| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > saluncl | Structured version Visualization version GIF version | ||
| Description: The union of two sets in a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| saluncl | ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐸 ∪ 𝐹) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniprg 4899 | . . . 4 ⊢ ((𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → ∪ {𝐸, 𝐹} = (𝐸 ∪ 𝐹)) | |
| 2 | 1 | eqcomd 2741 | . . 3 ⊢ ((𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐸 ∪ 𝐹) = ∪ {𝐸, 𝐹}) |
| 3 | 2 | 3adant1 1130 | . 2 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐸 ∪ 𝐹) = ∪ {𝐸, 𝐹}) |
| 4 | prfi 9335 | . . . . 5 ⊢ {𝐸, 𝐹} ∈ Fin | |
| 5 | isfinite 9666 | . . . . . . 7 ⊢ ({𝐸, 𝐹} ∈ Fin ↔ {𝐸, 𝐹} ≺ ω) | |
| 6 | 5 | biimpi 216 | . . . . . 6 ⊢ ({𝐸, 𝐹} ∈ Fin → {𝐸, 𝐹} ≺ ω) |
| 7 | sdomdom 8994 | . . . . . 6 ⊢ ({𝐸, 𝐹} ≺ ω → {𝐸, 𝐹} ≼ ω) | |
| 8 | 6, 7 | syl 17 | . . . . 5 ⊢ ({𝐸, 𝐹} ∈ Fin → {𝐸, 𝐹} ≼ ω) |
| 9 | 4, 8 | ax-mp 5 | . . . 4 ⊢ {𝐸, 𝐹} ≼ ω |
| 10 | 9 | a1i 11 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → {𝐸, 𝐹} ≼ ω) |
| 11 | prelpwi 5422 | . . . . 5 ⊢ ((𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → {𝐸, 𝐹} ∈ 𝒫 𝑆) | |
| 12 | 11 | 3adant1 1130 | . . . 4 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → {𝐸, 𝐹} ∈ 𝒫 𝑆) |
| 13 | issal 46343 | . . . . . . 7 ⊢ (𝑆 ∈ SAlg → (𝑆 ∈ SAlg ↔ (∅ ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 (∪ 𝑆 ∖ 𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆)))) | |
| 14 | 13 | ibi 267 | . . . . . 6 ⊢ (𝑆 ∈ SAlg → (∅ ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 (∪ 𝑆 ∖ 𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆))) |
| 15 | 14 | simp3d 1144 | . . . . 5 ⊢ (𝑆 ∈ SAlg → ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆)) |
| 16 | 15 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆)) |
| 17 | breq1 5122 | . . . . . 6 ⊢ (𝑦 = {𝐸, 𝐹} → (𝑦 ≼ ω ↔ {𝐸, 𝐹} ≼ ω)) | |
| 18 | unieq 4894 | . . . . . . 7 ⊢ (𝑦 = {𝐸, 𝐹} → ∪ 𝑦 = ∪ {𝐸, 𝐹}) | |
| 19 | 18 | eleq1d 2819 | . . . . . 6 ⊢ (𝑦 = {𝐸, 𝐹} → (∪ 𝑦 ∈ 𝑆 ↔ ∪ {𝐸, 𝐹} ∈ 𝑆)) |
| 20 | 17, 19 | imbi12d 344 | . . . . 5 ⊢ (𝑦 = {𝐸, 𝐹} → ((𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆) ↔ ({𝐸, 𝐹} ≼ ω → ∪ {𝐸, 𝐹} ∈ 𝑆))) |
| 21 | 20 | rspcva 3599 | . . . 4 ⊢ (({𝐸, 𝐹} ∈ 𝒫 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆)) → ({𝐸, 𝐹} ≼ ω → ∪ {𝐸, 𝐹} ∈ 𝑆)) |
| 22 | 12, 16, 21 | syl2anc 584 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → ({𝐸, 𝐹} ≼ ω → ∪ {𝐸, 𝐹} ∈ 𝑆)) |
| 23 | 10, 22 | mpd 15 | . 2 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → ∪ {𝐸, 𝐹} ∈ 𝑆) |
| 24 | 3, 23 | eqeltrd 2834 | 1 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐸 ∪ 𝐹) ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∖ cdif 3923 ∪ cun 3924 ∅c0 4308 𝒫 cpw 4575 {cpr 4603 ∪ cuni 4883 class class class wbr 5119 ωcom 7861 ≼ cdom 8957 ≺ csdm 8958 Fincfn 8959 SAlgcsalg 46337 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-salg 46338 |
| This theorem is referenced by: salincl 46353 saluncld 46377 |
| Copyright terms: Public domain | W3C validator |