Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  saluncl Structured version   Visualization version   GIF version

Theorem saluncl 46308
Description: The union of two sets in a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
saluncl ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → (𝐸𝐹) ∈ 𝑆)

Proof of Theorem saluncl
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 uniprg 4883 . . . 4 ((𝐸𝑆𝐹𝑆) → {𝐸, 𝐹} = (𝐸𝐹))
21eqcomd 2735 . . 3 ((𝐸𝑆𝐹𝑆) → (𝐸𝐹) = {𝐸, 𝐹})
323adant1 1130 . 2 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → (𝐸𝐹) = {𝐸, 𝐹})
4 prfi 9250 . . . . 5 {𝐸, 𝐹} ∈ Fin
5 isfinite 9581 . . . . . . 7 ({𝐸, 𝐹} ∈ Fin ↔ {𝐸, 𝐹} ≺ ω)
65biimpi 216 . . . . . 6 ({𝐸, 𝐹} ∈ Fin → {𝐸, 𝐹} ≺ ω)
7 sdomdom 8928 . . . . . 6 ({𝐸, 𝐹} ≺ ω → {𝐸, 𝐹} ≼ ω)
86, 7syl 17 . . . . 5 ({𝐸, 𝐹} ∈ Fin → {𝐸, 𝐹} ≼ ω)
94, 8ax-mp 5 . . . 4 {𝐸, 𝐹} ≼ ω
109a1i 11 . . 3 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → {𝐸, 𝐹} ≼ ω)
11 prelpwi 5402 . . . . 5 ((𝐸𝑆𝐹𝑆) → {𝐸, 𝐹} ∈ 𝒫 𝑆)
12113adant1 1130 . . . 4 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → {𝐸, 𝐹} ∈ 𝒫 𝑆)
13 issal 46305 . . . . . . 7 (𝑆 ∈ SAlg → (𝑆 ∈ SAlg ↔ (∅ ∈ 𝑆 ∧ ∀𝑦𝑆 ( 𝑆𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → 𝑦𝑆))))
1413ibi 267 . . . . . 6 (𝑆 ∈ SAlg → (∅ ∈ 𝑆 ∧ ∀𝑦𝑆 ( 𝑆𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → 𝑦𝑆)))
1514simp3d 1144 . . . . 5 (𝑆 ∈ SAlg → ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → 𝑦𝑆))
16153ad2ant1 1133 . . . 4 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → 𝑦𝑆))
17 breq1 5105 . . . . . 6 (𝑦 = {𝐸, 𝐹} → (𝑦 ≼ ω ↔ {𝐸, 𝐹} ≼ ω))
18 unieq 4878 . . . . . . 7 (𝑦 = {𝐸, 𝐹} → 𝑦 = {𝐸, 𝐹})
1918eleq1d 2813 . . . . . 6 (𝑦 = {𝐸, 𝐹} → ( 𝑦𝑆 {𝐸, 𝐹} ∈ 𝑆))
2017, 19imbi12d 344 . . . . 5 (𝑦 = {𝐸, 𝐹} → ((𝑦 ≼ ω → 𝑦𝑆) ↔ ({𝐸, 𝐹} ≼ ω → {𝐸, 𝐹} ∈ 𝑆)))
2120rspcva 3583 . . . 4 (({𝐸, 𝐹} ∈ 𝒫 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → 𝑦𝑆)) → ({𝐸, 𝐹} ≼ ω → {𝐸, 𝐹} ∈ 𝑆))
2212, 16, 21syl2anc 584 . . 3 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → ({𝐸, 𝐹} ≼ ω → {𝐸, 𝐹} ∈ 𝑆))
2310, 22mpd 15 . 2 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → {𝐸, 𝐹} ∈ 𝑆)
243, 23eqeltrd 2828 1 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → (𝐸𝐹) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  cdif 3908  cun 3909  c0 4292  𝒫 cpw 4559  {cpr 4587   cuni 4867   class class class wbr 5102  ωcom 7822  cdom 8893  csdm 8894  Fincfn 8895  SAlgcsalg 46299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-salg 46300
This theorem is referenced by:  salincl  46315  saluncld  46339
  Copyright terms: Public domain W3C validator