Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irredminply Structured version   Visualization version   GIF version

Theorem irredminply 33706
Description: An irreducible, monic, annihilating polynomial is the minimal polynomial. (Contributed by Thierry Arnoux, 27-Apr-2025.)
Hypotheses
Ref Expression
irredminply.o 𝑂 = (𝐸 evalSub1 𝐹)
irredminply.p 𝑃 = (Poly1‘(𝐸s 𝐹))
irredminply.b 𝐵 = (Base‘𝐸)
irredminply.e (𝜑𝐸 ∈ Field)
irredminply.f (𝜑𝐹 ∈ (SubDRing‘𝐸))
irredminply.a (𝜑𝐴𝐵)
irredminply.0 0 = (0g𝐸)
irredminply.m 𝑀 = (𝐸 minPoly 𝐹)
irredminply.z 𝑍 = (0g𝑃)
irredminply.1 (𝜑 → ((𝑂𝐺)‘𝐴) = 0 )
irredminply.2 (𝜑𝐺 ∈ (Irred‘𝑃))
irredminply.3 (𝜑𝐺 ∈ (Monic1p‘(𝐸s 𝐹)))
Assertion
Ref Expression
irredminply (𝜑𝐺 = (𝑀𝐴))

Proof of Theorem irredminply
Dummy variables 𝑞 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 irredminply.p . 2 𝑃 = (Poly1‘(𝐸s 𝐹))
2 eqid 2729 . 2 (Monic1p‘(𝐸s 𝐹)) = (Monic1p‘(𝐸s 𝐹))
3 eqid 2729 . 2 (Unit‘𝑃) = (Unit‘𝑃)
4 eqid 2729 . 2 (.r𝑃) = (.r𝑃)
5 irredminply.e . . 3 (𝜑𝐸 ∈ Field)
6 irredminply.f . . 3 (𝜑𝐹 ∈ (SubDRing‘𝐸))
7 fldsdrgfld 20707 . . 3 ((𝐸 ∈ Field ∧ 𝐹 ∈ (SubDRing‘𝐸)) → (𝐸s 𝐹) ∈ Field)
85, 6, 7syl2anc 584 . 2 (𝜑 → (𝐸s 𝐹) ∈ Field)
9 irredminply.3 . 2 (𝜑𝐺 ∈ (Monic1p‘(𝐸s 𝐹)))
10 eqid 2729 . . 3 (0g‘(Poly1𝐸)) = (0g‘(Poly1𝐸))
11 irredminply.m . . 3 𝑀 = (𝐸 minPoly 𝐹)
12 irredminply.a . . . 4 (𝜑𝐴𝐵)
13 fveq2 6858 . . . . . . 7 (𝑔 = 𝐺 → (𝑂𝑔) = (𝑂𝐺))
1413fveq1d 6860 . . . . . 6 (𝑔 = 𝐺 → ((𝑂𝑔)‘𝐴) = ((𝑂𝐺)‘𝐴))
1514eqeq1d 2731 . . . . 5 (𝑔 = 𝐺 → (((𝑂𝑔)‘𝐴) = 0 ↔ ((𝑂𝐺)‘𝐴) = 0 ))
16 irredminply.1 . . . . 5 (𝜑 → ((𝑂𝐺)‘𝐴) = 0 )
1715, 9, 16rspcedvdw 3591 . . . 4 (𝜑 → ∃𝑔 ∈ (Monic1p‘(𝐸s 𝐹))((𝑂𝑔)‘𝐴) = 0 )
18 irredminply.o . . . . 5 𝑂 = (𝐸 evalSub1 𝐹)
19 eqid 2729 . . . . 5 (𝐸s 𝐹) = (𝐸s 𝐹)
20 irredminply.b . . . . 5 𝐵 = (Base‘𝐸)
21 irredminply.0 . . . . 5 0 = (0g𝐸)
225fldcrngd 20651 . . . . 5 (𝜑𝐸 ∈ CRing)
23 sdrgsubrg 20700 . . . . . 6 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸))
246, 23syl 17 . . . . 5 (𝜑𝐹 ∈ (SubRing‘𝐸))
2518, 19, 20, 21, 22, 24elirng 33681 . . . 4 (𝜑 → (𝐴 ∈ (𝐸 IntgRing 𝐹) ↔ (𝐴𝐵 ∧ ∃𝑔 ∈ (Monic1p‘(𝐸s 𝐹))((𝑂𝑔)‘𝐴) = 0 )))
2612, 17, 25mpbir2and 713 . . 3 (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))
2710, 5, 6, 11, 26, 2minplym1p 33703 . 2 (𝜑 → (𝑀𝐴) ∈ (Monic1p‘(𝐸s 𝐹)))
2819sdrgdrng 20699 . . . . . . 7 (𝐹 ∈ (SubDRing‘𝐸) → (𝐸s 𝐹) ∈ DivRing)
296, 28syl 17 . . . . . 6 (𝜑 → (𝐸s 𝐹) ∈ DivRing)
3029drngringd 20646 . . . . 5 (𝜑 → (𝐸s 𝐹) ∈ Ring)
31 irredminply.2 . . . . . 6 (𝜑𝐺 ∈ (Irred‘𝑃))
32 eqid 2729 . . . . . . 7 (Irred‘𝑃) = (Irred‘𝑃)
33 eqid 2729 . . . . . . 7 (Base‘𝑃) = (Base‘𝑃)
3432, 33irredcl 20333 . . . . . 6 (𝐺 ∈ (Irred‘𝑃) → 𝐺 ∈ (Base‘𝑃))
3531, 34syl 17 . . . . 5 (𝜑𝐺 ∈ (Base‘𝑃))
361, 33, 2mon1pcl 26050 . . . . . . 7 ((𝑀𝐴) ∈ (Monic1p‘(𝐸s 𝐹)) → (𝑀𝐴) ∈ (Base‘𝑃))
3727, 36syl 17 . . . . . 6 (𝜑 → (𝑀𝐴) ∈ (Base‘𝑃))
3810, 5, 6, 11, 26irngnminplynz 33702 . . . . . . 7 (𝜑 → (𝑀𝐴) ≠ (0g‘(Poly1𝐸)))
39 irredminply.z . . . . . . . 8 𝑍 = (0g𝑃)
40 eqid 2729 . . . . . . . . 9 (Poly1𝐸) = (Poly1𝐸)
4140, 19, 1, 33, 24, 10ressply10g 33536 . . . . . . . 8 (𝜑 → (0g‘(Poly1𝐸)) = (0g𝑃))
4239, 41eqtr4id 2783 . . . . . . 7 (𝜑𝑍 = (0g‘(Poly1𝐸)))
4338, 42neeqtrrd 2999 . . . . . 6 (𝜑 → (𝑀𝐴) ≠ 𝑍)
44 eqid 2729 . . . . . . 7 (Unic1p‘(𝐸s 𝐹)) = (Unic1p‘(𝐸s 𝐹))
451, 33, 39, 44drnguc1p 26079 . . . . . 6 (((𝐸s 𝐹) ∈ DivRing ∧ (𝑀𝐴) ∈ (Base‘𝑃) ∧ (𝑀𝐴) ≠ 𝑍) → (𝑀𝐴) ∈ (Unic1p‘(𝐸s 𝐹)))
4629, 37, 43, 45syl3anc 1373 . . . . 5 (𝜑 → (𝑀𝐴) ∈ (Unic1p‘(𝐸s 𝐹)))
47 eqidd 2730 . . . . 5 (𝜑 → (𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) = (𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)))
48 eqid 2729 . . . . . . 7 (quot1p‘(𝐸s 𝐹)) = (quot1p‘(𝐸s 𝐹))
49 eqid 2729 . . . . . . 7 (deg1‘(𝐸s 𝐹)) = (deg1‘(𝐸s 𝐹))
50 eqid 2729 . . . . . . 7 (-g𝑃) = (-g𝑃)
5148, 1, 33, 49, 50, 4, 44q1peqb 26061 . . . . . 6 (((𝐸s 𝐹) ∈ Ring ∧ 𝐺 ∈ (Base‘𝑃) ∧ (𝑀𝐴) ∈ (Unic1p‘(𝐸s 𝐹))) → (((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Base‘𝑃) ∧ ((deg1‘(𝐸s 𝐹))‘(𝐺(-g𝑃)((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)))) < ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴))) ↔ (𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) = (𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))))
5251biimpar 477 . . . . 5 ((((𝐸s 𝐹) ∈ Ring ∧ 𝐺 ∈ (Base‘𝑃) ∧ (𝑀𝐴) ∈ (Unic1p‘(𝐸s 𝐹))) ∧ (𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) = (𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))) → ((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Base‘𝑃) ∧ ((deg1‘(𝐸s 𝐹))‘(𝐺(-g𝑃)((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)))) < ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴))))
5330, 35, 46, 47, 52syl31anc 1375 . . . 4 (𝜑 → ((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Base‘𝑃) ∧ ((deg1‘(𝐸s 𝐹))‘(𝐺(-g𝑃)((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)))) < ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴))))
5453simpld 494 . . 3 (𝜑 → (𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Base‘𝑃))
55 eqid 2729 . . . . . . 7 (rem1p‘(𝐸s 𝐹)) = (rem1p‘(𝐸s 𝐹))
56 eqid 2729 . . . . . . 7 (+g𝑃) = (+g𝑃)
571, 33, 44, 48, 55, 4, 56r1pid 26066 . . . . . 6 (((𝐸s 𝐹) ∈ Ring ∧ 𝐺 ∈ (Base‘𝑃) ∧ (𝑀𝐴) ∈ (Unic1p‘(𝐸s 𝐹))) → 𝐺 = (((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴))(+g𝑃)(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))))
5830, 35, 46, 57syl3anc 1373 . . . . 5 (𝜑𝐺 = (((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴))(+g𝑃)(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))))
5955, 1, 33, 44, 49r1pdeglt 26065 . . . . . . . . . 10 (((𝐸s 𝐹) ∈ Ring ∧ 𝐺 ∈ (Base‘𝑃) ∧ (𝑀𝐴) ∈ (Unic1p‘(𝐸s 𝐹))) → ((deg1‘(𝐸s 𝐹))‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))) < ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴)))
6030, 35, 46, 59syl3anc 1373 . . . . . . . . 9 (𝜑 → ((deg1‘(𝐸s 𝐹))‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))) < ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴)))
6160adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → ((deg1‘(𝐸s 𝐹))‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))) < ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴)))
6230adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → (𝐸s 𝐹) ∈ Ring)
6337adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → (𝑀𝐴) ∈ (Base‘𝑃))
6443adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → (𝑀𝐴) ≠ 𝑍)
6549, 1, 39, 33deg1nn0cl 25993 . . . . . . . . . . 11 (((𝐸s 𝐹) ∈ Ring ∧ (𝑀𝐴) ∈ (Base‘𝑃) ∧ (𝑀𝐴) ≠ 𝑍) → ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴)) ∈ ℕ0)
6662, 63, 64, 65syl3anc 1373 . . . . . . . . . 10 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴)) ∈ ℕ0)
6766nn0red 12504 . . . . . . . . 9 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴)) ∈ ℝ)
6855, 1, 33, 44r1pcl 26064 . . . . . . . . . . . . 13 (((𝐸s 𝐹) ∈ Ring ∧ 𝐺 ∈ (Base‘𝑃) ∧ (𝑀𝐴) ∈ (Unic1p‘(𝐸s 𝐹))) → (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Base‘𝑃))
6930, 35, 46, 68syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Base‘𝑃))
7069adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Base‘𝑃))
71 simpr 484 . . . . . . . . . . 11 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍)
7249, 1, 39, 33deg1nn0cl 25993 . . . . . . . . . . 11 (((𝐸s 𝐹) ∈ Ring ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Base‘𝑃) ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → ((deg1‘(𝐸s 𝐹))‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))) ∈ ℕ0)
7362, 70, 71, 72syl3anc 1373 . . . . . . . . . 10 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → ((deg1‘(𝐸s 𝐹))‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))) ∈ ℕ0)
7473nn0red 12504 . . . . . . . . 9 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → ((deg1‘(𝐸s 𝐹))‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))) ∈ ℝ)
75 eqid 2729 . . . . . . . . . . . . 13 {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 } = {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 }
76 eqid 2729 . . . . . . . . . . . . 13 (RSpan‘𝑃) = (RSpan‘𝑃)
77 eqid 2729 . . . . . . . . . . . . 13 (idlGen1p‘(𝐸s 𝐹)) = (idlGen1p‘(𝐸s 𝐹))
7818, 1, 20, 5, 6, 12, 21, 75, 76, 77, 11minplyval 33695 . . . . . . . . . . . 12 (𝜑 → (𝑀𝐴) = ((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 }))
7978fveq2d 6862 . . . . . . . . . . 11 (𝜑 → ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴)) = ((deg1‘(𝐸s 𝐹))‘((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 })))
8079adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴)) = ((deg1‘(𝐸s 𝐹))‘((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 })))
816adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → 𝐹 ∈ (SubDRing‘𝐸))
8281, 28syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → (𝐸s 𝐹) ∈ DivRing)
8318, 1, 20, 22, 24, 12, 21, 75ply1annidl 33692 . . . . . . . . . . . 12 (𝜑 → {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 } ∈ (LIdeal‘𝑃))
8483adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 } ∈ (LIdeal‘𝑃))
85 fveq2 6858 . . . . . . . . . . . . . . 15 (𝑞 = (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) → (𝑂𝑞) = (𝑂‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))))
8685fveq1d 6860 . . . . . . . . . . . . . 14 (𝑞 = (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) → ((𝑂𝑞)‘𝐴) = ((𝑂‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)))‘𝐴))
8786eqeq1d 2731 . . . . . . . . . . . . 13 (𝑞 = (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) → (((𝑂𝑞)‘𝐴) = 0 ↔ ((𝑂‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)))‘𝐴) = 0 ))
8818, 1, 33, 22, 24evls1dm 33530 . . . . . . . . . . . . . 14 (𝜑 → dom 𝑂 = (Base‘𝑃))
8969, 88eleqtrrd 2831 . . . . . . . . . . . . 13 (𝜑 → (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ dom 𝑂)
9055, 1, 33, 48, 4, 50r1pval 26063 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ (Base‘𝑃) ∧ (𝑀𝐴) ∈ (Base‘𝑃)) → (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) = (𝐺(-g𝑃)((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴))))
9135, 37, 90syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) = (𝐺(-g𝑃)((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴))))
9291fveq2d 6862 . . . . . . . . . . . . . . 15 (𝜑 → (𝑂‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))) = (𝑂‘(𝐺(-g𝑃)((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)))))
9392fveq1d 6860 . . . . . . . . . . . . . 14 (𝜑 → ((𝑂‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)))‘𝐴) = ((𝑂‘(𝐺(-g𝑃)((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴))))‘𝐴))
94 eqid 2729 . . . . . . . . . . . . . . . 16 (-g𝐸) = (-g𝐸)
951ply1ring 22132 . . . . . . . . . . . . . . . . . 18 ((𝐸s 𝐹) ∈ Ring → 𝑃 ∈ Ring)
9630, 95syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝑃 ∈ Ring)
9733, 4, 96, 54, 37ringcld 20169 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)) ∈ (Base‘𝑃))
9818, 20, 1, 19, 33, 50, 94, 22, 24, 35, 97, 12evls1subd 33541 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑂‘(𝐺(-g𝑃)((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴))))‘𝐴) = (((𝑂𝐺)‘𝐴)(-g𝐸)((𝑂‘((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)))‘𝐴)))
99 eqid 2729 . . . . . . . . . . . . . . . . . 18 (.r𝐸) = (.r𝐸)
10018, 20, 1, 19, 33, 4, 99, 22, 24, 54, 37, 12evls1muld 22259 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑂‘((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)))‘𝐴) = (((𝑂‘(𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)))‘𝐴)(.r𝐸)((𝑂‘(𝑀𝐴))‘𝐴)))
10118, 1, 20, 5, 6, 12, 21, 11minplyann 33699 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑂‘(𝑀𝐴))‘𝐴) = 0 )
102101oveq2d 7403 . . . . . . . . . . . . . . . . 17 (𝜑 → (((𝑂‘(𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)))‘𝐴)(.r𝐸)((𝑂‘(𝑀𝐴))‘𝐴)) = (((𝑂‘(𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)))‘𝐴)(.r𝐸) 0 ))
10322crngringd 20155 . . . . . . . . . . . . . . . . . 18 (𝜑𝐸 ∈ Ring)
10418, 1, 20, 33, 22, 24, 12, 54evls1fvcl 22262 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑂‘(𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)))‘𝐴) ∈ 𝐵)
10520, 99, 21, 103, 104ringrzd 20205 . . . . . . . . . . . . . . . . 17 (𝜑 → (((𝑂‘(𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)))‘𝐴)(.r𝐸) 0 ) = 0 )
106100, 102, 1053eqtrd 2768 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑂‘((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)))‘𝐴) = 0 )
10716, 106oveq12d 7405 . . . . . . . . . . . . . . 15 (𝜑 → (((𝑂𝐺)‘𝐴)(-g𝐸)((𝑂‘((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)))‘𝐴)) = ( 0 (-g𝐸) 0 ))
10822crnggrpd 20156 . . . . . . . . . . . . . . . 16 (𝜑𝐸 ∈ Grp)
10920, 21grpidcl 18897 . . . . . . . . . . . . . . . 16 (𝐸 ∈ Grp → 0𝐵)
11020, 21, 94grpsubid1 18957 . . . . . . . . . . . . . . . 16 ((𝐸 ∈ Grp ∧ 0𝐵) → ( 0 (-g𝐸) 0 ) = 0 )
111108, 109, 110syl2anc2 585 . . . . . . . . . . . . . . 15 (𝜑 → ( 0 (-g𝐸) 0 ) = 0 )
11298, 107, 1113eqtrd 2768 . . . . . . . . . . . . . 14 (𝜑 → ((𝑂‘(𝐺(-g𝑃)((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴))))‘𝐴) = 0 )
11393, 112eqtrd 2764 . . . . . . . . . . . . 13 (𝜑 → ((𝑂‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)))‘𝐴) = 0 )
11487, 89, 113elrabd 3661 . . . . . . . . . . . 12 (𝜑 → (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 })
115114adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 })
1161, 77, 33, 82, 84, 49, 39, 115, 71ig1pmindeg 33567 . . . . . . . . . 10 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → ((deg1‘(𝐸s 𝐹))‘((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 })) ≤ ((deg1‘(𝐸s 𝐹))‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))))
11780, 116eqbrtrd 5129 . . . . . . . . 9 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴)) ≤ ((deg1‘(𝐸s 𝐹))‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))))
11867, 74, 117lensymd 11325 . . . . . . . 8 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → ¬ ((deg1‘(𝐸s 𝐹))‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))) < ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴)))
11961, 118pm2.65da 816 . . . . . . 7 (𝜑 → ¬ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍)
120 nne 2929 . . . . . . 7 (¬ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍 ↔ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) = 𝑍)
121119, 120sylib 218 . . . . . 6 (𝜑 → (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) = 𝑍)
122121oveq2d 7403 . . . . 5 (𝜑 → (((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴))(+g𝑃)(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))) = (((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴))(+g𝑃)𝑍))
12396ringgrpd 20151 . . . . . 6 (𝜑𝑃 ∈ Grp)
12433, 56, 39, 123, 97grpridd 18902 . . . . 5 (𝜑 → (((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴))(+g𝑃)𝑍) = ((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)))
12558, 122, 1243eqtrd 2768 . . . 4 (𝜑𝐺 = ((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)))
126125, 31eqeltrrd 2829 . . 3 (𝜑 → ((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)) ∈ (Irred‘𝑃))
12718, 1, 20, 5, 6, 12, 11, 39, 43minplyirred 33701 . . . 4 (𝜑 → (𝑀𝐴) ∈ (Irred‘𝑃))
12832, 3irrednu 20334 . . . 4 ((𝑀𝐴) ∈ (Irred‘𝑃) → ¬ (𝑀𝐴) ∈ (Unit‘𝑃))
129127, 128syl 17 . . 3 (𝜑 → ¬ (𝑀𝐴) ∈ (Unit‘𝑃))
13032, 33, 3, 4irredmul 20338 . . . . 5 (((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Base‘𝑃) ∧ (𝑀𝐴) ∈ (Base‘𝑃) ∧ ((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)) ∈ (Irred‘𝑃)) → ((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Unit‘𝑃) ∨ (𝑀𝐴) ∈ (Unit‘𝑃)))
131130orcomd 871 . . . 4 (((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Base‘𝑃) ∧ (𝑀𝐴) ∈ (Base‘𝑃) ∧ ((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)) ∈ (Irred‘𝑃)) → ((𝑀𝐴) ∈ (Unit‘𝑃) ∨ (𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Unit‘𝑃)))
132131orcanai 1004 . . 3 ((((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Base‘𝑃) ∧ (𝑀𝐴) ∈ (Base‘𝑃) ∧ ((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)) ∈ (Irred‘𝑃)) ∧ ¬ (𝑀𝐴) ∈ (Unit‘𝑃)) → (𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Unit‘𝑃))
13354, 37, 126, 129, 132syl31anc 1375 . 2 (𝜑 → (𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Unit‘𝑃))
1341, 2, 3, 4, 8, 9, 27, 133, 125m1pmeq 33552 1 (𝜑𝐺 = (𝑀𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  {crab 3405   class class class wbr 5107  dom cdm 5638  cfv 6511  (class class class)co 7387   < clt 11208  cle 11209  0cn0 12442  Basecbs 17179  s cress 17200  +gcplusg 17220  .rcmulr 17221  0gc0g 17402  Grpcgrp 18865  -gcsg 18867  Ringcrg 20142  Unitcui 20264  Irredcir 20265  SubRingcsubrg 20478  DivRingcdr 20638  Fieldcfield 20639  SubDRingcsdrg 20695  LIdealclidl 21116  RSpancrsp 21117  Poly1cpl1 22061   evalSub1 ces1 22200  deg1cdg1 25959  Monic1pcmn1 26031  Unic1pcuc1p 26032  quot1pcq1p 26033  rem1pcr1p 26034  idlGen1pcig1p 26035   IntgRing cirng 33678   minPoly cminply 33689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-srg 20096  df-ring 20144  df-cring 20145  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-irred 20268  df-invr 20297  df-rhm 20381  df-nzr 20422  df-subrng 20455  df-subrg 20479  df-rlreg 20603  df-domn 20604  df-idom 20605  df-drng 20640  df-field 20641  df-sdrg 20696  df-lmod 20768  df-lss 20838  df-lsp 20878  df-sra 21080  df-rgmod 21081  df-lidl 21118  df-rsp 21119  df-cnfld 21265  df-assa 21762  df-asp 21763  df-ascl 21764  df-psr 21818  df-mvr 21819  df-mpl 21820  df-opsr 21822  df-evls 21981  df-evl 21982  df-psr1 22064  df-vr1 22065  df-ply1 22066  df-coe1 22067  df-evls1 22202  df-evl1 22203  df-mdeg 25960  df-deg1 25961  df-mon1 26036  df-uc1p 26037  df-q1p 26038  df-r1p 26039  df-ig1p 26040  df-irng 33679  df-minply 33690
This theorem is referenced by:  2sqr3minply  33770  cos9thpiminply  33778
  Copyright terms: Public domain W3C validator