Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irredminply Structured version   Visualization version   GIF version

Theorem irredminply 33699
Description: An irreducible, monic, annihilating polynomial is the minimal polynomial. (Contributed by Thierry Arnoux, 27-Apr-2025.)
Hypotheses
Ref Expression
irredminply.o 𝑂 = (𝐸 evalSub1 𝐹)
irredminply.p 𝑃 = (Poly1‘(𝐸s 𝐹))
irredminply.b 𝐵 = (Base‘𝐸)
irredminply.e (𝜑𝐸 ∈ Field)
irredminply.f (𝜑𝐹 ∈ (SubDRing‘𝐸))
irredminply.a (𝜑𝐴𝐵)
irredminply.0 0 = (0g𝐸)
irredminply.m 𝑀 = (𝐸 minPoly 𝐹)
irredminply.z 𝑍 = (0g𝑃)
irredminply.1 (𝜑 → ((𝑂𝐺)‘𝐴) = 0 )
irredminply.2 (𝜑𝐺 ∈ (Irred‘𝑃))
irredminply.3 (𝜑𝐺 ∈ (Monic1p‘(𝐸s 𝐹)))
Assertion
Ref Expression
irredminply (𝜑𝐺 = (𝑀𝐴))

Proof of Theorem irredminply
Dummy variables 𝑞 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 irredminply.p . 2 𝑃 = (Poly1‘(𝐸s 𝐹))
2 eqid 2729 . 2 (Monic1p‘(𝐸s 𝐹)) = (Monic1p‘(𝐸s 𝐹))
3 eqid 2729 . 2 (Unit‘𝑃) = (Unit‘𝑃)
4 eqid 2729 . 2 (.r𝑃) = (.r𝑃)
5 irredminply.e . . 3 (𝜑𝐸 ∈ Field)
6 irredminply.f . . 3 (𝜑𝐹 ∈ (SubDRing‘𝐸))
7 fldsdrgfld 20718 . . 3 ((𝐸 ∈ Field ∧ 𝐹 ∈ (SubDRing‘𝐸)) → (𝐸s 𝐹) ∈ Field)
85, 6, 7syl2anc 584 . 2 (𝜑 → (𝐸s 𝐹) ∈ Field)
9 irredminply.3 . 2 (𝜑𝐺 ∈ (Monic1p‘(𝐸s 𝐹)))
10 eqid 2729 . . 3 (0g‘(Poly1𝐸)) = (0g‘(Poly1𝐸))
11 irredminply.m . . 3 𝑀 = (𝐸 minPoly 𝐹)
12 irredminply.a . . . 4 (𝜑𝐴𝐵)
13 fveq2 6840 . . . . . . 7 (𝑔 = 𝐺 → (𝑂𝑔) = (𝑂𝐺))
1413fveq1d 6842 . . . . . 6 (𝑔 = 𝐺 → ((𝑂𝑔)‘𝐴) = ((𝑂𝐺)‘𝐴))
1514eqeq1d 2731 . . . . 5 (𝑔 = 𝐺 → (((𝑂𝑔)‘𝐴) = 0 ↔ ((𝑂𝐺)‘𝐴) = 0 ))
16 irredminply.1 . . . . 5 (𝜑 → ((𝑂𝐺)‘𝐴) = 0 )
1715, 9, 16rspcedvdw 3588 . . . 4 (𝜑 → ∃𝑔 ∈ (Monic1p‘(𝐸s 𝐹))((𝑂𝑔)‘𝐴) = 0 )
18 irredminply.o . . . . 5 𝑂 = (𝐸 evalSub1 𝐹)
19 eqid 2729 . . . . 5 (𝐸s 𝐹) = (𝐸s 𝐹)
20 irredminply.b . . . . 5 𝐵 = (Base‘𝐸)
21 irredminply.0 . . . . 5 0 = (0g𝐸)
225fldcrngd 20662 . . . . 5 (𝜑𝐸 ∈ CRing)
23 sdrgsubrg 20711 . . . . . 6 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸))
246, 23syl 17 . . . . 5 (𝜑𝐹 ∈ (SubRing‘𝐸))
2518, 19, 20, 21, 22, 24elirng 33674 . . . 4 (𝜑 → (𝐴 ∈ (𝐸 IntgRing 𝐹) ↔ (𝐴𝐵 ∧ ∃𝑔 ∈ (Monic1p‘(𝐸s 𝐹))((𝑂𝑔)‘𝐴) = 0 )))
2612, 17, 25mpbir2and 713 . . 3 (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))
2710, 5, 6, 11, 26, 2minplym1p 33696 . 2 (𝜑 → (𝑀𝐴) ∈ (Monic1p‘(𝐸s 𝐹)))
2819sdrgdrng 20710 . . . . . . 7 (𝐹 ∈ (SubDRing‘𝐸) → (𝐸s 𝐹) ∈ DivRing)
296, 28syl 17 . . . . . 6 (𝜑 → (𝐸s 𝐹) ∈ DivRing)
3029drngringd 20657 . . . . 5 (𝜑 → (𝐸s 𝐹) ∈ Ring)
31 irredminply.2 . . . . . 6 (𝜑𝐺 ∈ (Irred‘𝑃))
32 eqid 2729 . . . . . . 7 (Irred‘𝑃) = (Irred‘𝑃)
33 eqid 2729 . . . . . . 7 (Base‘𝑃) = (Base‘𝑃)
3432, 33irredcl 20344 . . . . . 6 (𝐺 ∈ (Irred‘𝑃) → 𝐺 ∈ (Base‘𝑃))
3531, 34syl 17 . . . . 5 (𝜑𝐺 ∈ (Base‘𝑃))
361, 33, 2mon1pcl 26083 . . . . . . 7 ((𝑀𝐴) ∈ (Monic1p‘(𝐸s 𝐹)) → (𝑀𝐴) ∈ (Base‘𝑃))
3727, 36syl 17 . . . . . 6 (𝜑 → (𝑀𝐴) ∈ (Base‘𝑃))
3810, 5, 6, 11, 26irngnminplynz 33695 . . . . . . 7 (𝜑 → (𝑀𝐴) ≠ (0g‘(Poly1𝐸)))
39 irredminply.z . . . . . . . 8 𝑍 = (0g𝑃)
40 eqid 2729 . . . . . . . . 9 (Poly1𝐸) = (Poly1𝐸)
4140, 19, 1, 33, 24, 10ressply10g 33529 . . . . . . . 8 (𝜑 → (0g‘(Poly1𝐸)) = (0g𝑃))
4239, 41eqtr4id 2783 . . . . . . 7 (𝜑𝑍 = (0g‘(Poly1𝐸)))
4338, 42neeqtrrd 2999 . . . . . 6 (𝜑 → (𝑀𝐴) ≠ 𝑍)
44 eqid 2729 . . . . . . 7 (Unic1p‘(𝐸s 𝐹)) = (Unic1p‘(𝐸s 𝐹))
451, 33, 39, 44drnguc1p 26112 . . . . . 6 (((𝐸s 𝐹) ∈ DivRing ∧ (𝑀𝐴) ∈ (Base‘𝑃) ∧ (𝑀𝐴) ≠ 𝑍) → (𝑀𝐴) ∈ (Unic1p‘(𝐸s 𝐹)))
4629, 37, 43, 45syl3anc 1373 . . . . 5 (𝜑 → (𝑀𝐴) ∈ (Unic1p‘(𝐸s 𝐹)))
47 eqidd 2730 . . . . 5 (𝜑 → (𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) = (𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)))
48 eqid 2729 . . . . . . 7 (quot1p‘(𝐸s 𝐹)) = (quot1p‘(𝐸s 𝐹))
49 eqid 2729 . . . . . . 7 (deg1‘(𝐸s 𝐹)) = (deg1‘(𝐸s 𝐹))
50 eqid 2729 . . . . . . 7 (-g𝑃) = (-g𝑃)
5148, 1, 33, 49, 50, 4, 44q1peqb 26094 . . . . . 6 (((𝐸s 𝐹) ∈ Ring ∧ 𝐺 ∈ (Base‘𝑃) ∧ (𝑀𝐴) ∈ (Unic1p‘(𝐸s 𝐹))) → (((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Base‘𝑃) ∧ ((deg1‘(𝐸s 𝐹))‘(𝐺(-g𝑃)((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)))) < ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴))) ↔ (𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) = (𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))))
5251biimpar 477 . . . . 5 ((((𝐸s 𝐹) ∈ Ring ∧ 𝐺 ∈ (Base‘𝑃) ∧ (𝑀𝐴) ∈ (Unic1p‘(𝐸s 𝐹))) ∧ (𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) = (𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))) → ((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Base‘𝑃) ∧ ((deg1‘(𝐸s 𝐹))‘(𝐺(-g𝑃)((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)))) < ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴))))
5330, 35, 46, 47, 52syl31anc 1375 . . . 4 (𝜑 → ((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Base‘𝑃) ∧ ((deg1‘(𝐸s 𝐹))‘(𝐺(-g𝑃)((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)))) < ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴))))
5453simpld 494 . . 3 (𝜑 → (𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Base‘𝑃))
55 eqid 2729 . . . . . . 7 (rem1p‘(𝐸s 𝐹)) = (rem1p‘(𝐸s 𝐹))
56 eqid 2729 . . . . . . 7 (+g𝑃) = (+g𝑃)
571, 33, 44, 48, 55, 4, 56r1pid 26099 . . . . . 6 (((𝐸s 𝐹) ∈ Ring ∧ 𝐺 ∈ (Base‘𝑃) ∧ (𝑀𝐴) ∈ (Unic1p‘(𝐸s 𝐹))) → 𝐺 = (((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴))(+g𝑃)(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))))
5830, 35, 46, 57syl3anc 1373 . . . . 5 (𝜑𝐺 = (((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴))(+g𝑃)(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))))
5955, 1, 33, 44, 49r1pdeglt 26098 . . . . . . . . . 10 (((𝐸s 𝐹) ∈ Ring ∧ 𝐺 ∈ (Base‘𝑃) ∧ (𝑀𝐴) ∈ (Unic1p‘(𝐸s 𝐹))) → ((deg1‘(𝐸s 𝐹))‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))) < ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴)))
6030, 35, 46, 59syl3anc 1373 . . . . . . . . 9 (𝜑 → ((deg1‘(𝐸s 𝐹))‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))) < ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴)))
6160adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → ((deg1‘(𝐸s 𝐹))‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))) < ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴)))
6230adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → (𝐸s 𝐹) ∈ Ring)
6337adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → (𝑀𝐴) ∈ (Base‘𝑃))
6443adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → (𝑀𝐴) ≠ 𝑍)
6549, 1, 39, 33deg1nn0cl 26026 . . . . . . . . . . 11 (((𝐸s 𝐹) ∈ Ring ∧ (𝑀𝐴) ∈ (Base‘𝑃) ∧ (𝑀𝐴) ≠ 𝑍) → ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴)) ∈ ℕ0)
6662, 63, 64, 65syl3anc 1373 . . . . . . . . . 10 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴)) ∈ ℕ0)
6766nn0red 12480 . . . . . . . . 9 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴)) ∈ ℝ)
6855, 1, 33, 44r1pcl 26097 . . . . . . . . . . . . 13 (((𝐸s 𝐹) ∈ Ring ∧ 𝐺 ∈ (Base‘𝑃) ∧ (𝑀𝐴) ∈ (Unic1p‘(𝐸s 𝐹))) → (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Base‘𝑃))
6930, 35, 46, 68syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Base‘𝑃))
7069adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Base‘𝑃))
71 simpr 484 . . . . . . . . . . 11 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍)
7249, 1, 39, 33deg1nn0cl 26026 . . . . . . . . . . 11 (((𝐸s 𝐹) ∈ Ring ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Base‘𝑃) ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → ((deg1‘(𝐸s 𝐹))‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))) ∈ ℕ0)
7362, 70, 71, 72syl3anc 1373 . . . . . . . . . 10 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → ((deg1‘(𝐸s 𝐹))‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))) ∈ ℕ0)
7473nn0red 12480 . . . . . . . . 9 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → ((deg1‘(𝐸s 𝐹))‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))) ∈ ℝ)
75 eqid 2729 . . . . . . . . . . . . 13 {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 } = {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 }
76 eqid 2729 . . . . . . . . . . . . 13 (RSpan‘𝑃) = (RSpan‘𝑃)
77 eqid 2729 . . . . . . . . . . . . 13 (idlGen1p‘(𝐸s 𝐹)) = (idlGen1p‘(𝐸s 𝐹))
7818, 1, 20, 5, 6, 12, 21, 75, 76, 77, 11minplyval 33688 . . . . . . . . . . . 12 (𝜑 → (𝑀𝐴) = ((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 }))
7978fveq2d 6844 . . . . . . . . . . 11 (𝜑 → ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴)) = ((deg1‘(𝐸s 𝐹))‘((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 })))
8079adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴)) = ((deg1‘(𝐸s 𝐹))‘((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 })))
816adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → 𝐹 ∈ (SubDRing‘𝐸))
8281, 28syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → (𝐸s 𝐹) ∈ DivRing)
8318, 1, 20, 22, 24, 12, 21, 75ply1annidl 33685 . . . . . . . . . . . 12 (𝜑 → {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 } ∈ (LIdeal‘𝑃))
8483adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 } ∈ (LIdeal‘𝑃))
85 fveq2 6840 . . . . . . . . . . . . . . 15 (𝑞 = (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) → (𝑂𝑞) = (𝑂‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))))
8685fveq1d 6842 . . . . . . . . . . . . . 14 (𝑞 = (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) → ((𝑂𝑞)‘𝐴) = ((𝑂‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)))‘𝐴))
8786eqeq1d 2731 . . . . . . . . . . . . 13 (𝑞 = (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) → (((𝑂𝑞)‘𝐴) = 0 ↔ ((𝑂‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)))‘𝐴) = 0 ))
8818, 1, 33, 22, 24evls1dm 33523 . . . . . . . . . . . . . 14 (𝜑 → dom 𝑂 = (Base‘𝑃))
8969, 88eleqtrrd 2831 . . . . . . . . . . . . 13 (𝜑 → (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ dom 𝑂)
9055, 1, 33, 48, 4, 50r1pval 26096 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ (Base‘𝑃) ∧ (𝑀𝐴) ∈ (Base‘𝑃)) → (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) = (𝐺(-g𝑃)((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴))))
9135, 37, 90syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) = (𝐺(-g𝑃)((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴))))
9291fveq2d 6844 . . . . . . . . . . . . . . 15 (𝜑 → (𝑂‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))) = (𝑂‘(𝐺(-g𝑃)((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)))))
9392fveq1d 6842 . . . . . . . . . . . . . 14 (𝜑 → ((𝑂‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)))‘𝐴) = ((𝑂‘(𝐺(-g𝑃)((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴))))‘𝐴))
94 eqid 2729 . . . . . . . . . . . . . . . 16 (-g𝐸) = (-g𝐸)
951ply1ring 22165 . . . . . . . . . . . . . . . . . 18 ((𝐸s 𝐹) ∈ Ring → 𝑃 ∈ Ring)
9630, 95syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝑃 ∈ Ring)
9733, 4, 96, 54, 37ringcld 20180 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)) ∈ (Base‘𝑃))
9818, 20, 1, 19, 33, 50, 94, 22, 24, 35, 97, 12evls1subd 33534 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑂‘(𝐺(-g𝑃)((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴))))‘𝐴) = (((𝑂𝐺)‘𝐴)(-g𝐸)((𝑂‘((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)))‘𝐴)))
99 eqid 2729 . . . . . . . . . . . . . . . . . 18 (.r𝐸) = (.r𝐸)
10018, 20, 1, 19, 33, 4, 99, 22, 24, 54, 37, 12evls1muld 22292 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑂‘((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)))‘𝐴) = (((𝑂‘(𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)))‘𝐴)(.r𝐸)((𝑂‘(𝑀𝐴))‘𝐴)))
10118, 1, 20, 5, 6, 12, 21, 11minplyann 33692 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑂‘(𝑀𝐴))‘𝐴) = 0 )
102101oveq2d 7385 . . . . . . . . . . . . . . . . 17 (𝜑 → (((𝑂‘(𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)))‘𝐴)(.r𝐸)((𝑂‘(𝑀𝐴))‘𝐴)) = (((𝑂‘(𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)))‘𝐴)(.r𝐸) 0 ))
10322crngringd 20166 . . . . . . . . . . . . . . . . . 18 (𝜑𝐸 ∈ Ring)
10418, 1, 20, 33, 22, 24, 12, 54evls1fvcl 22295 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑂‘(𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)))‘𝐴) ∈ 𝐵)
10520, 99, 21, 103, 104ringrzd 20216 . . . . . . . . . . . . . . . . 17 (𝜑 → (((𝑂‘(𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)))‘𝐴)(.r𝐸) 0 ) = 0 )
106100, 102, 1053eqtrd 2768 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑂‘((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)))‘𝐴) = 0 )
10716, 106oveq12d 7387 . . . . . . . . . . . . . . 15 (𝜑 → (((𝑂𝐺)‘𝐴)(-g𝐸)((𝑂‘((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)))‘𝐴)) = ( 0 (-g𝐸) 0 ))
10822crnggrpd 20167 . . . . . . . . . . . . . . . 16 (𝜑𝐸 ∈ Grp)
10920, 21grpidcl 18879 . . . . . . . . . . . . . . . 16 (𝐸 ∈ Grp → 0𝐵)
11020, 21, 94grpsubid1 18939 . . . . . . . . . . . . . . . 16 ((𝐸 ∈ Grp ∧ 0𝐵) → ( 0 (-g𝐸) 0 ) = 0 )
111108, 109, 110syl2anc2 585 . . . . . . . . . . . . . . 15 (𝜑 → ( 0 (-g𝐸) 0 ) = 0 )
11298, 107, 1113eqtrd 2768 . . . . . . . . . . . . . 14 (𝜑 → ((𝑂‘(𝐺(-g𝑃)((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴))))‘𝐴) = 0 )
11393, 112eqtrd 2764 . . . . . . . . . . . . 13 (𝜑 → ((𝑂‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)))‘𝐴) = 0 )
11487, 89, 113elrabd 3658 . . . . . . . . . . . 12 (𝜑 → (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 })
115114adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 })
1161, 77, 33, 82, 84, 49, 39, 115, 71ig1pmindeg 33560 . . . . . . . . . 10 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → ((deg1‘(𝐸s 𝐹))‘((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 })) ≤ ((deg1‘(𝐸s 𝐹))‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))))
11780, 116eqbrtrd 5124 . . . . . . . . 9 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴)) ≤ ((deg1‘(𝐸s 𝐹))‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))))
11867, 74, 117lensymd 11301 . . . . . . . 8 ((𝜑 ∧ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍) → ¬ ((deg1‘(𝐸s 𝐹))‘(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))) < ((deg1‘(𝐸s 𝐹))‘(𝑀𝐴)))
11961, 118pm2.65da 816 . . . . . . 7 (𝜑 → ¬ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍)
120 nne 2929 . . . . . . 7 (¬ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) ≠ 𝑍 ↔ (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) = 𝑍)
121119, 120sylib 218 . . . . . 6 (𝜑 → (𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴)) = 𝑍)
122121oveq2d 7385 . . . . 5 (𝜑 → (((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴))(+g𝑃)(𝐺(rem1p‘(𝐸s 𝐹))(𝑀𝐴))) = (((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴))(+g𝑃)𝑍))
12396ringgrpd 20162 . . . . . 6 (𝜑𝑃 ∈ Grp)
12433, 56, 39, 123, 97grpridd 18884 . . . . 5 (𝜑 → (((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴))(+g𝑃)𝑍) = ((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)))
12558, 122, 1243eqtrd 2768 . . . 4 (𝜑𝐺 = ((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)))
126125, 31eqeltrrd 2829 . . 3 (𝜑 → ((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)) ∈ (Irred‘𝑃))
12718, 1, 20, 5, 6, 12, 11, 39, 43minplyirred 33694 . . . 4 (𝜑 → (𝑀𝐴) ∈ (Irred‘𝑃))
12832, 3irrednu 20345 . . . 4 ((𝑀𝐴) ∈ (Irred‘𝑃) → ¬ (𝑀𝐴) ∈ (Unit‘𝑃))
129127, 128syl 17 . . 3 (𝜑 → ¬ (𝑀𝐴) ∈ (Unit‘𝑃))
13032, 33, 3, 4irredmul 20349 . . . . 5 (((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Base‘𝑃) ∧ (𝑀𝐴) ∈ (Base‘𝑃) ∧ ((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)) ∈ (Irred‘𝑃)) → ((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Unit‘𝑃) ∨ (𝑀𝐴) ∈ (Unit‘𝑃)))
131130orcomd 871 . . . 4 (((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Base‘𝑃) ∧ (𝑀𝐴) ∈ (Base‘𝑃) ∧ ((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)) ∈ (Irred‘𝑃)) → ((𝑀𝐴) ∈ (Unit‘𝑃) ∨ (𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Unit‘𝑃)))
132131orcanai 1004 . . 3 ((((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Base‘𝑃) ∧ (𝑀𝐴) ∈ (Base‘𝑃) ∧ ((𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴))(.r𝑃)(𝑀𝐴)) ∈ (Irred‘𝑃)) ∧ ¬ (𝑀𝐴) ∈ (Unit‘𝑃)) → (𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Unit‘𝑃))
13354, 37, 126, 129, 132syl31anc 1375 . 2 (𝜑 → (𝐺(quot1p‘(𝐸s 𝐹))(𝑀𝐴)) ∈ (Unit‘𝑃))
1341, 2, 3, 4, 8, 9, 27, 133, 125m1pmeq 33545 1 (𝜑𝐺 = (𝑀𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  {crab 3402   class class class wbr 5102  dom cdm 5631  cfv 6499  (class class class)co 7369   < clt 11184  cle 11185  0cn0 12418  Basecbs 17155  s cress 17176  +gcplusg 17196  .rcmulr 17197  0gc0g 17378  Grpcgrp 18847  -gcsg 18849  Ringcrg 20153  Unitcui 20275  Irredcir 20276  SubRingcsubrg 20489  DivRingcdr 20649  Fieldcfield 20650  SubDRingcsdrg 20706  LIdealclidl 21148  RSpancrsp 21149  Poly1cpl1 22094   evalSub1 ces1 22233  deg1cdg1 25992  Monic1pcmn1 26064  Unic1pcuc1p 26065  quot1pcq1p 26066  rem1pcr1p 26067  idlGen1pcig1p 26068   IntgRing cirng 33671   minPoly cminply 33682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-0g 17380  df-gsum 17381  df-prds 17386  df-pws 17388  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-mhm 18692  df-submnd 18693  df-grp 18850  df-minusg 18851  df-sbg 18852  df-mulg 18982  df-subg 19037  df-ghm 19127  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-srg 20107  df-ring 20155  df-cring 20156  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-irred 20279  df-invr 20308  df-rhm 20392  df-nzr 20433  df-subrng 20466  df-subrg 20490  df-rlreg 20614  df-domn 20615  df-idom 20616  df-drng 20651  df-field 20652  df-sdrg 20707  df-lmod 20800  df-lss 20870  df-lsp 20910  df-sra 21112  df-rgmod 21113  df-lidl 21150  df-rsp 21151  df-cnfld 21297  df-assa 21795  df-asp 21796  df-ascl 21797  df-psr 21851  df-mvr 21852  df-mpl 21853  df-opsr 21855  df-evls 22014  df-evl 22015  df-psr1 22097  df-vr1 22098  df-ply1 22099  df-coe1 22100  df-evls1 22235  df-evl1 22236  df-mdeg 25993  df-deg1 25994  df-mon1 26069  df-uc1p 26070  df-q1p 26071  df-r1p 26072  df-ig1p 26073  df-irng 33672  df-minply 33683
This theorem is referenced by:  2sqr3minply  33763  cos9thpiminply  33771
  Copyright terms: Public domain W3C validator