Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  saliunclf Structured version   Visualization version   GIF version

Theorem saliunclf 46307
Description: SAlg sigma-algebra is closed under countable indexed union. (Contributed by Glauco Siliprandi, 24-Jan-2025.)
Hypotheses
Ref Expression
saliunclf.1 𝑘𝜑
saliunclf.2 𝑘𝑆
saliunclf.3 𝑘𝐾
saliunclf.4 (𝜑𝑆 ∈ SAlg)
saliunclf.5 (𝜑𝐾 ≼ ω)
saliunclf.6 ((𝜑𝑘𝐾) → 𝐸𝑆)
Assertion
Ref Expression
saliunclf (𝜑 𝑘𝐾 𝐸𝑆)

Proof of Theorem saliunclf
StepHypRef Expression
1 saliunclf.1 . . . 4 𝑘𝜑
2 saliunclf.6 . . . 4 ((𝜑𝑘𝐾) → 𝐸𝑆)
31, 2ralrimia 3228 . . 3 (𝜑 → ∀𝑘𝐾 𝐸𝑆)
4 dfiun3g 5909 . . 3 (∀𝑘𝐾 𝐸𝑆 𝑘𝐾 𝐸 = ran (𝑘𝐾𝐸))
53, 4syl 17 . 2 (𝜑 𝑘𝐾 𝐸 = ran (𝑘𝐾𝐸))
6 saliunclf.4 . . 3 (𝜑𝑆 ∈ SAlg)
7 saliunclf.3 . . . . 5 𝑘𝐾
8 saliunclf.2 . . . . 5 𝑘𝑆
9 eqid 2729 . . . . 5 (𝑘𝐾𝐸) = (𝑘𝐾𝐸)
101, 7, 8, 9, 2rnmptssdff 45257 . . . 4 (𝜑 → ran (𝑘𝐾𝐸) ⊆ 𝑆)
116, 10sselpwd 5267 . . 3 (𝜑 → ran (𝑘𝐾𝐸) ∈ 𝒫 𝑆)
12 saliunclf.5 . . . 4 (𝜑𝐾 ≼ ω)
137rn1st 45255 . . . 4 (𝐾 ≼ ω → ran (𝑘𝐾𝐸) ≼ ω)
1412, 13syl 17 . . 3 (𝜑 → ran (𝑘𝐾𝐸) ≼ ω)
156, 11, 14salunicl 46301 . 2 (𝜑 ran (𝑘𝐾𝐸) ∈ 𝑆)
165, 15eqeltrd 2828 1 (𝜑 𝑘𝐾 𝐸𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  wnfc 2876  wral 3044   cuni 4858   ciun 4941   class class class wbr 5092  cmpt 5173  ran crn 5620  ωcom 7799  cdom 8870  SAlgcsalg 46293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-card 9835  df-acn 9838  df-salg 46294
This theorem is referenced by:  saliuncl  46308  saliinclf  46311  smfsupdmmbllem  46829  smfinfdmmbllem  46833
  Copyright terms: Public domain W3C validator