Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  saluncl Structured version   Visualization version   GIF version

Theorem saluncl 46429
Description: The union of two sets in a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
saluncl ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → (𝐸𝐹) ∈ 𝑆)

Proof of Theorem saluncl
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 uniprg 4876 . . . 4 ((𝐸𝑆𝐹𝑆) → {𝐸, 𝐹} = (𝐸𝐹))
21eqcomd 2739 . . 3 ((𝐸𝑆𝐹𝑆) → (𝐸𝐹) = {𝐸, 𝐹})
323adant1 1130 . 2 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → (𝐸𝐹) = {𝐸, 𝐹})
4 prfi 9218 . . . . 5 {𝐸, 𝐹} ∈ Fin
5 isfinite 9552 . . . . . . 7 ({𝐸, 𝐹} ∈ Fin ↔ {𝐸, 𝐹} ≺ ω)
65biimpi 216 . . . . . 6 ({𝐸, 𝐹} ∈ Fin → {𝐸, 𝐹} ≺ ω)
7 sdomdom 8912 . . . . . 6 ({𝐸, 𝐹} ≺ ω → {𝐸, 𝐹} ≼ ω)
86, 7syl 17 . . . . 5 ({𝐸, 𝐹} ∈ Fin → {𝐸, 𝐹} ≼ ω)
94, 8ax-mp 5 . . . 4 {𝐸, 𝐹} ≼ ω
109a1i 11 . . 3 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → {𝐸, 𝐹} ≼ ω)
11 prelpwi 5392 . . . . 5 ((𝐸𝑆𝐹𝑆) → {𝐸, 𝐹} ∈ 𝒫 𝑆)
12113adant1 1130 . . . 4 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → {𝐸, 𝐹} ∈ 𝒫 𝑆)
13 issal 46426 . . . . . . 7 (𝑆 ∈ SAlg → (𝑆 ∈ SAlg ↔ (∅ ∈ 𝑆 ∧ ∀𝑦𝑆 ( 𝑆𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → 𝑦𝑆))))
1413ibi 267 . . . . . 6 (𝑆 ∈ SAlg → (∅ ∈ 𝑆 ∧ ∀𝑦𝑆 ( 𝑆𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → 𝑦𝑆)))
1514simp3d 1144 . . . . 5 (𝑆 ∈ SAlg → ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → 𝑦𝑆))
16153ad2ant1 1133 . . . 4 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → 𝑦𝑆))
17 breq1 5098 . . . . . 6 (𝑦 = {𝐸, 𝐹} → (𝑦 ≼ ω ↔ {𝐸, 𝐹} ≼ ω))
18 unieq 4871 . . . . . . 7 (𝑦 = {𝐸, 𝐹} → 𝑦 = {𝐸, 𝐹})
1918eleq1d 2818 . . . . . 6 (𝑦 = {𝐸, 𝐹} → ( 𝑦𝑆 {𝐸, 𝐹} ∈ 𝑆))
2017, 19imbi12d 344 . . . . 5 (𝑦 = {𝐸, 𝐹} → ((𝑦 ≼ ω → 𝑦𝑆) ↔ ({𝐸, 𝐹} ≼ ω → {𝐸, 𝐹} ∈ 𝑆)))
2120rspcva 3572 . . . 4 (({𝐸, 𝐹} ∈ 𝒫 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → 𝑦𝑆)) → ({𝐸, 𝐹} ≼ ω → {𝐸, 𝐹} ∈ 𝑆))
2212, 16, 21syl2anc 584 . . 3 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → ({𝐸, 𝐹} ≼ ω → {𝐸, 𝐹} ∈ 𝑆))
2310, 22mpd 15 . 2 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → {𝐸, 𝐹} ∈ 𝑆)
243, 23eqeltrd 2833 1 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → (𝐸𝐹) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3049  cdif 3896  cun 3897  c0 4284  𝒫 cpw 4551  {cpr 4579   cuni 4860   class class class wbr 5095  ωcom 7805  cdom 8876  csdm 8877  Fincfn 8878  SAlgcsalg 46420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9541
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-om 7806  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-salg 46421
This theorem is referenced by:  salincl  46436  saluncld  46460
  Copyright terms: Public domain W3C validator