Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irredminply Structured version   Visualization version   GIF version

Theorem irredminply 33707
Description: An irreducible, monic, annihilating polynomial is the minimal polynomial. (Contributed by Thierry Arnoux, 27-Apr-2025.)
Hypotheses
Ref Expression
irredminply.o 𝑂 = (𝐸 evalSub1 𝐹)
irredminply.p 𝑃 = (Poly1‘(𝐸s 𝐹))
irredminply.b 𝐵 = (Base‘𝐸)
irredminply.e (𝜑𝐸 ∈ Field)
irredminply.f (𝜑𝐹 ∈ (SubDRing‘𝐸))
irredminply.a (𝜑𝐴𝐵)
irredminply.0 0 = (0g𝐸)
irredminply.m 𝑀 = (𝐸 minPoly 𝐹)
irredminply.z 𝑍 = (0g𝑃)
irredminply.1 (𝜑 → ((𝑂𝐺)‘𝐴) = 0 )
irredminply.2 (𝜑𝐺 ∈ (Irred‘𝑃))
irredminply.3 (𝜑𝐺 ∈ (Monic1p‘(𝐸s 𝐹)))
Assertion
Ref Expression
irredminply (𝜑𝐺 = (𝑀𝐴))

Proof of Theorem irredminply
Dummy variables 𝑞 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 irredminply.p . 2 𝑃 = (Poly1‘(𝐸s 𝐹))
2 eqid 2740 . 2 (Monic1p‘(𝐸s 𝐹)) = (Monic1p‘(𝐸s 𝐹))
3 eqid 2740 . 2 (Unit‘𝑃) = (Unit‘𝑃)
4 eqid 2740 . 2 (.r𝑃) = (.r𝑃)
5 irredminply.e . . 3 (𝜑𝐸 ∈ Field)
6 irredminply.f . . 3 (𝜑𝐹 ∈ (SubDRing‘𝐸))
7 fldsdrgfld 20821 . . 3 ((𝐸 ∈ Field ∧ 𝐹 ∈ (SubDRing‘𝐸)) → (𝐸s 𝐹) ∈ Field)
85, 6, 7syl2anc 583 . 2 (𝜑 → (𝐸s 𝐹) ∈ Field)
9 irredminply.3 . 2 (𝜑𝐺 ∈ (Monic1p‘(𝐸s 𝐹)))
10 eqid 2740 . . 3 (0g‘(Poly1𝐸)) = (0g‘(Poly1𝐸))
11 irredminply.m . . 3 𝑀 = (𝐸 minPoly 𝐹)
12 irredminply.a . . . 4 (𝜑𝐴𝐵)
13 fveq2 6920 . . . . . . 7 (𝑔 = 𝐺 → (𝑂𝑔) = (𝑂𝐺))
1413fveq1d 6922 . . . . . 6 (𝑔 = 𝐺 → ((𝑂𝑔)‘𝐴) = ((𝑂𝐺)‘𝐴))
1514eqeq1d 2742 . . . . 5 (𝑔 = 𝐺 → (((𝑂𝑔)‘𝐴) = 0 ↔ ((𝑂𝐺)‘𝐴) = 0 ))
16 irredminply.1 . . . . 5 (𝜑 → ((𝑂𝐺)‘𝐴) = 0 )
1715, 9, 16rspcedvdw 3638 . . . 4 (𝜑 → ∃𝑔 ∈ (Monic1p‘(𝐸s 𝐹))((𝑂𝑔)‘𝐴) = 0 )
18 irredminply.o . . . . 5 𝑂 = (𝐸 evalSub1 𝐹)
19 eqid 2740 . . . . 5 (𝐸s 𝐹) = (𝐸s 𝐹)
20 irredminply.b . . . . 5 𝐵 = (Base‘𝐸)
21 irredminply.0 . . . . 5 0 = (0g𝐸)
225fldcrngd 20764 . . . . 5 (𝜑𝐸 ∈ CRing)
23 sdrgsubrg 20814 . . . . . 6 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸))
246, 23syl 17 . . . . 5 (𝜑𝐹 ∈ (SubRing‘𝐸))
2518, 19, 20, 21, 22, 24elirng 33686 . . . 4 (𝜑 → (𝐴 ∈ (𝐸 IntgRing 𝐹) ↔ (𝐴𝐵 ∧ ∃𝑔 ∈ (Monic1p‘(𝐸s 𝐹))((𝑂𝑔)‘𝐴) = 0 )))
2612, 17, 25mpbir2and 712 . . 3 (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))
2710, 5, 6, 11, 26, 2minplym1p 33706 . 2 (𝜑 → (𝑀𝐴) ∈ (Monic1p‘(𝐸s 𝐹)))
2819sdrgdrng 20813 . . . . . . 7 (𝐹 ∈ (SubDRing‘𝐸) → (𝐸s 𝐹) ∈ DivRing)
296, 28syl 17 . . . . . 6 (𝜑 → (𝐸s 𝐹) ∈ DivRing)
3029drngringd 20759 . . . . 5 (𝜑 → (𝐸s 𝐹) ∈ Ring)
31 irredminply.2 . . . . . 6 (𝜑𝐺 ∈ (Irred‘𝑃))
32 eqid 2740 . . . . . . 7 (Irred‘𝑃) = (Irred‘𝑃)
33 eqid 2740 . . . . . . 7 (Base‘𝑃) = (Base‘𝑃)
3432, 33irredcl 20450 . . . . . 6 (𝐺 ∈ (Irred‘𝑃) → 𝐺 ∈ (Base‘𝑃))
3531, 34syl 17 . . . . 5 (𝜑𝐺 ∈ (Base‘𝑃))
361, 33, 2mon1pcl 26204 . . . . . . 7 ((𝑀𝐴) ∈ (Monic1p‘(𝐸s 𝐹)) → (𝑀𝐴) ∈ (Base‘𝑃))
3727, 36syl 17 . . . . . 6 (𝜑 → (𝑀𝐴) ∈ (Base‘𝑃))
3810, 5, 6, 11, 26irngnminplynz 33705 . . . . . . 7 (𝜑 → (𝑀𝐴) ≠ (0g‘(Poly1𝐸)))
39 irredminply.z . . . . . . . 8 𝑍 = (0g𝑃)
40 eqid 2740 . . . . . . . . 9 (Poly1𝐸) = (Poly1𝐸)
4140, 19, 1, 33, 24, 10ressply10g 33557 . . . . . . . 8 (𝜑 → (0g‘(Poly1𝐸)) = (0g𝑃))
4239, 41eqtr4id 2799 . . . . . . 7 (𝜑𝑍 = (0g‘(Poly1𝐸)))
4338, 42neeqtrrd 3021 . . . . . 6 (𝜑 → (𝑀𝐴) ≠ 𝑍)
44 eqid 2740 . . . . . . 7 (Unic1p‘(𝐸s 𝐹)) = (Unic1p‘(𝐸s 𝐹))
451, 33, 39, 44drnguc1p 26233 . . . . . 6 (((𝐸s 𝐹) ∈ DivRing ∧ (𝑀𝐴) ∈ (Base‘𝑃) ∧ (𝑀𝐴) ≠ 𝑍) → (𝑀𝐴) ∈ (Unic1p‘(𝐸s 𝐹)))
4629, 37, 43, 45syl3anc 1371 . . . . 5 (𝜑 → (𝑀𝐴) ∈ (Unic1p‘(𝐸s 𝐹)))
47 eqidd 2741 . . . . 5 (𝜑 → (𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) = (𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)))
48 eqid 2740 . . . . . . 7 (quot1p‘(𝐸s 𝐹)) = (quot1p‘(𝐸s 𝐹))
49 eqid 2740 . . . . . . 7 (deg1‘(𝐸s 𝐹)) = (deg1‘(𝐸s 𝐹))
50 eqid 2740 . . . . . . 7 (-g𝑃) = (-g𝑃)
5148, 1, 33, 49, 50, 4, 44q1peqb 26215 . . . . . 6 (((𝐸s 𝐹) ∈ Ring ∧ 𝐺 ∈ (Base‘𝑃) ∧ (𝑀𝐴) ∈ (Unic1p‘(𝐸s 𝐹))) → (((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Base‘𝑃) ∧ ((deg1‘(𝐸s 𝐹))‘(𝐺(-g𝑃)((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)))) < ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴))) ↔ (𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) = (𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))))
5251biimpar 477 . . . . 5 ((((𝐸s 𝐹) ∈ Ring ∧ 𝐺 ∈ (Base‘𝑃) ∧ (𝑀𝐴) ∈ (Unic1p‘(𝐸s 𝐹))) ∧ (𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) = (𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))) → ((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Base‘𝑃) ∧ ((deg1‘(𝐸s 𝐹))‘(𝐺(-g𝑃)((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)))) < ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴))))
5330, 35, 46, 47, 52syl31anc 1373 . . . 4 (𝜑 → ((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Base‘𝑃) ∧ ((deg1‘(𝐸s 𝐹))‘(𝐺(-g𝑃)((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)))) < ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴))))
5453simpld 494 . . 3 (𝜑 → (𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Base‘𝑃))
55 eqid 2740 . . . . . . 7 (rem1p‘(𝐸s 𝐹)) = (rem1p‘(𝐸s 𝐹))
56 eqid 2740 . . . . . . 7 (+g𝑃) = (+g𝑃)
571, 33, 44, 48, 55, 4, 56r1pid 26220 . . . . . 6 (((𝐸s 𝐹) ∈ Ring ∧ 𝐺 ∈ (Base‘𝑃) ∧ (𝑀𝐴) ∈ (Unic1p‘(𝐸s 𝐹))) → 𝐺 = (((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴))(+g𝑃)(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))))
5830, 35, 46, 57syl3anc 1371 . . . . 5 (𝜑𝐺 = (((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴))(+g𝑃)(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))))
5955, 1, 33, 44, 49r1pdeglt 26219 . . . . . . . . . 10 (((𝐸s 𝐹) ∈ Ring ∧ 𝐺 ∈ (Base‘𝑃) ∧ (𝑀𝐴) ∈ (Unic1p‘(𝐸s 𝐹))) → ((deg1‘(𝐸s 𝐹))‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))) < ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴)))
6030, 35, 46, 59syl3anc 1371 . . . . . . . . 9 (𝜑 → ((deg1‘(𝐸s 𝐹))‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))) < ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴)))
6160adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → ((deg1‘(𝐸s 𝐹))‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))) < ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴)))
6230adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → (𝐸s 𝐹) ∈ Ring)
6337adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → (𝑀𝐴) ∈ (Base‘𝑃))
6443adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → (𝑀𝐴) ≠ 𝑍)
6549, 1, 39, 33deg1nn0cl 26147 . . . . . . . . . . 11 (((𝐸s 𝐹) ∈ Ring ∧ (𝑀𝐴) ∈ (Base‘𝑃) ∧ (𝑀𝐴) ≠ 𝑍) → ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴)) ∈ ℕ0)
6662, 63, 64, 65syl3anc 1371 . . . . . . . . . 10 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴)) ∈ ℕ0)
6766nn0red 12614 . . . . . . . . 9 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴)) ∈ ℝ)
6855, 1, 33, 44r1pcl 26218 . . . . . . . . . . . . 13 (((𝐸s 𝐹) ∈ Ring ∧ 𝐺 ∈ (Base‘𝑃) ∧ (𝑀𝐴) ∈ (Unic1p‘(𝐸s 𝐹))) → (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Base‘𝑃))
6930, 35, 46, 68syl3anc 1371 . . . . . . . . . . . 12 (𝜑 → (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Base‘𝑃))
7069adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Base‘𝑃))
71 simpr 484 . . . . . . . . . . 11 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍)
7249, 1, 39, 33deg1nn0cl 26147 . . . . . . . . . . 11 (((𝐸s 𝐹) ∈ Ring ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Base‘𝑃) ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → ((deg1‘(𝐸s 𝐹))‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))) ∈ ℕ0)
7362, 70, 71, 72syl3anc 1371 . . . . . . . . . 10 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → ((deg1‘(𝐸s 𝐹))‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))) ∈ ℕ0)
7473nn0red 12614 . . . . . . . . 9 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → ((deg1‘(𝐸s 𝐹))‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))) ∈ ℝ)
75 eqid 2740 . . . . . . . . . . . . 13 {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 } = {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 }
76 eqid 2740 . . . . . . . . . . . . 13 (RSpan‘𝑃) = (RSpan‘𝑃)
77 eqid 2740 . . . . . . . . . . . . 13 (idlGen1p‘(𝐸s 𝐹)) = (idlGen1p‘(𝐸s 𝐹))
7818, 1, 20, 5, 6, 12, 21, 75, 76, 77, 11minplyval 33698 . . . . . . . . . . . 12 (𝜑 → (𝑀𝐴) = ((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 }))
7978fveq2d 6924 . . . . . . . . . . 11 (𝜑 → ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴)) = ((deg1‘(𝐸s 𝐹))‘((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 })))
8079adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴)) = ((deg1‘(𝐸s 𝐹))‘((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 })))
816adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → 𝐹 ∈ (SubDRing‘𝐸))
8281, 28syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → (𝐸s 𝐹) ∈ DivRing)
8318, 1, 20, 22, 24, 12, 21, 75ply1annidl 33695 . . . . . . . . . . . 12 (𝜑 → {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 } ∈ (LIdeal‘𝑃))
8483adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 } ∈ (LIdeal‘𝑃))
85 fveq2 6920 . . . . . . . . . . . . . . 15 (𝑞 = (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) → (𝑂𝑞) = (𝑂‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))))
8685fveq1d 6922 . . . . . . . . . . . . . 14 (𝑞 = (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) → ((𝑂𝑞)‘𝐴) = ((𝑂‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)))‘𝐴))
8786eqeq1d 2742 . . . . . . . . . . . . 13 (𝑞 = (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) → (((𝑂𝑞)‘𝐴) = 0 ↔ ((𝑂‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)))‘𝐴) = 0 ))
8818, 1, 33, 22, 24evls1dm 33552 . . . . . . . . . . . . . 14 (𝜑 → dom 𝑂 = (Base‘𝑃))
8969, 88eleqtrrd 2847 . . . . . . . . . . . . 13 (𝜑 → (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ dom 𝑂)
9055, 1, 33, 48, 4, 50r1pval 26217 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ (Base‘𝑃) ∧ (𝑀𝐴) ∈ (Base‘𝑃)) → (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) = (𝐺(-g𝑃)((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴))))
9135, 37, 90syl2anc 583 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) = (𝐺(-g𝑃)((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴))))
9291fveq2d 6924 . . . . . . . . . . . . . . 15 (𝜑 → (𝑂‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))) = (𝑂‘(𝐺(-g𝑃)((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)))))
9392fveq1d 6922 . . . . . . . . . . . . . 14 (𝜑 → ((𝑂‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)))‘𝐴) = ((𝑂‘(𝐺(-g𝑃)((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴))))‘𝐴))
94 eqid 2740 . . . . . . . . . . . . . . . 16 (-g𝐸) = (-g𝐸)
951ply1ring 22270 . . . . . . . . . . . . . . . . . 18 ((𝐸s 𝐹) ∈ Ring → 𝑃 ∈ Ring)
9630, 95syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝑃 ∈ Ring)
9733, 4, 96, 54, 37ringcld 20286 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)) ∈ (Base‘𝑃))
9818, 20, 1, 19, 33, 50, 94, 22, 24, 35, 97, 12evls1subd 33562 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑂‘(𝐺(-g𝑃)((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴))))‘𝐴) = (((𝑂𝐺)‘𝐴)(-g𝐸)((𝑂‘((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)))‘𝐴)))
99 eqid 2740 . . . . . . . . . . . . . . . . . 18 (.r𝐸) = (.r𝐸)
10018, 20, 1, 19, 33, 4, 99, 22, 24, 54, 37, 12evls1muld 22397 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑂‘((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)))‘𝐴) = (((𝑂‘(𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)))‘𝐴)(.r𝐸)((𝑂‘(𝑀𝐴))‘𝐴)))
10118, 1, 20, 5, 6, 12, 21, 11minplyann 33702 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑂‘(𝑀𝐴))‘𝐴) = 0 )
102101oveq2d 7464 . . . . . . . . . . . . . . . . 17 (𝜑 → (((𝑂‘(𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)))‘𝐴)(.r𝐸)((𝑂‘(𝑀𝐴))‘𝐴)) = (((𝑂‘(𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)))‘𝐴)(.r𝐸) 0 ))
10322crngringd 20273 . . . . . . . . . . . . . . . . . 18 (𝜑𝐸 ∈ Ring)
10418, 1, 20, 33, 22, 24, 12, 54evls1fvcl 22400 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑂‘(𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)))‘𝐴) ∈ 𝐵)
10520, 99, 21, 103, 104ringrzd 20319 . . . . . . . . . . . . . . . . 17 (𝜑 → (((𝑂‘(𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)))‘𝐴)(.r𝐸) 0 ) = 0 )
106100, 102, 1053eqtrd 2784 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑂‘((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)))‘𝐴) = 0 )
10716, 106oveq12d 7466 . . . . . . . . . . . . . . 15 (𝜑 → (((𝑂𝐺)‘𝐴)(-g𝐸)((𝑂‘((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)))‘𝐴)) = ( 0 (-g𝐸) 0 ))
10822crnggrpd 20274 . . . . . . . . . . . . . . . 16 (𝜑𝐸 ∈ Grp)
10920, 21grpidcl 19005 . . . . . . . . . . . . . . . 16 (𝐸 ∈ Grp → 0𝐵)
11020, 21, 94grpsubid1 19065 . . . . . . . . . . . . . . . 16 ((𝐸 ∈ Grp ∧ 0𝐵) → ( 0 (-g𝐸) 0 ) = 0 )
111108, 109, 110syl2anc2 584 . . . . . . . . . . . . . . 15 (𝜑 → ( 0 (-g𝐸) 0 ) = 0 )
11298, 107, 1113eqtrd 2784 . . . . . . . . . . . . . 14 (𝜑 → ((𝑂‘(𝐺(-g𝑃)((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴))))‘𝐴) = 0 )
11393, 112eqtrd 2780 . . . . . . . . . . . . 13 (𝜑 → ((𝑂‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)))‘𝐴) = 0 )
11487, 89, 113elrabd 3710 . . . . . . . . . . . 12 (𝜑 → (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 })
115114adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 })
1161, 77, 33, 82, 84, 49, 39, 115, 71ig1pmindeg 33587 . . . . . . . . . 10 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → ((deg1‘(𝐸s 𝐹))‘((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 })) ≤ ((deg1‘(𝐸s 𝐹))‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))))
11780, 116eqbrtrd 5188 . . . . . . . . 9 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴)) ≤ ((deg1‘(𝐸s 𝐹))‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))))
11867, 74, 117lensymd 11441 . . . . . . . 8 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → ¬ ((deg1‘(𝐸s 𝐹))‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))) < ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴)))
11961, 118pm2.65da 816 . . . . . . 7 (𝜑 → ¬ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍)
120 nne 2950 . . . . . . 7 (¬ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍 ↔ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) = 𝑍)
121119, 120sylib 218 . . . . . 6 (𝜑 → (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) = 𝑍)
122121oveq2d 7464 . . . . 5 (𝜑 → (((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴))(+g𝑃)(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))) = (((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴))(+g𝑃)𝑍))
12396ringgrpd 20269 . . . . . 6 (𝜑𝑃 ∈ Grp)
12433, 56, 39, 123, 97grpridd 19010 . . . . 5 (𝜑 → (((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴))(+g𝑃)𝑍) = ((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)))
12558, 122, 1243eqtrd 2784 . . . 4 (𝜑𝐺 = ((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)))
126125, 31eqeltrrd 2845 . . 3 (𝜑 → ((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)) ∈ (Irred‘𝑃))
12718, 1, 20, 5, 6, 12, 11, 39, 43minplyirred 33704 . . . 4 (𝜑 → (𝑀𝐴) ∈ (Irred‘𝑃))
12832, 3irrednu 20451 . . . 4 ((𝑀𝐴) ∈ (Irred‘𝑃) → ¬ (𝑀𝐴) ∈ (Unit‘𝑃))
129127, 128syl 17 . . 3 (𝜑 → ¬ (𝑀𝐴) ∈ (Unit‘𝑃))
13032, 33, 3, 4irredmul 20455 . . . . 5 (((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Base‘𝑃) ∧ (𝑀𝐴) ∈ (Base‘𝑃) ∧ ((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)) ∈ (Irred‘𝑃)) → ((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Unit‘𝑃) ∨ (𝑀𝐴) ∈ (Unit‘𝑃)))
131130orcomd 870 . . . 4 (((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Base‘𝑃) ∧ (𝑀𝐴) ∈ (Base‘𝑃) ∧ ((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)) ∈ (Irred‘𝑃)) → ((𝑀𝐴) ∈ (Unit‘𝑃) ∨ (𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Unit‘𝑃)))
132131orcanai 1003 . . 3 ((((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Base‘𝑃) ∧ (𝑀𝐴) ∈ (Base‘𝑃) ∧ ((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)) ∈ (Irred‘𝑃)) ∧ ¬ (𝑀𝐴) ∈ (Unit‘𝑃)) → (𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Unit‘𝑃))
13354, 37, 126, 129, 132syl31anc 1373 . 2 (𝜑 → (𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Unit‘𝑃))
1341, 2, 3, 4, 8, 9, 27, 133, 125m1pmeq 33573 1 (𝜑𝐺 = (𝑀𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wrex 3076  {crab 3443   class class class wbr 5166  dom cdm 5700  cfv 6573  (class class class)co 7448   < clt 11324  cle 11325  0cn0 12553  Basecbs 17258  s cress 17287  +gcplusg 17311  .rcmulr 17312  0gc0g 17499  Grpcgrp 18973  -gcsg 18975  Ringcrg 20260  Unitcui 20381  Irredcir 20382  SubRingcsubrg 20595  DivRingcdr 20751  Fieldcfield 20752  SubDRingcsdrg 20809  LIdealclidl 21239  RSpancrsp 21240  Poly1cpl1 22199   evalSub1 ces1 22338  deg1cdg1 26113  Monic1pcmn1 26185  Unic1pcuc1p 26186  quot1pcq1p 26187  rem1pcr1p 26188  idlGen1pcig1p 26189   IntgRing cirng 33683   minPoly cminply 33692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-srg 20214  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-irred 20385  df-invr 20414  df-rhm 20498  df-nzr 20539  df-subrng 20572  df-subrg 20597  df-rlreg 20716  df-domn 20717  df-idom 20718  df-drng 20753  df-field 20754  df-sdrg 20810  df-lmod 20882  df-lss 20953  df-lsp 20993  df-sra 21195  df-rgmod 21196  df-lidl 21241  df-rsp 21242  df-cnfld 21388  df-assa 21896  df-asp 21897  df-ascl 21898  df-psr 21952  df-mvr 21953  df-mpl 21954  df-opsr 21956  df-evls 22121  df-evl 22122  df-psr1 22202  df-vr1 22203  df-ply1 22204  df-coe1 22205  df-evls1 22340  df-evl1 22341  df-mdeg 26114  df-deg1 26115  df-mon1 26190  df-uc1p 26191  df-q1p 26192  df-r1p 26193  df-ig1p 26194  df-irng 33684  df-minply 33693
This theorem is referenced by:  2sqr3minply  33738
  Copyright terms: Public domain W3C validator