Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  salunicl Structured version   Visualization version   GIF version

Theorem salunicl 43857
Description: SAlg sigma-algebra is closed under countable union. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
salunicl.s (𝜑𝑆 ∈ SAlg)
salunicl.t (𝜑𝑇 ∈ 𝒫 𝑆)
salunicl.tct (𝜑𝑇 ≼ ω)
Assertion
Ref Expression
salunicl (𝜑 𝑇𝑆)

Proof of Theorem salunicl
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 salunicl.tct . 2 (𝜑𝑇 ≼ ω)
2 breq1 5077 . . . 4 (𝑦 = 𝑇 → (𝑦 ≼ ω ↔ 𝑇 ≼ ω))
3 unieq 4850 . . . . 5 (𝑦 = 𝑇 𝑦 = 𝑇)
43eleq1d 2823 . . . 4 (𝑦 = 𝑇 → ( 𝑦𝑆 𝑇𝑆))
52, 4imbi12d 345 . . 3 (𝑦 = 𝑇 → ((𝑦 ≼ ω → 𝑦𝑆) ↔ (𝑇 ≼ ω → 𝑇𝑆)))
6 salunicl.s . . . . 5 (𝜑𝑆 ∈ SAlg)
7 issal 43855 . . . . . 6 (𝑆 ∈ SAlg → (𝑆 ∈ SAlg ↔ (∅ ∈ 𝑆 ∧ ∀𝑦𝑆 ( 𝑆𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → 𝑦𝑆))))
86, 7syl 17 . . . . 5 (𝜑 → (𝑆 ∈ SAlg ↔ (∅ ∈ 𝑆 ∧ ∀𝑦𝑆 ( 𝑆𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → 𝑦𝑆))))
96, 8mpbid 231 . . . 4 (𝜑 → (∅ ∈ 𝑆 ∧ ∀𝑦𝑆 ( 𝑆𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → 𝑦𝑆)))
109simp3d 1143 . . 3 (𝜑 → ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → 𝑦𝑆))
11 salunicl.t . . 3 (𝜑𝑇 ∈ 𝒫 𝑆)
125, 10, 11rspcdva 3562 . 2 (𝜑 → (𝑇 ≼ ω → 𝑇𝑆))
131, 12mpd 15 1 (𝜑 𝑇𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1086   = wceq 1539  wcel 2106  wral 3064  cdif 3884  c0 4256  𝒫 cpw 4533   cuni 4839   class class class wbr 5074  ωcom 7712  cdom 8731  SAlgcsalg 43849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-salg 43850
This theorem is referenced by:  saliuncl  43863  intsal  43869  smfpimbor1lem1  44332
  Copyright terms: Public domain W3C validator