Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  saluncl Structured version   Visualization version   GIF version

Theorem saluncl 43858
Description: The union of two sets in a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
saluncl ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → (𝐸𝐹) ∈ 𝑆)

Proof of Theorem saluncl
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 uniprg 4856 . . . 4 ((𝐸𝑆𝐹𝑆) → {𝐸, 𝐹} = (𝐸𝐹))
21eqcomd 2744 . . 3 ((𝐸𝑆𝐹𝑆) → (𝐸𝐹) = {𝐸, 𝐹})
323adant1 1129 . 2 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → (𝐸𝐹) = {𝐸, 𝐹})
4 prfi 9089 . . . . 5 {𝐸, 𝐹} ∈ Fin
5 isfinite 9410 . . . . . . 7 ({𝐸, 𝐹} ∈ Fin ↔ {𝐸, 𝐹} ≺ ω)
65biimpi 215 . . . . . 6 ({𝐸, 𝐹} ∈ Fin → {𝐸, 𝐹} ≺ ω)
7 sdomdom 8768 . . . . . 6 ({𝐸, 𝐹} ≺ ω → {𝐸, 𝐹} ≼ ω)
86, 7syl 17 . . . . 5 ({𝐸, 𝐹} ∈ Fin → {𝐸, 𝐹} ≼ ω)
94, 8ax-mp 5 . . . 4 {𝐸, 𝐹} ≼ ω
109a1i 11 . . 3 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → {𝐸, 𝐹} ≼ ω)
11 prelpwi 5363 . . . . 5 ((𝐸𝑆𝐹𝑆) → {𝐸, 𝐹} ∈ 𝒫 𝑆)
12113adant1 1129 . . . 4 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → {𝐸, 𝐹} ∈ 𝒫 𝑆)
13 issal 43855 . . . . . . 7 (𝑆 ∈ SAlg → (𝑆 ∈ SAlg ↔ (∅ ∈ 𝑆 ∧ ∀𝑦𝑆 ( 𝑆𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → 𝑦𝑆))))
1413ibi 266 . . . . . 6 (𝑆 ∈ SAlg → (∅ ∈ 𝑆 ∧ ∀𝑦𝑆 ( 𝑆𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → 𝑦𝑆)))
1514simp3d 1143 . . . . 5 (𝑆 ∈ SAlg → ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → 𝑦𝑆))
16153ad2ant1 1132 . . . 4 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → 𝑦𝑆))
17 breq1 5077 . . . . . 6 (𝑦 = {𝐸, 𝐹} → (𝑦 ≼ ω ↔ {𝐸, 𝐹} ≼ ω))
18 unieq 4850 . . . . . . 7 (𝑦 = {𝐸, 𝐹} → 𝑦 = {𝐸, 𝐹})
1918eleq1d 2823 . . . . . 6 (𝑦 = {𝐸, 𝐹} → ( 𝑦𝑆 {𝐸, 𝐹} ∈ 𝑆))
2017, 19imbi12d 345 . . . . 5 (𝑦 = {𝐸, 𝐹} → ((𝑦 ≼ ω → 𝑦𝑆) ↔ ({𝐸, 𝐹} ≼ ω → {𝐸, 𝐹} ∈ 𝑆)))
2120rspcva 3559 . . . 4 (({𝐸, 𝐹} ∈ 𝒫 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → 𝑦𝑆)) → ({𝐸, 𝐹} ≼ ω → {𝐸, 𝐹} ∈ 𝑆))
2212, 16, 21syl2anc 584 . . 3 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → ({𝐸, 𝐹} ≼ ω → {𝐸, 𝐹} ∈ 𝑆))
2310, 22mpd 15 . 2 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → {𝐸, 𝐹} ∈ 𝑆)
243, 23eqeltrd 2839 1 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → (𝐸𝐹) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  cdif 3884  cun 3885  c0 4256  𝒫 cpw 4533  {cpr 4563   cuni 4839   class class class wbr 5074  ωcom 7712  cdom 8731  csdm 8732  Fincfn 8733  SAlgcsalg 43849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-salg 43850
This theorem is referenced by:  salincl  43864  saluncld  43887
  Copyright terms: Public domain W3C validator