Step | Hyp | Ref
| Expression |
1 | | irredminply.p |
. 2
⊢ 𝑃 =
(Poly1‘(𝐸
↾s 𝐹)) |
2 | | eqid 2728 |
. 2
⊢
(Monic1p‘(𝐸 ↾s 𝐹)) = (Monic1p‘(𝐸 ↾s 𝐹)) |
3 | | eqid 2728 |
. 2
⊢
(Unit‘𝑃) =
(Unit‘𝑃) |
4 | | eqid 2728 |
. 2
⊢
(.r‘𝑃) = (.r‘𝑃) |
5 | | irredminply.e |
. . 3
⊢ (𝜑 → 𝐸 ∈ Field) |
6 | | irredminply.f |
. . 3
⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) |
7 | | fldsdrgfld 20693 |
. . 3
⊢ ((𝐸 ∈ Field ∧ 𝐹 ∈ (SubDRing‘𝐸)) → (𝐸 ↾s 𝐹) ∈ Field) |
8 | 5, 6, 7 | syl2anc 582 |
. 2
⊢ (𝜑 → (𝐸 ↾s 𝐹) ∈ Field) |
9 | | irredminply.3 |
. 2
⊢ (𝜑 → 𝐺 ∈ (Monic1p‘(𝐸 ↾s 𝐹))) |
10 | | eqid 2728 |
. . 3
⊢
(0g‘(Poly1‘𝐸)) =
(0g‘(Poly1‘𝐸)) |
11 | | irredminply.m |
. . 3
⊢ 𝑀 = (𝐸 minPoly 𝐹) |
12 | | irredminply.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝐵) |
13 | | fveq2 6902 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (𝑂‘𝑔) = (𝑂‘𝐺)) |
14 | 13 | fveq1d 6904 |
. . . . . 6
⊢ (𝑔 = 𝐺 → ((𝑂‘𝑔)‘𝐴) = ((𝑂‘𝐺)‘𝐴)) |
15 | 14 | eqeq1d 2730 |
. . . . 5
⊢ (𝑔 = 𝐺 → (((𝑂‘𝑔)‘𝐴) = 0 ↔ ((𝑂‘𝐺)‘𝐴) = 0 )) |
16 | | irredminply.1 |
. . . . 5
⊢ (𝜑 → ((𝑂‘𝐺)‘𝐴) = 0 ) |
17 | 15, 9, 16 | rspcedvdw 3614 |
. . . 4
⊢ (𝜑 → ∃𝑔 ∈ (Monic1p‘(𝐸 ↾s 𝐹))((𝑂‘𝑔)‘𝐴) = 0 ) |
18 | | irredminply.o |
. . . . 5
⊢ 𝑂 = (𝐸 evalSub1 𝐹) |
19 | | eqid 2728 |
. . . . 5
⊢ (𝐸 ↾s 𝐹) = (𝐸 ↾s 𝐹) |
20 | | irredminply.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐸) |
21 | | irredminply.0 |
. . . . 5
⊢ 0 =
(0g‘𝐸) |
22 | 5 | fldcrngd 20644 |
. . . . 5
⊢ (𝜑 → 𝐸 ∈ CRing) |
23 | | sdrgsubrg 20686 |
. . . . . 6
⊢ (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸)) |
24 | 6, 23 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ (SubRing‘𝐸)) |
25 | 18, 19, 20, 21, 22, 24 | elirng 33397 |
. . . 4
⊢ (𝜑 → (𝐴 ∈ (𝐸 IntgRing 𝐹) ↔ (𝐴 ∈ 𝐵 ∧ ∃𝑔 ∈ (Monic1p‘(𝐸 ↾s 𝐹))((𝑂‘𝑔)‘𝐴) = 0 ))) |
26 | 12, 17, 25 | mpbir2and 711 |
. . 3
⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) |
27 | 10, 5, 6, 11, 26, 2 | minplym1p 33416 |
. 2
⊢ (𝜑 → (𝑀‘𝐴) ∈ (Monic1p‘(𝐸 ↾s 𝐹))) |
28 | 19 | sdrgdrng 20685 |
. . . . . . 7
⊢ (𝐹 ∈ (SubDRing‘𝐸) → (𝐸 ↾s 𝐹) ∈ DivRing) |
29 | 6, 28 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝐸 ↾s 𝐹) ∈ DivRing) |
30 | 29 | drngringd 20639 |
. . . . 5
⊢ (𝜑 → (𝐸 ↾s 𝐹) ∈ Ring) |
31 | | irredminply.2 |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ (Irred‘𝑃)) |
32 | | eqid 2728 |
. . . . . . 7
⊢
(Irred‘𝑃) =
(Irred‘𝑃) |
33 | | eqid 2728 |
. . . . . . 7
⊢
(Base‘𝑃) =
(Base‘𝑃) |
34 | 32, 33 | irredcl 20370 |
. . . . . 6
⊢ (𝐺 ∈ (Irred‘𝑃) → 𝐺 ∈ (Base‘𝑃)) |
35 | 31, 34 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ (Base‘𝑃)) |
36 | 1, 33, 2 | mon1pcl 26100 |
. . . . . . 7
⊢ ((𝑀‘𝐴) ∈ (Monic1p‘(𝐸 ↾s 𝐹)) → (𝑀‘𝐴) ∈ (Base‘𝑃)) |
37 | 27, 36 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝑀‘𝐴) ∈ (Base‘𝑃)) |
38 | 10, 5, 6, 11, 26 | irngnminplynz 33415 |
. . . . . . 7
⊢ (𝜑 → (𝑀‘𝐴) ≠
(0g‘(Poly1‘𝐸))) |
39 | | irredminply.z |
. . . . . . . 8
⊢ 𝑍 = (0g‘𝑃) |
40 | | eqid 2728 |
. . . . . . . . 9
⊢
(Poly1‘𝐸) = (Poly1‘𝐸) |
41 | 40, 19, 1, 33, 24, 10 | ressply10g 33285 |
. . . . . . . 8
⊢ (𝜑 →
(0g‘(Poly1‘𝐸)) = (0g‘𝑃)) |
42 | 39, 41 | eqtr4id 2787 |
. . . . . . 7
⊢ (𝜑 → 𝑍 =
(0g‘(Poly1‘𝐸))) |
43 | 38, 42 | neeqtrrd 3012 |
. . . . . 6
⊢ (𝜑 → (𝑀‘𝐴) ≠ 𝑍) |
44 | | eqid 2728 |
. . . . . . 7
⊢
(Unic1p‘(𝐸 ↾s 𝐹)) = (Unic1p‘(𝐸 ↾s 𝐹)) |
45 | 1, 33, 39, 44 | drnguc1p 26128 |
. . . . . 6
⊢ (((𝐸 ↾s 𝐹) ∈ DivRing ∧ (𝑀‘𝐴) ∈ (Base‘𝑃) ∧ (𝑀‘𝐴) ≠ 𝑍) → (𝑀‘𝐴) ∈ (Unic1p‘(𝐸 ↾s 𝐹))) |
46 | 29, 37, 43, 45 | syl3anc 1368 |
. . . . 5
⊢ (𝜑 → (𝑀‘𝐴) ∈ (Unic1p‘(𝐸 ↾s 𝐹))) |
47 | | eqidd 2729 |
. . . . 5
⊢ (𝜑 → (𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) = (𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))) |
48 | | eqid 2728 |
. . . . . . 7
⊢
(quot1p‘(𝐸 ↾s 𝐹)) = (quot1p‘(𝐸 ↾s 𝐹)) |
49 | | eqid 2728 |
. . . . . . 7
⊢ (
deg1 ‘(𝐸
↾s 𝐹)) = (
deg1 ‘(𝐸
↾s 𝐹)) |
50 | | eqid 2728 |
. . . . . . 7
⊢
(-g‘𝑃) = (-g‘𝑃) |
51 | 48, 1, 33, 49, 50, 4, 44 | q1peqb 26111 |
. . . . . 6
⊢ (((𝐸 ↾s 𝐹) ∈ Ring ∧ 𝐺 ∈ (Base‘𝑃) ∧ (𝑀‘𝐴) ∈ (Unic1p‘(𝐸 ↾s 𝐹))) → (((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ∈ (Base‘𝑃) ∧ (( deg1 ‘(𝐸 ↾s 𝐹))‘(𝐺(-g‘𝑃)((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))(.r‘𝑃)(𝑀‘𝐴)))) < (( deg1 ‘(𝐸 ↾s 𝐹))‘(𝑀‘𝐴))) ↔ (𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) = (𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)))) |
52 | 51 | biimpar 476 |
. . . . 5
⊢ ((((𝐸 ↾s 𝐹) ∈ Ring ∧ 𝐺 ∈ (Base‘𝑃) ∧ (𝑀‘𝐴) ∈ (Unic1p‘(𝐸 ↾s 𝐹))) ∧ (𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) = (𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))) → ((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ∈ (Base‘𝑃) ∧ (( deg1 ‘(𝐸 ↾s 𝐹))‘(𝐺(-g‘𝑃)((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))(.r‘𝑃)(𝑀‘𝐴)))) < (( deg1 ‘(𝐸 ↾s 𝐹))‘(𝑀‘𝐴)))) |
53 | 30, 35, 46, 47, 52 | syl31anc 1370 |
. . . 4
⊢ (𝜑 → ((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ∈ (Base‘𝑃) ∧ (( deg1 ‘(𝐸 ↾s 𝐹))‘(𝐺(-g‘𝑃)((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))(.r‘𝑃)(𝑀‘𝐴)))) < (( deg1 ‘(𝐸 ↾s 𝐹))‘(𝑀‘𝐴)))) |
54 | 53 | simpld 493 |
. . 3
⊢ (𝜑 → (𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ∈ (Base‘𝑃)) |
55 | | eqid 2728 |
. . . . . . 7
⊢
(rem1p‘(𝐸 ↾s 𝐹)) = (rem1p‘(𝐸 ↾s 𝐹)) |
56 | | eqid 2728 |
. . . . . . 7
⊢
(+g‘𝑃) = (+g‘𝑃) |
57 | 1, 33, 44, 48, 55, 4, 56 | r1pid 26116 |
. . . . . 6
⊢ (((𝐸 ↾s 𝐹) ∈ Ring ∧ 𝐺 ∈ (Base‘𝑃) ∧ (𝑀‘𝐴) ∈ (Unic1p‘(𝐸 ↾s 𝐹))) → 𝐺 = (((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))(.r‘𝑃)(𝑀‘𝐴))(+g‘𝑃)(𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)))) |
58 | 30, 35, 46, 57 | syl3anc 1368 |
. . . . 5
⊢ (𝜑 → 𝐺 = (((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))(.r‘𝑃)(𝑀‘𝐴))(+g‘𝑃)(𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)))) |
59 | 55, 1, 33, 44, 49 | r1pdeglt 26115 |
. . . . . . . . . 10
⊢ (((𝐸 ↾s 𝐹) ∈ Ring ∧ 𝐺 ∈ (Base‘𝑃) ∧ (𝑀‘𝐴) ∈ (Unic1p‘(𝐸 ↾s 𝐹))) → (( deg1
‘(𝐸
↾s 𝐹))‘(𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))) < (( deg1 ‘(𝐸 ↾s 𝐹))‘(𝑀‘𝐴))) |
60 | 30, 35, 46, 59 | syl3anc 1368 |
. . . . . . . . 9
⊢ (𝜑 → (( deg1
‘(𝐸
↾s 𝐹))‘(𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))) < (( deg1 ‘(𝐸 ↾s 𝐹))‘(𝑀‘𝐴))) |
61 | 60 | adantr 479 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ≠ 𝑍) → (( deg1 ‘(𝐸 ↾s 𝐹))‘(𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))) < (( deg1 ‘(𝐸 ↾s 𝐹))‘(𝑀‘𝐴))) |
62 | 30 | adantr 479 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ≠ 𝑍) → (𝐸 ↾s 𝐹) ∈ Ring) |
63 | 37 | adantr 479 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ≠ 𝑍) → (𝑀‘𝐴) ∈ (Base‘𝑃)) |
64 | 43 | adantr 479 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ≠ 𝑍) → (𝑀‘𝐴) ≠ 𝑍) |
65 | 49, 1, 39, 33 | deg1nn0cl 26044 |
. . . . . . . . . . 11
⊢ (((𝐸 ↾s 𝐹) ∈ Ring ∧ (𝑀‘𝐴) ∈ (Base‘𝑃) ∧ (𝑀‘𝐴) ≠ 𝑍) → (( deg1 ‘(𝐸 ↾s 𝐹))‘(𝑀‘𝐴)) ∈
ℕ0) |
66 | 62, 63, 64, 65 | syl3anc 1368 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ≠ 𝑍) → (( deg1 ‘(𝐸 ↾s 𝐹))‘(𝑀‘𝐴)) ∈
ℕ0) |
67 | 66 | nn0red 12571 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ≠ 𝑍) → (( deg1 ‘(𝐸 ↾s 𝐹))‘(𝑀‘𝐴)) ∈ ℝ) |
68 | 55, 1, 33, 44 | r1pcl 26114 |
. . . . . . . . . . . . 13
⊢ (((𝐸 ↾s 𝐹) ∈ Ring ∧ 𝐺 ∈ (Base‘𝑃) ∧ (𝑀‘𝐴) ∈ (Unic1p‘(𝐸 ↾s 𝐹))) → (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ∈ (Base‘𝑃)) |
69 | 30, 35, 46, 68 | syl3anc 1368 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ∈ (Base‘𝑃)) |
70 | 69 | adantr 479 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ≠ 𝑍) → (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ∈ (Base‘𝑃)) |
71 | | simpr 483 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ≠ 𝑍) → (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ≠ 𝑍) |
72 | 49, 1, 39, 33 | deg1nn0cl 26044 |
. . . . . . . . . . 11
⊢ (((𝐸 ↾s 𝐹) ∈ Ring ∧ (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ∈ (Base‘𝑃) ∧ (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ≠ 𝑍) → (( deg1 ‘(𝐸 ↾s 𝐹))‘(𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))) ∈
ℕ0) |
73 | 62, 70, 71, 72 | syl3anc 1368 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ≠ 𝑍) → (( deg1 ‘(𝐸 ↾s 𝐹))‘(𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))) ∈
ℕ0) |
74 | 73 | nn0red 12571 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ≠ 𝑍) → (( deg1 ‘(𝐸 ↾s 𝐹))‘(𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))) ∈ ℝ) |
75 | | eqid 2728 |
. . . . . . . . . . . . 13
⊢ {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } = {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } |
76 | | eqid 2728 |
. . . . . . . . . . . . 13
⊢
(RSpan‘𝑃) =
(RSpan‘𝑃) |
77 | | eqid 2728 |
. . . . . . . . . . . . 13
⊢
(idlGen1p‘(𝐸 ↾s 𝐹)) = (idlGen1p‘(𝐸 ↾s 𝐹)) |
78 | 18, 1, 20, 5, 6, 12, 21, 75, 76, 77, 11 | minplyval 33409 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑀‘𝐴) = ((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 })) |
79 | 78 | fveq2d 6906 |
. . . . . . . . . . 11
⊢ (𝜑 → (( deg1
‘(𝐸
↾s 𝐹))‘(𝑀‘𝐴)) = (( deg1 ‘(𝐸 ↾s 𝐹))‘((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 }))) |
80 | 79 | adantr 479 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ≠ 𝑍) → (( deg1 ‘(𝐸 ↾s 𝐹))‘(𝑀‘𝐴)) = (( deg1 ‘(𝐸 ↾s 𝐹))‘((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 }))) |
81 | 6 | adantr 479 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ≠ 𝑍) → 𝐹 ∈ (SubDRing‘𝐸)) |
82 | 81, 28 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ≠ 𝑍) → (𝐸 ↾s 𝐹) ∈ DivRing) |
83 | 18, 1, 20, 22, 24, 12, 21, 75 | ply1annidl 33406 |
. . . . . . . . . . . 12
⊢ (𝜑 → {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } ∈
(LIdeal‘𝑃)) |
84 | 83 | adantr 479 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ≠ 𝑍) → {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } ∈
(LIdeal‘𝑃)) |
85 | | fveq2 6902 |
. . . . . . . . . . . . . . 15
⊢ (𝑞 = (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) → (𝑂‘𝑞) = (𝑂‘(𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)))) |
86 | 85 | fveq1d 6904 |
. . . . . . . . . . . . . 14
⊢ (𝑞 = (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) → ((𝑂‘𝑞)‘𝐴) = ((𝑂‘(𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)))‘𝐴)) |
87 | 86 | eqeq1d 2730 |
. . . . . . . . . . . . 13
⊢ (𝑞 = (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) → (((𝑂‘𝑞)‘𝐴) = 0 ↔ ((𝑂‘(𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)))‘𝐴) = 0 )) |
88 | 18, 1, 33, 22, 24 | evls1dm 33282 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → dom 𝑂 = (Base‘𝑃)) |
89 | 69, 88 | eleqtrrd 2832 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ∈ dom 𝑂) |
90 | 55, 1, 33, 48, 4, 50 | r1pval 26113 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺 ∈ (Base‘𝑃) ∧ (𝑀‘𝐴) ∈ (Base‘𝑃)) → (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) = (𝐺(-g‘𝑃)((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))(.r‘𝑃)(𝑀‘𝐴)))) |
91 | 35, 37, 90 | syl2anc 582 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) = (𝐺(-g‘𝑃)((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))(.r‘𝑃)(𝑀‘𝐴)))) |
92 | 91 | fveq2d 6906 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑂‘(𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))) = (𝑂‘(𝐺(-g‘𝑃)((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))(.r‘𝑃)(𝑀‘𝐴))))) |
93 | 92 | fveq1d 6904 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑂‘(𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)))‘𝐴) = ((𝑂‘(𝐺(-g‘𝑃)((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))(.r‘𝑃)(𝑀‘𝐴))))‘𝐴)) |
94 | | eqid 2728 |
. . . . . . . . . . . . . . . 16
⊢
(-g‘𝐸) = (-g‘𝐸) |
95 | 1 | ply1ring 22173 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐸 ↾s 𝐹) ∈ Ring → 𝑃 ∈ Ring) |
96 | 30, 95 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑃 ∈ Ring) |
97 | 33, 4, 96, 54, 37 | ringcld 20206 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))(.r‘𝑃)(𝑀‘𝐴)) ∈ (Base‘𝑃)) |
98 | 18, 20, 1, 19, 33, 50, 94, 22, 24, 35, 97, 12 | evls1subd 33289 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝑂‘(𝐺(-g‘𝑃)((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))(.r‘𝑃)(𝑀‘𝐴))))‘𝐴) = (((𝑂‘𝐺)‘𝐴)(-g‘𝐸)((𝑂‘((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))(.r‘𝑃)(𝑀‘𝐴)))‘𝐴))) |
99 | | eqid 2728 |
. . . . . . . . . . . . . . . . . 18
⊢
(.r‘𝐸) = (.r‘𝐸) |
100 | 18, 20, 1, 19, 33, 4, 99, 22, 24, 54, 37, 12 | evls1muld 22298 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝑂‘((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))(.r‘𝑃)(𝑀‘𝐴)))‘𝐴) = (((𝑂‘(𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)))‘𝐴)(.r‘𝐸)((𝑂‘(𝑀‘𝐴))‘𝐴))) |
101 | 18, 1, 20, 5, 6, 12, 21, 11 | minplyann 33412 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((𝑂‘(𝑀‘𝐴))‘𝐴) = 0 ) |
102 | 101 | oveq2d 7442 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (((𝑂‘(𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)))‘𝐴)(.r‘𝐸)((𝑂‘(𝑀‘𝐴))‘𝐴)) = (((𝑂‘(𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)))‘𝐴)(.r‘𝐸) 0 )) |
103 | 22 | crngringd 20193 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐸 ∈ Ring) |
104 | 18, 1, 20, 33, 22, 24, 12, 54 | evls1fvcl 22301 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((𝑂‘(𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)))‘𝐴) ∈ 𝐵) |
105 | 20, 99, 21, 103, 104 | ringrzd 20239 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (((𝑂‘(𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)))‘𝐴)(.r‘𝐸) 0 ) = 0 ) |
106 | 100, 102,
105 | 3eqtrd 2772 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝑂‘((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))(.r‘𝑃)(𝑀‘𝐴)))‘𝐴) = 0 ) |
107 | 16, 106 | oveq12d 7444 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (((𝑂‘𝐺)‘𝐴)(-g‘𝐸)((𝑂‘((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))(.r‘𝑃)(𝑀‘𝐴)))‘𝐴)) = ( 0 (-g‘𝐸) 0 )) |
108 | 22 | crnggrpd 20194 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐸 ∈ Grp) |
109 | 20, 21 | grpidcl 18929 |
. . . . . . . . . . . . . . . 16
⊢ (𝐸 ∈ Grp → 0 ∈ 𝐵) |
110 | 20, 21, 94 | grpsubid1 18988 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐸 ∈ Grp ∧ 0 ∈ 𝐵) → ( 0 (-g‘𝐸) 0 ) = 0 ) |
111 | 108, 109,
110 | syl2anc2 583 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ( 0 (-g‘𝐸) 0 ) = 0 ) |
112 | 98, 107, 111 | 3eqtrd 2772 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑂‘(𝐺(-g‘𝑃)((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))(.r‘𝑃)(𝑀‘𝐴))))‘𝐴) = 0 ) |
113 | 93, 112 | eqtrd 2768 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑂‘(𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)))‘𝐴) = 0 ) |
114 | 87, 89, 113 | elrabd 3686 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 }) |
115 | 114 | adantr 479 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ≠ 𝑍) → (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 }) |
116 | 1, 77, 33, 82, 84, 49, 39, 115, 71 | ig1pmindeg 33305 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ≠ 𝑍) → (( deg1 ‘(𝐸 ↾s 𝐹))‘((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 })) ≤ ((
deg1 ‘(𝐸
↾s 𝐹))‘(𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)))) |
117 | 80, 116 | eqbrtrd 5174 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ≠ 𝑍) → (( deg1 ‘(𝐸 ↾s 𝐹))‘(𝑀‘𝐴)) ≤ (( deg1 ‘(𝐸 ↾s 𝐹))‘(𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)))) |
118 | 67, 74, 117 | lensymd 11403 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ≠ 𝑍) → ¬ (( deg1
‘(𝐸
↾s 𝐹))‘(𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))) < (( deg1 ‘(𝐸 ↾s 𝐹))‘(𝑀‘𝐴))) |
119 | 61, 118 | pm2.65da 815 |
. . . . . . 7
⊢ (𝜑 → ¬ (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ≠ 𝑍) |
120 | | nne 2941 |
. . . . . . 7
⊢ (¬
(𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ≠ 𝑍 ↔ (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) = 𝑍) |
121 | 119, 120 | sylib 217 |
. . . . . 6
⊢ (𝜑 → (𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) = 𝑍) |
122 | 121 | oveq2d 7442 |
. . . . 5
⊢ (𝜑 → (((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))(.r‘𝑃)(𝑀‘𝐴))(+g‘𝑃)(𝐺(rem1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))) = (((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))(.r‘𝑃)(𝑀‘𝐴))(+g‘𝑃)𝑍)) |
123 | 96 | ringgrpd 20189 |
. . . . . 6
⊢ (𝜑 → 𝑃 ∈ Grp) |
124 | 33, 56, 39, 123, 97 | grpridd 18934 |
. . . . 5
⊢ (𝜑 → (((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))(.r‘𝑃)(𝑀‘𝐴))(+g‘𝑃)𝑍) = ((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))(.r‘𝑃)(𝑀‘𝐴))) |
125 | 58, 122, 124 | 3eqtrd 2772 |
. . . 4
⊢ (𝜑 → 𝐺 = ((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))(.r‘𝑃)(𝑀‘𝐴))) |
126 | 125, 31 | eqeltrrd 2830 |
. . 3
⊢ (𝜑 → ((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))(.r‘𝑃)(𝑀‘𝐴)) ∈ (Irred‘𝑃)) |
127 | 18, 1, 20, 5, 6, 12, 11, 39, 43 | minplyirred 33414 |
. . . 4
⊢ (𝜑 → (𝑀‘𝐴) ∈ (Irred‘𝑃)) |
128 | 32, 3 | irrednu 20371 |
. . . 4
⊢ ((𝑀‘𝐴) ∈ (Irred‘𝑃) → ¬ (𝑀‘𝐴) ∈ (Unit‘𝑃)) |
129 | 127, 128 | syl 17 |
. . 3
⊢ (𝜑 → ¬ (𝑀‘𝐴) ∈ (Unit‘𝑃)) |
130 | 32, 33, 3, 4 | irredmul 20375 |
. . . . 5
⊢ (((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ∈ (Base‘𝑃) ∧ (𝑀‘𝐴) ∈ (Base‘𝑃) ∧ ((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))(.r‘𝑃)(𝑀‘𝐴)) ∈ (Irred‘𝑃)) → ((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ∈ (Unit‘𝑃) ∨ (𝑀‘𝐴) ∈ (Unit‘𝑃))) |
131 | 130 | orcomd 869 |
. . . 4
⊢ (((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ∈ (Base‘𝑃) ∧ (𝑀‘𝐴) ∈ (Base‘𝑃) ∧ ((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))(.r‘𝑃)(𝑀‘𝐴)) ∈ (Irred‘𝑃)) → ((𝑀‘𝐴) ∈ (Unit‘𝑃) ∨ (𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ∈ (Unit‘𝑃))) |
132 | 131 | orcanai 1000 |
. . 3
⊢ ((((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ∈ (Base‘𝑃) ∧ (𝑀‘𝐴) ∈ (Base‘𝑃) ∧ ((𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴))(.r‘𝑃)(𝑀‘𝐴)) ∈ (Irred‘𝑃)) ∧ ¬ (𝑀‘𝐴) ∈ (Unit‘𝑃)) → (𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ∈ (Unit‘𝑃)) |
133 | 54, 37, 126, 129, 132 | syl31anc 1370 |
. 2
⊢ (𝜑 → (𝐺(quot1p‘(𝐸 ↾s 𝐹))(𝑀‘𝐴)) ∈ (Unit‘𝑃)) |
134 | 1, 2, 3, 4, 8, 9, 27, 133, 125 | m1pmeq 33294 |
1
⊢ (𝜑 → 𝐺 = (𝑀‘𝐴)) |