Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  saliunclf Structured version   Visualization version   GIF version

Theorem saliunclf 46318
Description: SAlg sigma-algebra is closed under countable indexed union. (Contributed by Glauco Siliprandi, 24-Jan-2025.)
Hypotheses
Ref Expression
saliunclf.1 𝑘𝜑
saliunclf.2 𝑘𝑆
saliunclf.3 𝑘𝐾
saliunclf.4 (𝜑𝑆 ∈ SAlg)
saliunclf.5 (𝜑𝐾 ≼ ω)
saliunclf.6 ((𝜑𝑘𝐾) → 𝐸𝑆)
Assertion
Ref Expression
saliunclf (𝜑 𝑘𝐾 𝐸𝑆)

Proof of Theorem saliunclf
StepHypRef Expression
1 saliunclf.1 . . . 4 𝑘𝜑
2 saliunclf.6 . . . 4 ((𝜑𝑘𝐾) → 𝐸𝑆)
31, 2ralrimia 3245 . . 3 (𝜑 → ∀𝑘𝐾 𝐸𝑆)
4 dfiun3g 5952 . . 3 (∀𝑘𝐾 𝐸𝑆 𝑘𝐾 𝐸 = ran (𝑘𝐾𝐸))
53, 4syl 17 . 2 (𝜑 𝑘𝐾 𝐸 = ran (𝑘𝐾𝐸))
6 saliunclf.4 . . 3 (𝜑𝑆 ∈ SAlg)
7 saliunclf.3 . . . . 5 𝑘𝐾
8 saliunclf.2 . . . . 5 𝑘𝑆
9 eqid 2736 . . . . 5 (𝑘𝐾𝐸) = (𝑘𝐾𝐸)
101, 7, 8, 9, 2rnmptssdff 45266 . . . 4 (𝜑 → ran (𝑘𝐾𝐸) ⊆ 𝑆)
116, 10sselpwd 5303 . . 3 (𝜑 → ran (𝑘𝐾𝐸) ∈ 𝒫 𝑆)
12 saliunclf.5 . . . 4 (𝜑𝐾 ≼ ω)
137rn1st 45264 . . . 4 (𝐾 ≼ ω → ran (𝑘𝐾𝐸) ≼ ω)
1412, 13syl 17 . . 3 (𝜑 → ran (𝑘𝐾𝐸) ≼ ω)
156, 11, 14salunicl 46312 . 2 (𝜑 ran (𝑘𝐾𝐸) ∈ 𝑆)
165, 15eqeltrd 2835 1 (𝜑 𝑘𝐾 𝐸𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  wnfc 2884  wral 3052   cuni 4888   ciun 4972   class class class wbr 5124  cmpt 5206  ran crn 5660  ωcom 7866  cdom 8962  SAlgcsalg 46304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-card 9958  df-acn 9961  df-salg 46305
This theorem is referenced by:  saliuncl  46319  saliinclf  46322  smfsupdmmbllem  46840  smfinfdmmbllem  46844
  Copyright terms: Public domain W3C validator