![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > salunicl | Structured version Visualization version GIF version |
Description: SAlg sigma-algebra is closed under countable union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
salunicl.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
salunicl.t | ⊢ (𝜑 → 𝑇 ∈ 𝒫 𝑆) |
salunicl.tct | ⊢ (𝜑 → 𝑇 ≼ ω) |
Ref | Expression |
---|---|
salunicl | ⊢ (𝜑 → ∪ 𝑇 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | salunicl.tct | . 2 ⊢ (𝜑 → 𝑇 ≼ ω) | |
2 | salunicl.t | . . 3 ⊢ (𝜑 → 𝑇 ∈ 𝒫 𝑆) | |
3 | salunicl.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
4 | issal 41319 | . . . . . 6 ⊢ (𝑆 ∈ SAlg → (𝑆 ∈ SAlg ↔ (∅ ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 (∪ 𝑆 ∖ 𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆)))) | |
5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑆 ∈ SAlg ↔ (∅ ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 (∪ 𝑆 ∖ 𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆)))) |
6 | 3, 5 | mpbid 224 | . . . 4 ⊢ (𝜑 → (∅ ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 (∪ 𝑆 ∖ 𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆))) |
7 | 6 | simp3d 1178 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆)) |
8 | breq1 4878 | . . . . 5 ⊢ (𝑦 = 𝑇 → (𝑦 ≼ ω ↔ 𝑇 ≼ ω)) | |
9 | unieq 4668 | . . . . . 6 ⊢ (𝑦 = 𝑇 → ∪ 𝑦 = ∪ 𝑇) | |
10 | 9 | eleq1d 2891 | . . . . 5 ⊢ (𝑦 = 𝑇 → (∪ 𝑦 ∈ 𝑆 ↔ ∪ 𝑇 ∈ 𝑆)) |
11 | 8, 10 | imbi12d 336 | . . . 4 ⊢ (𝑦 = 𝑇 → ((𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆) ↔ (𝑇 ≼ ω → ∪ 𝑇 ∈ 𝑆))) |
12 | 11 | rspcva 3524 | . . 3 ⊢ ((𝑇 ∈ 𝒫 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆)) → (𝑇 ≼ ω → ∪ 𝑇 ∈ 𝑆)) |
13 | 2, 7, 12 | syl2anc 579 | . 2 ⊢ (𝜑 → (𝑇 ≼ ω → ∪ 𝑇 ∈ 𝑆)) |
14 | 1, 13 | mpd 15 | 1 ⊢ (𝜑 → ∪ 𝑇 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ w3a 1111 = wceq 1656 ∈ wcel 2164 ∀wral 3117 ∖ cdif 3795 ∅c0 4146 𝒫 cpw 4380 ∪ cuni 4660 class class class wbr 4875 ωcom 7331 ≼ cdom 8226 SAlgcsalg 41313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-br 4876 df-salg 41314 |
This theorem is referenced by: saliuncl 41327 intsal 41333 smfpimbor1lem1 41793 |
Copyright terms: Public domain | W3C validator |