![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > saluncl | Structured version Visualization version GIF version |
Description: The union of two sets in a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
saluncl | ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐸 ∪ 𝐹) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniprg 4640 | . . . 4 ⊢ ((𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → ∪ {𝐸, 𝐹} = (𝐸 ∪ 𝐹)) | |
2 | 1 | eqcomd 2803 | . . 3 ⊢ ((𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐸 ∪ 𝐹) = ∪ {𝐸, 𝐹}) |
3 | 2 | 3adant1 1161 | . 2 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐸 ∪ 𝐹) = ∪ {𝐸, 𝐹}) |
4 | prfi 8475 | . . . . 5 ⊢ {𝐸, 𝐹} ∈ Fin | |
5 | isfinite 8797 | . . . . . . 7 ⊢ ({𝐸, 𝐹} ∈ Fin ↔ {𝐸, 𝐹} ≺ ω) | |
6 | 5 | biimpi 208 | . . . . . 6 ⊢ ({𝐸, 𝐹} ∈ Fin → {𝐸, 𝐹} ≺ ω) |
7 | sdomdom 8221 | . . . . . 6 ⊢ ({𝐸, 𝐹} ≺ ω → {𝐸, 𝐹} ≼ ω) | |
8 | 6, 7 | syl 17 | . . . . 5 ⊢ ({𝐸, 𝐹} ∈ Fin → {𝐸, 𝐹} ≼ ω) |
9 | 4, 8 | ax-mp 5 | . . . 4 ⊢ {𝐸, 𝐹} ≼ ω |
10 | 9 | a1i 11 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → {𝐸, 𝐹} ≼ ω) |
11 | prelpwi 5104 | . . . . 5 ⊢ ((𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → {𝐸, 𝐹} ∈ 𝒫 𝑆) | |
12 | 11 | 3adant1 1161 | . . . 4 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → {𝐸, 𝐹} ∈ 𝒫 𝑆) |
13 | issal 41264 | . . . . . . 7 ⊢ (𝑆 ∈ SAlg → (𝑆 ∈ SAlg ↔ (∅ ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 (∪ 𝑆 ∖ 𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆)))) | |
14 | 13 | ibi 259 | . . . . . 6 ⊢ (𝑆 ∈ SAlg → (∅ ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 (∪ 𝑆 ∖ 𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆))) |
15 | 14 | simp3d 1175 | . . . . 5 ⊢ (𝑆 ∈ SAlg → ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆)) |
16 | 15 | 3ad2ant1 1164 | . . . 4 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆)) |
17 | breq1 4844 | . . . . . 6 ⊢ (𝑦 = {𝐸, 𝐹} → (𝑦 ≼ ω ↔ {𝐸, 𝐹} ≼ ω)) | |
18 | unieq 4634 | . . . . . . 7 ⊢ (𝑦 = {𝐸, 𝐹} → ∪ 𝑦 = ∪ {𝐸, 𝐹}) | |
19 | 18 | eleq1d 2861 | . . . . . 6 ⊢ (𝑦 = {𝐸, 𝐹} → (∪ 𝑦 ∈ 𝑆 ↔ ∪ {𝐸, 𝐹} ∈ 𝑆)) |
20 | 17, 19 | imbi12d 336 | . . . . 5 ⊢ (𝑦 = {𝐸, 𝐹} → ((𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆) ↔ ({𝐸, 𝐹} ≼ ω → ∪ {𝐸, 𝐹} ∈ 𝑆))) |
21 | 20 | rspcva 3493 | . . . 4 ⊢ (({𝐸, 𝐹} ∈ 𝒫 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆)) → ({𝐸, 𝐹} ≼ ω → ∪ {𝐸, 𝐹} ∈ 𝑆)) |
22 | 12, 16, 21 | syl2anc 580 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → ({𝐸, 𝐹} ≼ ω → ∪ {𝐸, 𝐹} ∈ 𝑆)) |
23 | 10, 22 | mpd 15 | . 2 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → ∪ {𝐸, 𝐹} ∈ 𝑆) |
24 | 3, 23 | eqeltrd 2876 | 1 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐸 ∪ 𝐹) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ∀wral 3087 ∖ cdif 3764 ∪ cun 3765 ∅c0 4113 𝒫 cpw 4347 {cpr 4368 ∪ cuni 4626 class class class wbr 4841 ωcom 7297 ≼ cdom 8191 ≺ csdm 8192 Fincfn 8193 SAlgcsalg 41258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2375 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 ax-inf2 8786 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-ral 3092 df-rex 3093 df-reu 3094 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-pss 3783 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-tp 4371 df-op 4373 df-uni 4627 df-int 4666 df-iun 4710 df-br 4842 df-opab 4904 df-mpt 4921 df-tr 4944 df-id 5218 df-eprel 5223 df-po 5231 df-so 5232 df-fr 5269 df-we 5271 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-pred 5896 df-ord 5942 df-on 5943 df-lim 5944 df-suc 5945 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-om 7298 df-wrecs 7643 df-recs 7705 df-rdg 7743 df-1o 7797 df-oadd 7801 df-er 7980 df-en 8194 df-dom 8195 df-sdom 8196 df-fin 8197 df-salg 41259 |
This theorem is referenced by: salincl 41273 saluncld 41296 |
Copyright terms: Public domain | W3C validator |