| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | irredminply.p | . 2
⊢ 𝑃 =
(Poly1‘(𝐸
↾s 𝐹)) | 
| 2 |  | eqid 2736 | . 2
⊢
(Monic1p‘(𝐸 ↾s 𝐹)) = (Monic1p‘(𝐸 ↾s 𝐹)) | 
| 3 |  | eqid 2736 | . 2
⊢
(Unit‘𝑃) =
(Unit‘𝑃) | 
| 4 |  | eqid 2736 | . 2
⊢
(.r‘𝑃) = (.r‘𝑃) | 
| 5 |  | irredminply.e | . . 3
⊢ (𝜑 → 𝐸 ∈ Field) | 
| 6 |  | irredminply.f | . . 3
⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) | 
| 7 |  | fldsdrgfld 20800 | . . 3
⊢ ((𝐸 ∈ Field ∧ 𝐹 ∈ (SubDRing‘𝐸)) → (𝐸 ↾s 𝐹) ∈ Field) | 
| 8 | 5, 6, 7 | syl2anc 584 | . 2
⊢ (𝜑 → (𝐸 ↾s 𝐹) ∈ Field) | 
| 9 |  | irredminply.3 | . 2
⊢ (𝜑 → 𝐺 ∈ (Monic1p‘(𝐸 ↾s 𝐹))) | 
| 10 |  | eqid 2736 | . . 3
⊢
(0g‘(Poly1‘𝐸)) =
(0g‘(Poly1‘𝐸)) | 
| 11 |  | irredminply.m | . . 3
⊢ 𝑀 = (𝐸 minPoly 𝐹) | 
| 12 |  | irredminply.a | . . . 4
⊢ (𝜑 → 𝐴 ∈ 𝐵) | 
| 13 |  | fveq2 6905 | . . . . . . 7
⊢ (𝑔 = 𝐺 → (𝑂‘𝑔) = (𝑂‘𝐺)) | 
| 14 | 13 | fveq1d 6907 | . . . . . 6
⊢ (𝑔 = 𝐺 → ((𝑂‘𝑔)‘𝐴) = ((𝑂‘𝐺)‘𝐴)) | 
| 15 | 14 | eqeq1d 2738 | . . . . 5
⊢ (𝑔 = 𝐺 → (((𝑂‘𝑔)‘𝐴) = 0 ↔ ((𝑂‘𝐺)‘𝐴) = 0 )) | 
| 16 |  | irredminply.1 | . . . . 5
⊢ (𝜑 → ((𝑂‘𝐺)‘𝐴) = 0 ) | 
| 17 | 15, 9, 16 | rspcedvdw 3624 | . . . 4
⊢ (𝜑 → ∃𝑔 ∈ (Monic1p‘(𝐸 ↾s 𝐹))((𝑂‘𝑔)‘𝐴) = 0 ) | 
| 18 |  | irredminply.o | . . . . 5
⊢ 𝑂 = (𝐸 evalSub1 𝐹) | 
| 19 |  | eqid 2736 | . . . . 5
⊢ (𝐸 ↾s 𝐹) = (𝐸 ↾s 𝐹) | 
| 20 |  | irredminply.b | . . . . 5
⊢ 𝐵 = (Base‘𝐸) | 
| 21 |  | irredminply.0 | . . . . 5
⊢  0 =
(0g‘𝐸) | 
| 22 | 5 | fldcrngd 20743 | . . . . 5
⊢ (𝜑 → 𝐸 ∈ CRing) | 
| 23 |  | sdrgsubrg 20793 | . . . . . 6
⊢ (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸)) | 
| 24 | 6, 23 | syl 17 | . . . . 5
⊢ (𝜑 → 𝐹 ∈ (SubRing‘𝐸)) | 
| 25 | 18, 19, 20, 21, 22, 24 | elirng 33737 | . . . 4
⊢ (𝜑 → (𝐴 ∈ (𝐸 IntgRing 𝐹) ↔ (𝐴 ∈ 𝐵 ∧ ∃𝑔 ∈ (Monic1p‘(𝐸 ↾s 𝐹))((𝑂‘𝑔)‘𝐴) = 0 ))) | 
| 26 | 12, 17, 25 | mpbir2and 713 | . . 3
⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) | 
| 27 | 10, 5, 6, 11, 26, 2 | minplym1p 33757 | . 2
⊢ (𝜑 → (𝑀‘𝐴) ∈ (Monic1p‘(𝐸 ↾s 𝐹))) | 
| 28 | 19 | sdrgdrng 20792 | . . . . . . 7
⊢ (𝐹 ∈ (SubDRing‘𝐸) → (𝐸 ↾s 𝐹) ∈ DivRing) | 
| 29 | 6, 28 | syl 17 | . . . . . 6
⊢ (𝜑 → (𝐸 ↾s 𝐹) ∈ DivRing) | 
| 30 | 29 | drngringd 20738 | . . . . 5
⊢ (𝜑 → (𝐸 ↾s 𝐹) ∈ Ring) | 
| 31 |  | irredminply.2 | . . . . . 6
⊢ (𝜑 → 𝐺 ∈ (Irred‘𝑃)) | 
| 32 |  | eqid 2736 | . . . . . . 7
⊢
(Irred‘𝑃) =
(Irred‘𝑃) | 
| 33 |  | eqid 2736 | . . . . . . 7
⊢
(Base‘𝑃) =
(Base‘𝑃) | 
| 34 | 32, 33 | irredcl 20425 | . . . . . 6
⊢ (𝐺 ∈ (Irred‘𝑃) → 𝐺 ∈ (Base‘𝑃)) | 
| 35 | 31, 34 | syl 17 | . . . . 5
⊢ (𝜑 → 𝐺 ∈ (Base‘𝑃)) | 
| 36 | 1, 33, 2 | mon1pcl 26185 | . . . . . . 7
⊢ ((𝑀‘𝐴) ∈ (Monic1p‘(𝐸 ↾s 𝐹)) → (𝑀‘𝐴) ∈ (Base‘𝑃)) | 
| 37 | 27, 36 | syl 17 | . . . . . 6
⊢ (𝜑 → (𝑀‘𝐴) ∈ (Base‘𝑃)) | 
| 38 | 10, 5, 6, 11, 26 | irngnminplynz 33756 | . . . . . . 7
⊢ (𝜑 → (𝑀‘𝐴) ≠
(0g‘(Poly1‘𝐸))) | 
| 39 |  | irredminply.z | . . . . . . . 8
⊢ 𝑍 = (0g‘𝑃) | 
| 40 |  | eqid 2736 | . . . . . . . . 9
⊢
(Poly1‘𝐸) = (Poly1‘𝐸) | 
| 41 | 40, 19, 1, 33, 24, 10 | ressply10g 33593 | . . . . . . . 8
⊢ (𝜑 →
(0g‘(Poly1‘𝐸)) = (0g‘𝑃)) | 
| 42 | 39, 41 | eqtr4id 2795 | . . . . . . 7
⊢ (𝜑 → 𝑍 =
(0g‘(Poly1‘𝐸))) | 
| 43 | 38, 42 | neeqtrrd 3014 | . . . . . 6
⊢ (𝜑 → (𝑀‘𝐴) ≠ 𝑍) | 
| 44 |  | eqid 2736 | . . . . . . 7
⊢
(Unic1p‘(𝐸 ↾s 𝐹)) = (Unic1p‘(𝐸 ↾s 𝐹)) | 
| 45 | 1, 33, 39, 44 | drnguc1p 26214 | . . . . . 6
⊢ (((𝐸 ↾s 𝐹) ∈ DivRing ∧ (𝑀‘𝐴) ∈ (Base‘𝑃) ∧ (𝑀‘𝐴) ≠ 𝑍) → (𝑀‘𝐴) ∈ (Unic1p‘(𝐸 ↾s 𝐹))) | 
| 46 | 29, 37, 43, 45 | syl3anc 1372 | . . . . 5
⊢ (𝜑 → (𝑀‘𝐴) ∈ (Unic1p‘(𝐸 ↾s 𝐹))) | 
| 47 |  | eqidd 2737 | . . . . 5
⊢ (𝜑 → (𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) = (𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))) | 
| 48 |  | eqid 2736 | . . . . . . 7
⊢
(quot1p‘(𝐸 ↾s 𝐹)) = (quot1p‘(𝐸 ↾s 𝐹)) | 
| 49 |  | eqid 2736 | . . . . . . 7
⊢
(deg1‘(𝐸 ↾s 𝐹)) = (deg1‘(𝐸 ↾s 𝐹)) | 
| 50 |  | eqid 2736 | . . . . . . 7
⊢
(-g‘𝑃) = (-g‘𝑃) | 
| 51 | 48, 1, 33, 49, 50, 4, 44 | q1peqb 26196 | . . . . . 6
⊢ (((𝐸 ↾s 𝐹) ∈ Ring ∧ 𝐺 ∈ (Base‘𝑃) ∧ (𝑀‘𝐴) ∈ (Unic1p‘(𝐸 ↾s 𝐹))) → (((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ∈ (Base‘𝑃) ∧ ((deg1‘(𝐸 ↾s 𝐹))‘(𝐺(-g‘𝑃)((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))(.r‘𝑃)(𝑀‘𝐴)))) < ((deg1‘(𝐸 ↾s 𝐹))‘(𝑀‘𝐴))) ↔ (𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) = (𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)))) | 
| 52 | 51 | biimpar 477 | . . . . 5
⊢ ((((𝐸 ↾s 𝐹) ∈ Ring ∧ 𝐺 ∈ (Base‘𝑃) ∧ (𝑀‘𝐴) ∈ (Unic1p‘(𝐸 ↾s 𝐹))) ∧ (𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) = (𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))) → ((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ∈ (Base‘𝑃) ∧ ((deg1‘(𝐸 ↾s 𝐹))‘(𝐺(-g‘𝑃)((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))(.r‘𝑃)(𝑀‘𝐴)))) < ((deg1‘(𝐸 ↾s 𝐹))‘(𝑀‘𝐴)))) | 
| 53 | 30, 35, 46, 47, 52 | syl31anc 1374 | . . . 4
⊢ (𝜑 → ((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ∈ (Base‘𝑃) ∧ ((deg1‘(𝐸 ↾s 𝐹))‘(𝐺(-g‘𝑃)((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))(.r‘𝑃)(𝑀‘𝐴)))) < ((deg1‘(𝐸 ↾s 𝐹))‘(𝑀‘𝐴)))) | 
| 54 | 53 | simpld 494 | . . 3
⊢ (𝜑 → (𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ∈ (Base‘𝑃)) | 
| 55 |  | eqid 2736 | . . . . . . 7
⊢
(rem1p‘(𝐸 ↾s 𝐹)) = (rem1p‘(𝐸 ↾s 𝐹)) | 
| 56 |  | eqid 2736 | . . . . . . 7
⊢
(+g‘𝑃) = (+g‘𝑃) | 
| 57 | 1, 33, 44, 48, 55, 4, 56 | r1pid 26201 | . . . . . 6
⊢ (((𝐸 ↾s 𝐹) ∈ Ring ∧ 𝐺 ∈ (Base‘𝑃) ∧ (𝑀‘𝐴) ∈ (Unic1p‘(𝐸 ↾s 𝐹))) → 𝐺 = (((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))(.r‘𝑃)(𝑀‘𝐴))(+g‘𝑃)(𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)))) | 
| 58 | 30, 35, 46, 57 | syl3anc 1372 | . . . . 5
⊢ (𝜑 → 𝐺 = (((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))(.r‘𝑃)(𝑀‘𝐴))(+g‘𝑃)(𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)))) | 
| 59 | 55, 1, 33, 44, 49 | r1pdeglt 26200 | . . . . . . . . . 10
⊢ (((𝐸 ↾s 𝐹) ∈ Ring ∧ 𝐺 ∈ (Base‘𝑃) ∧ (𝑀‘𝐴) ∈ (Unic1p‘(𝐸 ↾s 𝐹))) →
((deg1‘(𝐸
↾s 𝐹))‘(𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))) < ((deg1‘(𝐸 ↾s 𝐹))‘(𝑀‘𝐴))) | 
| 60 | 30, 35, 46, 59 | syl3anc 1372 | . . . . . . . . 9
⊢ (𝜑 →
((deg1‘(𝐸
↾s 𝐹))‘(𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))) < ((deg1‘(𝐸 ↾s 𝐹))‘(𝑀‘𝐴))) | 
| 61 | 60 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ≠ 𝑍) → ((deg1‘(𝐸 ↾s 𝐹))‘(𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))) < ((deg1‘(𝐸 ↾s 𝐹))‘(𝑀‘𝐴))) | 
| 62 | 30 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ≠ 𝑍) → (𝐸 ↾s 𝐹) ∈ Ring) | 
| 63 | 37 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ≠ 𝑍) → (𝑀‘𝐴) ∈ (Base‘𝑃)) | 
| 64 | 43 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ≠ 𝑍) → (𝑀‘𝐴) ≠ 𝑍) | 
| 65 | 49, 1, 39, 33 | deg1nn0cl 26128 | . . . . . . . . . . 11
⊢ (((𝐸 ↾s 𝐹) ∈ Ring ∧ (𝑀‘𝐴) ∈ (Base‘𝑃) ∧ (𝑀‘𝐴) ≠ 𝑍) → ((deg1‘(𝐸 ↾s 𝐹))‘(𝑀‘𝐴)) ∈
ℕ0) | 
| 66 | 62, 63, 64, 65 | syl3anc 1372 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ≠ 𝑍) → ((deg1‘(𝐸 ↾s 𝐹))‘(𝑀‘𝐴)) ∈
ℕ0) | 
| 67 | 66 | nn0red 12590 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ≠ 𝑍) → ((deg1‘(𝐸 ↾s 𝐹))‘(𝑀‘𝐴)) ∈ ℝ) | 
| 68 | 55, 1, 33, 44 | r1pcl 26199 | . . . . . . . . . . . . 13
⊢ (((𝐸 ↾s 𝐹) ∈ Ring ∧ 𝐺 ∈ (Base‘𝑃) ∧ (𝑀‘𝐴) ∈ (Unic1p‘(𝐸 ↾s 𝐹))) → (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ∈ (Base‘𝑃)) | 
| 69 | 30, 35, 46, 68 | syl3anc 1372 | . . . . . . . . . . . 12
⊢ (𝜑 → (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ∈ (Base‘𝑃)) | 
| 70 | 69 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ≠ 𝑍) → (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ∈ (Base‘𝑃)) | 
| 71 |  | simpr 484 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ≠ 𝑍) → (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ≠ 𝑍) | 
| 72 | 49, 1, 39, 33 | deg1nn0cl 26128 | . . . . . . . . . . 11
⊢ (((𝐸 ↾s 𝐹) ∈ Ring ∧ (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ∈ (Base‘𝑃) ∧ (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ≠ 𝑍) → ((deg1‘(𝐸 ↾s 𝐹))‘(𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))) ∈
ℕ0) | 
| 73 | 62, 70, 71, 72 | syl3anc 1372 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ≠ 𝑍) → ((deg1‘(𝐸 ↾s 𝐹))‘(𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))) ∈
ℕ0) | 
| 74 | 73 | nn0red 12590 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ≠ 𝑍) → ((deg1‘(𝐸 ↾s 𝐹))‘(𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))) ∈ ℝ) | 
| 75 |  | eqid 2736 | . . . . . . . . . . . . 13
⊢ {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } = {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } | 
| 76 |  | eqid 2736 | . . . . . . . . . . . . 13
⊢
(RSpan‘𝑃) =
(RSpan‘𝑃) | 
| 77 |  | eqid 2736 | . . . . . . . . . . . . 13
⊢
(idlGen1p‘(𝐸 ↾s 𝐹)) = (idlGen1p‘(𝐸 ↾s 𝐹)) | 
| 78 | 18, 1, 20, 5, 6, 12, 21, 75, 76, 77, 11 | minplyval 33749 | . . . . . . . . . . . 12
⊢ (𝜑 → (𝑀‘𝐴) = ((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 })) | 
| 79 | 78 | fveq2d 6909 | . . . . . . . . . . 11
⊢ (𝜑 →
((deg1‘(𝐸
↾s 𝐹))‘(𝑀‘𝐴)) = ((deg1‘(𝐸 ↾s 𝐹))‘((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 }))) | 
| 80 | 79 | adantr 480 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ≠ 𝑍) → ((deg1‘(𝐸 ↾s 𝐹))‘(𝑀‘𝐴)) = ((deg1‘(𝐸 ↾s 𝐹))‘((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 }))) | 
| 81 | 6 | adantr 480 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ≠ 𝑍) → 𝐹 ∈ (SubDRing‘𝐸)) | 
| 82 | 81, 28 | syl 17 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ≠ 𝑍) → (𝐸 ↾s 𝐹) ∈ DivRing) | 
| 83 | 18, 1, 20, 22, 24, 12, 21, 75 | ply1annidl 33746 | . . . . . . . . . . . 12
⊢ (𝜑 → {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } ∈
(LIdeal‘𝑃)) | 
| 84 | 83 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ≠ 𝑍) → {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } ∈
(LIdeal‘𝑃)) | 
| 85 |  | fveq2 6905 | . . . . . . . . . . . . . . 15
⊢ (𝑞 = (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) → (𝑂‘𝑞) = (𝑂‘(𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)))) | 
| 86 | 85 | fveq1d 6907 | . . . . . . . . . . . . . 14
⊢ (𝑞 = (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) → ((𝑂‘𝑞)‘𝐴) = ((𝑂‘(𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)))‘𝐴)) | 
| 87 | 86 | eqeq1d 2738 | . . . . . . . . . . . . 13
⊢ (𝑞 = (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) → (((𝑂‘𝑞)‘𝐴) = 0 ↔ ((𝑂‘(𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)))‘𝐴) = 0 )) | 
| 88 | 18, 1, 33, 22, 24 | evls1dm 33588 | . . . . . . . . . . . . . 14
⊢ (𝜑 → dom 𝑂 = (Base‘𝑃)) | 
| 89 | 69, 88 | eleqtrrd 2843 | . . . . . . . . . . . . 13
⊢ (𝜑 → (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ∈ dom 𝑂) | 
| 90 | 55, 1, 33, 48, 4, 50 | r1pval 26198 | . . . . . . . . . . . . . . . . 17
⊢ ((𝐺 ∈ (Base‘𝑃) ∧ (𝑀‘𝐴) ∈ (Base‘𝑃)) → (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) = (𝐺(-g‘𝑃)((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))(.r‘𝑃)(𝑀‘𝐴)))) | 
| 91 | 35, 37, 90 | syl2anc 584 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) = (𝐺(-g‘𝑃)((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))(.r‘𝑃)(𝑀‘𝐴)))) | 
| 92 | 91 | fveq2d 6909 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑂‘(𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))) = (𝑂‘(𝐺(-g‘𝑃)((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))(.r‘𝑃)(𝑀‘𝐴))))) | 
| 93 | 92 | fveq1d 6907 | . . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑂‘(𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)))‘𝐴) = ((𝑂‘(𝐺(-g‘𝑃)((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))(.r‘𝑃)(𝑀‘𝐴))))‘𝐴)) | 
| 94 |  | eqid 2736 | . . . . . . . . . . . . . . . 16
⊢
(-g‘𝐸) = (-g‘𝐸) | 
| 95 | 1 | ply1ring 22250 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝐸 ↾s 𝐹) ∈ Ring → 𝑃 ∈ Ring) | 
| 96 | 30, 95 | syl 17 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑃 ∈ Ring) | 
| 97 | 33, 4, 96, 54, 37 | ringcld 20258 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))(.r‘𝑃)(𝑀‘𝐴)) ∈ (Base‘𝑃)) | 
| 98 | 18, 20, 1, 19, 33, 50, 94, 22, 24, 35, 97, 12 | evls1subd 33598 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝑂‘(𝐺(-g‘𝑃)((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))(.r‘𝑃)(𝑀‘𝐴))))‘𝐴) = (((𝑂‘𝐺)‘𝐴)(-g‘𝐸)((𝑂‘((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))(.r‘𝑃)(𝑀‘𝐴)))‘𝐴))) | 
| 99 |  | eqid 2736 | . . . . . . . . . . . . . . . . . 18
⊢
(.r‘𝐸) = (.r‘𝐸) | 
| 100 | 18, 20, 1, 19, 33, 4, 99, 22, 24, 54, 37, 12 | evls1muld 22377 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝑂‘((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))(.r‘𝑃)(𝑀‘𝐴)))‘𝐴) = (((𝑂‘(𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)))‘𝐴)(.r‘𝐸)((𝑂‘(𝑀‘𝐴))‘𝐴))) | 
| 101 | 18, 1, 20, 5, 6, 12, 21, 11 | minplyann 33753 | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((𝑂‘(𝑀‘𝐴))‘𝐴) = 0 ) | 
| 102 | 101 | oveq2d 7448 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (((𝑂‘(𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)))‘𝐴)(.r‘𝐸)((𝑂‘(𝑀‘𝐴))‘𝐴)) = (((𝑂‘(𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)))‘𝐴)(.r‘𝐸) 0 )) | 
| 103 | 22 | crngringd 20244 | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐸 ∈ Ring) | 
| 104 | 18, 1, 20, 33, 22, 24, 12, 54 | evls1fvcl 22380 | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((𝑂‘(𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)))‘𝐴) ∈ 𝐵) | 
| 105 | 20, 99, 21, 103, 104 | ringrzd 20294 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (((𝑂‘(𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)))‘𝐴)(.r‘𝐸) 0 ) = 0 ) | 
| 106 | 100, 102,
105 | 3eqtrd 2780 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝑂‘((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))(.r‘𝑃)(𝑀‘𝐴)))‘𝐴) = 0 ) | 
| 107 | 16, 106 | oveq12d 7450 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → (((𝑂‘𝐺)‘𝐴)(-g‘𝐸)((𝑂‘((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))(.r‘𝑃)(𝑀‘𝐴)))‘𝐴)) = ( 0 (-g‘𝐸) 0 )) | 
| 108 | 22 | crnggrpd 20245 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐸 ∈ Grp) | 
| 109 | 20, 21 | grpidcl 18984 | . . . . . . . . . . . . . . . 16
⊢ (𝐸 ∈ Grp → 0 ∈ 𝐵) | 
| 110 | 20, 21, 94 | grpsubid1 19044 | . . . . . . . . . . . . . . . 16
⊢ ((𝐸 ∈ Grp ∧ 0 ∈ 𝐵) → ( 0 (-g‘𝐸) 0 ) = 0 ) | 
| 111 | 108, 109,
110 | syl2anc2 585 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → ( 0 (-g‘𝐸) 0 ) = 0 ) | 
| 112 | 98, 107, 111 | 3eqtrd 2780 | . . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑂‘(𝐺(-g‘𝑃)((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))(.r‘𝑃)(𝑀‘𝐴))))‘𝐴) = 0 ) | 
| 113 | 93, 112 | eqtrd 2776 | . . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑂‘(𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)))‘𝐴) = 0 ) | 
| 114 | 87, 89, 113 | elrabd 3693 | . . . . . . . . . . . 12
⊢ (𝜑 → (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 }) | 
| 115 | 114 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ≠ 𝑍) → (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 }) | 
| 116 | 1, 77, 33, 82, 84, 49, 39, 115, 71 | ig1pmindeg 33623 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ≠ 𝑍) → ((deg1‘(𝐸 ↾s 𝐹))‘((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 })) ≤
((deg1‘(𝐸
↾s 𝐹))‘(𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)))) | 
| 117 | 80, 116 | eqbrtrd 5164 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ≠ 𝑍) → ((deg1‘(𝐸 ↾s 𝐹))‘(𝑀‘𝐴)) ≤ ((deg1‘(𝐸 ↾s 𝐹))‘(𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)))) | 
| 118 | 67, 74, 117 | lensymd 11413 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ≠ 𝑍) → ¬
((deg1‘(𝐸
↾s 𝐹))‘(𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))) < ((deg1‘(𝐸 ↾s 𝐹))‘(𝑀‘𝐴))) | 
| 119 | 61, 118 | pm2.65da 816 | . . . . . . 7
⊢ (𝜑 → ¬ (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ≠ 𝑍) | 
| 120 |  | nne 2943 | . . . . . . 7
⊢ (¬
(𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ≠ 𝑍 ↔ (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) = 𝑍) | 
| 121 | 119, 120 | sylib 218 | . . . . . 6
⊢ (𝜑 → (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) = 𝑍) | 
| 122 | 121 | oveq2d 7448 | . . . . 5
⊢ (𝜑 → (((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))(.r‘𝑃)(𝑀‘𝐴))(+g‘𝑃)(𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))) = (((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))(.r‘𝑃)(𝑀‘𝐴))(+g‘𝑃)𝑍)) | 
| 123 | 96 | ringgrpd 20240 | . . . . . 6
⊢ (𝜑 → 𝑃 ∈ Grp) | 
| 124 | 33, 56, 39, 123, 97 | grpridd 18989 | . . . . 5
⊢ (𝜑 → (((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))(.r‘𝑃)(𝑀‘𝐴))(+g‘𝑃)𝑍) = ((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))(.r‘𝑃)(𝑀‘𝐴))) | 
| 125 | 58, 122, 124 | 3eqtrd 2780 | . . . 4
⊢ (𝜑 → 𝐺 = ((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))(.r‘𝑃)(𝑀‘𝐴))) | 
| 126 | 125, 31 | eqeltrrd 2841 | . . 3
⊢ (𝜑 → ((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))(.r‘𝑃)(𝑀‘𝐴)) ∈ (Irred‘𝑃)) | 
| 127 | 18, 1, 20, 5, 6, 12, 11, 39, 43 | minplyirred 33755 | . . . 4
⊢ (𝜑 → (𝑀‘𝐴) ∈ (Irred‘𝑃)) | 
| 128 | 32, 3 | irrednu 20426 | . . . 4
⊢ ((𝑀‘𝐴) ∈ (Irred‘𝑃) → ¬ (𝑀‘𝐴) ∈ (Unit‘𝑃)) | 
| 129 | 127, 128 | syl 17 | . . 3
⊢ (𝜑 → ¬ (𝑀‘𝐴) ∈ (Unit‘𝑃)) | 
| 130 | 32, 33, 3, 4 | irredmul 20430 | . . . . 5
⊢ (((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ∈ (Base‘𝑃) ∧ (𝑀‘𝐴) ∈ (Base‘𝑃) ∧ ((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))(.r‘𝑃)(𝑀‘𝐴)) ∈ (Irred‘𝑃)) → ((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ∈ (Unit‘𝑃) ∨ (𝑀‘𝐴) ∈ (Unit‘𝑃))) | 
| 131 | 130 | orcomd 871 | . . . 4
⊢ (((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ∈ (Base‘𝑃) ∧ (𝑀‘𝐴) ∈ (Base‘𝑃) ∧ ((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))(.r‘𝑃)(𝑀‘𝐴)) ∈ (Irred‘𝑃)) → ((𝑀‘𝐴) ∈ (Unit‘𝑃) ∨ (𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ∈ (Unit‘𝑃))) | 
| 132 | 131 | orcanai 1004 | . . 3
⊢ ((((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ∈ (Base‘𝑃) ∧ (𝑀‘𝐴) ∈ (Base‘𝑃) ∧ ((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))(.r‘𝑃)(𝑀‘𝐴)) ∈ (Irred‘𝑃)) ∧ ¬ (𝑀‘𝐴) ∈ (Unit‘𝑃)) → (𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ∈ (Unit‘𝑃)) | 
| 133 | 54, 37, 126, 129, 132 | syl31anc 1374 | . 2
⊢ (𝜑 → (𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ∈ (Unit‘𝑃)) | 
| 134 | 1, 2, 3, 4, 8, 9, 27, 133, 125 | m1pmeq 33609 | 1
⊢ (𝜑 → 𝐺 = (𝑀‘𝐴)) |