂‘(𝑀𝐴))‘𝐴)))
10118, 1, 20, 5, 6, 12, 21, 11minplyann 33753 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑂‘(𝑀𝐴))‘𝐴) = 0 )
102101oveq2d 7448 . . . . . . . . . . . . . . . . 17 (𝜑 → (((𝑂‘(𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)))‘𝐴)(.r𝐸)((𝑂‘(𝑀𝐴))‘𝐴)) = (((𝑂‘(𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)))‘𝐴)(.r𝐸) 0 ))
10322crngringd 20244 . . . . . . . . . . . . . . . . . 18 (𝜑𝐸 ∈ Ring)
10418, 1, 20, 33, 22, 24, 12, 54evls1fvcl 22380 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑂‘(𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)))‘𝐴) ∈ 𝐵)
10520, 99, 21, 103, 104ringrzd 20294 . . . . . . . . . . . . . . . . 17 (𝜑 → (((𝑂‘(𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)))‘𝐴)(.r𝐸) 0 ) = 0 )
106100, 102, 1053eqtrd 2780 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑂‘((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)))‘𝐴) = 0 )
10716, 106oveq12d 7450 . . . . . . . . . . . . . . 15 (𝜑 → (((𝑂𝐺)‘𝐴)(-g𝐸)((𝑂‘((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)))‘𝐴)) = ( 0 (-g𝐸) 0 ))
10822crnggrpd 20245 . . . . . . . . . . . . . . . 16 (𝜑𝐸 ∈ Grp)
10920, 21grpidcl 18984 . . . . . . . . . . . . . . . 16 (𝐸 ∈ Grp → 0𝐵)
11020, 21, 94grpsubid1 19044 . . . . . . . . . . . . . . . 16 ((𝐸 ∈ Grp ∧ 0𝐵) → ( 0 (-g𝐸) 0 ) = 0 )
111108, 109, 110syl2anc2 585 . . . . . . . . . . . . . . 15 (𝜑 → ( 0 (-g𝐸) 0 ) = 0 )
11298, 107, 1113eqtrd 2780 . . . . . . . . . . . . . 14 (𝜑 → ((𝑂‘(𝐺(-g𝑃)((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴))))‘𝐴) = 0 )
11393, 112eqtrd 2776 . . . . . . . . . . . . 13 (𝜑 → ((𝑂‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)))‘𝐴) = 0 )
11487, 89, 113elrabd 3693 . . . . . . . . . . . 12 (𝜑 → (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 })
115114adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 })
1161, 77, 33, 82, 84, 49, 39, 115, 71ig1pmindeg 33623 . . . . . . . . . 10 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → ((deg1‘(𝐸s 𝐹))‘((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 })) ≤ ((deg1‘(𝐸s 𝐹))‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))))
11780, 116eqbrtrd 5164 . . . . . . . . 9 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴)) ≤ ((deg1‘(𝐸s 𝐹))‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))))
11867, 74, 117lensymd 11413 . . . . . . . 8 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → ¬ ((deg1‘(𝐸s 𝐹))‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))) < ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴)))
11961, 118pm2.65da 816 . . . . . . 7 (𝜑 → ¬ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍)
120 nne 2943 . . . . . . 7 (¬ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍 ↔ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) = 𝑍)
121119, 120sylib 218 . . . . . 6 (𝜑 → (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) = 𝑍)
122121oveq2d 7448 . . . . 5 (𝜑 → (((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴))(+g𝑃)(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))) = (((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴))(+g𝑃)𝑍))
12396ringgrpd 20240 . . . . . 6 (𝜑𝑃 ∈ Grp)
12433, 56, 39, 123, 97grpridd 18989 . . . . 5 (𝜑 → (((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴))(+g𝑃)𝑍) = ((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)))
12558, 122, 1243eqtrd 2780 . . . 4 (𝜑𝐺 = ((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)))
126125, 31eqeltrrd 2841 . . 3 (𝜑 → ((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)) ∈ (Irred‘𝑃))
12718, 1, 20, 5, 6, 12, 11, 39, 43minplyirred 33755 . . . 4 (𝜑 → (𝑀𝐴) ∈ (Irred‘𝑃))
12832, 3irrednu 20426 . . . 4 ((𝑀𝐴) ∈ (Irred‘𝑃) → ¬ (𝑀𝐴) ∈ (Unit‘𝑃))
129127, 128syl 17 . . 3 (𝜑 → ¬ (𝑀𝐴) ∈ (Unit‘𝑃))
13032, 33, 3, 4irredmul 20430 . . . . 5 (((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Base‘𝑃) ∧ (𝑀𝐴) ∈ (Base‘𝑃) ∧ ((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)) ∈ (Irred‘𝑃)) → ((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Unit‘𝑃) ∨ (𝑀𝐴) ∈ (Unit‘𝑃)))
131130orcomd 871 . . . 4 (((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Base‘𝑃) ∧ (𝑀𝐴) ∈ (Base‘𝑃) ∧ ((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)) ∈ (Irred‘𝑃)) → ((𝑀𝐴) ∈ (Unit‘𝑃) ∨ (𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Unit‘𝑃)))
132131orcanai 1004 . . 3 ((((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Base‘𝑃) ∧ (𝑀𝐴) ∈ (Base‘𝑃) ∧ ((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)) ∈ (Irred‘𝑃)) ∧ ¬ (𝑀𝐴) ∈ (Unit‘𝑃)) → (𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Unit‘𝑃))
13354, 37, 126, 129, 132syl31anc 1374 . 2 (𝜑 → (𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Unit‘𝑃))
1341, 2, 3, 4, 8, 9, 27, 133, 125m1pmeq 33609 1 (𝜑𝐺 = (𝑀𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2939  wrex 3069  {crab 3435   class class class wbr 5142  dom cdm 5684  cfv 6560  (class class class)co 7432   < clt 11296  cle 11297  0cn0 12528  Basecbs 17248  s cress 17275  +gcplusg 17298  .rcmulr 17299  0gc0g 17485  Grpcgrp 18952  -gcsg 18954  Ringcrg 20231  Unitcui 20356  Irredcir 20357  SubRingcsubrg 20570  DivRingcdr 20730  Fieldcfield 20731  SubDRingcsdrg 20788  LIdealclidl 21217  RSpancrsp 21218  Poly1cpl1 22179   evalSub1 ces1 22318  deg1cdg1 26094  Monic1pcmn1 26166  Unic1pcuc1p 26167  quot1pcq1p 26168  rem1pcr1p 26169  idlGen1pcig1p 26170   IntgRing cirng 33734   minPoly cminply 33743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234  ax-addf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-ofr 7699  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-tpos 8252  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-pm 8870  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-sup 9483  df-inf 9484  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-fz 13549  df-fzo 13696  df-seq 14044  df-hash 14371  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-0g 17487  df-gsum 17488  df-prds 17493  df-pws 17495  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-mhm 18797  df-submnd 18798  df-grp 18955  df-minusg 18956  df-sbg 18957  df-mulg 19087  df-subg 19142  df-ghm 19232  df-cntz 19336  df-cmn 19801  df-abl 19802  df-mgp 20139  df-rng 20151  df-ur 20180  df-srg 20185  df-ring 20233  df-cring 20234  df-oppr 20335  df-dvdsr 20358  df-unit 20359  df-irred 20360  df-invr 20389  df-rhm 20473  df-nzr 20514  df-subrng 20547  df-subrg 20571  df-rlreg 20695  df-domn 20696  df-idom 20697  df-drng 20732  df-field 20733  df-sdrg 20789  df-lmod 20861  df-lss 20931  df-lsp 20971  df-sra 21173  df-rgmod 21174  df-lidl 21219  df-rsp 21220  df-cnfld 21366  df-assa 21874  df-asp 21875  df-ascl 21876  df-psr 21930  df-mvr 21931  df-mpl 21932  df-opsr 21934  df-evls 22099  df-evl 22100  df-psr1 22182  df-vr1 22183  df-ply1 22184  df-coe1 22185  df-evls1 22320  df-evl1 22321  df-mdeg 26095  df-deg1 26096  df-mon1 26171  df-uc1p 26172  df-q1p 26173  df-r1p 26174  df-ig1p 26175  df-irng 33735  df-minply 33744
This theorem is referenced by:  2sqr3minply  33792
  Copyright terms: Public domain W3C validator