![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > salunicl | Structured version Visualization version GIF version |
Description: SAlg sigma-algebra is closed under countable union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
salunicl.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
salunicl.t | ⊢ (𝜑 → 𝑇 ∈ 𝒫 𝑆) |
salunicl.tct | ⊢ (𝜑 → 𝑇 ≼ ω) |
Ref | Expression |
---|---|
salunicl | ⊢ (𝜑 → ∪ 𝑇 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | salunicl.tct | . 2 ⊢ (𝜑 → 𝑇 ≼ ω) | |
2 | breq1 5169 | . . . 4 ⊢ (𝑦 = 𝑇 → (𝑦 ≼ ω ↔ 𝑇 ≼ ω)) | |
3 | unieq 4942 | . . . . 5 ⊢ (𝑦 = 𝑇 → ∪ 𝑦 = ∪ 𝑇) | |
4 | 3 | eleq1d 2829 | . . . 4 ⊢ (𝑦 = 𝑇 → (∪ 𝑦 ∈ 𝑆 ↔ ∪ 𝑇 ∈ 𝑆)) |
5 | 2, 4 | imbi12d 344 | . . 3 ⊢ (𝑦 = 𝑇 → ((𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆) ↔ (𝑇 ≼ ω → ∪ 𝑇 ∈ 𝑆))) |
6 | salunicl.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
7 | issal 46235 | . . . . . 6 ⊢ (𝑆 ∈ SAlg → (𝑆 ∈ SAlg ↔ (∅ ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 (∪ 𝑆 ∖ 𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆)))) | |
8 | 6, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑆 ∈ SAlg ↔ (∅ ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 (∪ 𝑆 ∖ 𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆)))) |
9 | 6, 8 | mpbid 232 | . . . 4 ⊢ (𝜑 → (∅ ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 (∪ 𝑆 ∖ 𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆))) |
10 | 9 | simp3d 1144 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆)) |
11 | salunicl.t | . . 3 ⊢ (𝜑 → 𝑇 ∈ 𝒫 𝑆) | |
12 | 5, 10, 11 | rspcdva 3636 | . 2 ⊢ (𝜑 → (𝑇 ≼ ω → ∪ 𝑇 ∈ 𝑆)) |
13 | 1, 12 | mpd 15 | 1 ⊢ (𝜑 → ∪ 𝑇 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∖ cdif 3973 ∅c0 4352 𝒫 cpw 4622 ∪ cuni 4931 class class class wbr 5166 ωcom 7903 ≼ cdom 9001 SAlgcsalg 46229 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-salg 46230 |
This theorem is referenced by: saliunclf 46243 intsal 46251 smfpimbor1lem1 46719 |
Copyright terms: Public domain | W3C validator |