Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > saluncl | Structured version Visualization version GIF version |
Description: The union of two sets in a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
saluncl | ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐸 ∪ 𝐹) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniprg 4869 | . . . 4 ⊢ ((𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → ∪ {𝐸, 𝐹} = (𝐸 ∪ 𝐹)) | |
2 | 1 | eqcomd 2742 | . . 3 ⊢ ((𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐸 ∪ 𝐹) = ∪ {𝐸, 𝐹}) |
3 | 2 | 3adant1 1129 | . 2 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐸 ∪ 𝐹) = ∪ {𝐸, 𝐹}) |
4 | prfi 9187 | . . . . 5 ⊢ {𝐸, 𝐹} ∈ Fin | |
5 | isfinite 9509 | . . . . . . 7 ⊢ ({𝐸, 𝐹} ∈ Fin ↔ {𝐸, 𝐹} ≺ ω) | |
6 | 5 | biimpi 215 | . . . . . 6 ⊢ ({𝐸, 𝐹} ∈ Fin → {𝐸, 𝐹} ≺ ω) |
7 | sdomdom 8841 | . . . . . 6 ⊢ ({𝐸, 𝐹} ≺ ω → {𝐸, 𝐹} ≼ ω) | |
8 | 6, 7 | syl 17 | . . . . 5 ⊢ ({𝐸, 𝐹} ∈ Fin → {𝐸, 𝐹} ≼ ω) |
9 | 4, 8 | ax-mp 5 | . . . 4 ⊢ {𝐸, 𝐹} ≼ ω |
10 | 9 | a1i 11 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → {𝐸, 𝐹} ≼ ω) |
11 | prelpwi 5392 | . . . . 5 ⊢ ((𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → {𝐸, 𝐹} ∈ 𝒫 𝑆) | |
12 | 11 | 3adant1 1129 | . . . 4 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → {𝐸, 𝐹} ∈ 𝒫 𝑆) |
13 | issal 44200 | . . . . . . 7 ⊢ (𝑆 ∈ SAlg → (𝑆 ∈ SAlg ↔ (∅ ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 (∪ 𝑆 ∖ 𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆)))) | |
14 | 13 | ibi 266 | . . . . . 6 ⊢ (𝑆 ∈ SAlg → (∅ ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 (∪ 𝑆 ∖ 𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆))) |
15 | 14 | simp3d 1143 | . . . . 5 ⊢ (𝑆 ∈ SAlg → ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆)) |
16 | 15 | 3ad2ant1 1132 | . . . 4 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆)) |
17 | breq1 5095 | . . . . . 6 ⊢ (𝑦 = {𝐸, 𝐹} → (𝑦 ≼ ω ↔ {𝐸, 𝐹} ≼ ω)) | |
18 | unieq 4863 | . . . . . . 7 ⊢ (𝑦 = {𝐸, 𝐹} → ∪ 𝑦 = ∪ {𝐸, 𝐹}) | |
19 | 18 | eleq1d 2821 | . . . . . 6 ⊢ (𝑦 = {𝐸, 𝐹} → (∪ 𝑦 ∈ 𝑆 ↔ ∪ {𝐸, 𝐹} ∈ 𝑆)) |
20 | 17, 19 | imbi12d 344 | . . . . 5 ⊢ (𝑦 = {𝐸, 𝐹} → ((𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆) ↔ ({𝐸, 𝐹} ≼ ω → ∪ {𝐸, 𝐹} ∈ 𝑆))) |
21 | 20 | rspcva 3568 | . . . 4 ⊢ (({𝐸, 𝐹} ∈ 𝒫 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆)) → ({𝐸, 𝐹} ≼ ω → ∪ {𝐸, 𝐹} ∈ 𝑆)) |
22 | 12, 16, 21 | syl2anc 584 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → ({𝐸, 𝐹} ≼ ω → ∪ {𝐸, 𝐹} ∈ 𝑆)) |
23 | 10, 22 | mpd 15 | . 2 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → ∪ {𝐸, 𝐹} ∈ 𝑆) |
24 | 3, 23 | eqeltrd 2837 | 1 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐸 ∪ 𝐹) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∀wral 3061 ∖ cdif 3895 ∪ cun 3896 ∅c0 4269 𝒫 cpw 4547 {cpr 4575 ∪ cuni 4852 class class class wbr 5092 ωcom 7780 ≼ cdom 8802 ≺ csdm 8803 Fincfn 8804 SAlgcsalg 44194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-inf2 9498 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-ov 7340 df-om 7781 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-salg 44195 |
This theorem is referenced by: salincl 44209 saluncld 44232 |
Copyright terms: Public domain | W3C validator |