| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > saluncl | Structured version Visualization version GIF version | ||
| Description: The union of two sets in a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| saluncl | ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐸 ∪ 𝐹) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniprg 4876 | . . . 4 ⊢ ((𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → ∪ {𝐸, 𝐹} = (𝐸 ∪ 𝐹)) | |
| 2 | 1 | eqcomd 2739 | . . 3 ⊢ ((𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐸 ∪ 𝐹) = ∪ {𝐸, 𝐹}) |
| 3 | 2 | 3adant1 1130 | . 2 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐸 ∪ 𝐹) = ∪ {𝐸, 𝐹}) |
| 4 | prfi 9218 | . . . . 5 ⊢ {𝐸, 𝐹} ∈ Fin | |
| 5 | isfinite 9552 | . . . . . . 7 ⊢ ({𝐸, 𝐹} ∈ Fin ↔ {𝐸, 𝐹} ≺ ω) | |
| 6 | 5 | biimpi 216 | . . . . . 6 ⊢ ({𝐸, 𝐹} ∈ Fin → {𝐸, 𝐹} ≺ ω) |
| 7 | sdomdom 8912 | . . . . . 6 ⊢ ({𝐸, 𝐹} ≺ ω → {𝐸, 𝐹} ≼ ω) | |
| 8 | 6, 7 | syl 17 | . . . . 5 ⊢ ({𝐸, 𝐹} ∈ Fin → {𝐸, 𝐹} ≼ ω) |
| 9 | 4, 8 | ax-mp 5 | . . . 4 ⊢ {𝐸, 𝐹} ≼ ω |
| 10 | 9 | a1i 11 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → {𝐸, 𝐹} ≼ ω) |
| 11 | prelpwi 5392 | . . . . 5 ⊢ ((𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → {𝐸, 𝐹} ∈ 𝒫 𝑆) | |
| 12 | 11 | 3adant1 1130 | . . . 4 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → {𝐸, 𝐹} ∈ 𝒫 𝑆) |
| 13 | issal 46426 | . . . . . . 7 ⊢ (𝑆 ∈ SAlg → (𝑆 ∈ SAlg ↔ (∅ ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 (∪ 𝑆 ∖ 𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆)))) | |
| 14 | 13 | ibi 267 | . . . . . 6 ⊢ (𝑆 ∈ SAlg → (∅ ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 (∪ 𝑆 ∖ 𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆))) |
| 15 | 14 | simp3d 1144 | . . . . 5 ⊢ (𝑆 ∈ SAlg → ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆)) |
| 16 | 15 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆)) |
| 17 | breq1 5098 | . . . . . 6 ⊢ (𝑦 = {𝐸, 𝐹} → (𝑦 ≼ ω ↔ {𝐸, 𝐹} ≼ ω)) | |
| 18 | unieq 4871 | . . . . . . 7 ⊢ (𝑦 = {𝐸, 𝐹} → ∪ 𝑦 = ∪ {𝐸, 𝐹}) | |
| 19 | 18 | eleq1d 2818 | . . . . . 6 ⊢ (𝑦 = {𝐸, 𝐹} → (∪ 𝑦 ∈ 𝑆 ↔ ∪ {𝐸, 𝐹} ∈ 𝑆)) |
| 20 | 17, 19 | imbi12d 344 | . . . . 5 ⊢ (𝑦 = {𝐸, 𝐹} → ((𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆) ↔ ({𝐸, 𝐹} ≼ ω → ∪ {𝐸, 𝐹} ∈ 𝑆))) |
| 21 | 20 | rspcva 3572 | . . . 4 ⊢ (({𝐸, 𝐹} ∈ 𝒫 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆)) → ({𝐸, 𝐹} ≼ ω → ∪ {𝐸, 𝐹} ∈ 𝑆)) |
| 22 | 12, 16, 21 | syl2anc 584 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → ({𝐸, 𝐹} ≼ ω → ∪ {𝐸, 𝐹} ∈ 𝑆)) |
| 23 | 10, 22 | mpd 15 | . 2 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → ∪ {𝐸, 𝐹} ∈ 𝑆) |
| 24 | 3, 23 | eqeltrd 2833 | 1 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐸 ∪ 𝐹) ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∀wral 3049 ∖ cdif 3896 ∪ cun 3897 ∅c0 4284 𝒫 cpw 4551 {cpr 4579 ∪ cuni 4860 class class class wbr 5095 ωcom 7805 ≼ cdom 8876 ≺ csdm 8877 Fincfn 8878 SAlgcsalg 46420 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-inf2 9541 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-salg 46421 |
| This theorem is referenced by: salincl 46436 saluncld 46460 |
| Copyright terms: Public domain | W3C validator |