Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  salunicl Structured version   Visualization version   GIF version

Theorem salunicl 46312
Description: SAlg sigma-algebra is closed under countable union. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
salunicl.s (𝜑𝑆 ∈ SAlg)
salunicl.t (𝜑𝑇 ∈ 𝒫 𝑆)
salunicl.tct (𝜑𝑇 ≼ ω)
Assertion
Ref Expression
salunicl (𝜑 𝑇𝑆)

Proof of Theorem salunicl
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 salunicl.tct . 2 (𝜑𝑇 ≼ ω)
2 breq1 5127 . . . 4 (𝑦 = 𝑇 → (𝑦 ≼ ω ↔ 𝑇 ≼ ω))
3 unieq 4899 . . . . 5 (𝑦 = 𝑇 𝑦 = 𝑇)
43eleq1d 2820 . . . 4 (𝑦 = 𝑇 → ( 𝑦𝑆 𝑇𝑆))
52, 4imbi12d 344 . . 3 (𝑦 = 𝑇 → ((𝑦 ≼ ω → 𝑦𝑆) ↔ (𝑇 ≼ ω → 𝑇𝑆)))
6 salunicl.s . . . . 5 (𝜑𝑆 ∈ SAlg)
7 issal 46310 . . . . . 6 (𝑆 ∈ SAlg → (𝑆 ∈ SAlg ↔ (∅ ∈ 𝑆 ∧ ∀𝑦𝑆 ( 𝑆𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → 𝑦𝑆))))
86, 7syl 17 . . . . 5 (𝜑 → (𝑆 ∈ SAlg ↔ (∅ ∈ 𝑆 ∧ ∀𝑦𝑆 ( 𝑆𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → 𝑦𝑆))))
96, 8mpbid 232 . . . 4 (𝜑 → (∅ ∈ 𝑆 ∧ ∀𝑦𝑆 ( 𝑆𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → 𝑦𝑆)))
109simp3d 1144 . . 3 (𝜑 → ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → 𝑦𝑆))
11 salunicl.t . . 3 (𝜑𝑇 ∈ 𝒫 𝑆)
125, 10, 11rspcdva 3607 . 2 (𝜑 → (𝑇 ≼ ω → 𝑇𝑆))
131, 12mpd 15 1 (𝜑 𝑇𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  wral 3052  cdif 3928  c0 4313  𝒫 cpw 4580   cuni 4888   class class class wbr 5124  ωcom 7866  cdom 8962  SAlgcsalg 46304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-salg 46305
This theorem is referenced by:  saliunclf  46318  intsal  46326  smfpimbor1lem1  46794
  Copyright terms: Public domain W3C validator