| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > saliunclf | Structured version Visualization version GIF version | ||
| Description: SAlg sigma-algebra is closed under countable indexed union. (Contributed by Glauco Siliprandi, 24-Jan-2025.) |
| Ref | Expression |
|---|---|
| saliunclf.1 | ⊢ Ⅎ𝑘𝜑 |
| saliunclf.2 | ⊢ Ⅎ𝑘𝑆 |
| saliunclf.3 | ⊢ Ⅎ𝑘𝐾 |
| saliunclf.4 | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| saliunclf.5 | ⊢ (𝜑 → 𝐾 ≼ ω) |
| saliunclf.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → 𝐸 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| saliunclf | ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐾 𝐸 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | saliunclf.1 | . . . 4 ⊢ Ⅎ𝑘𝜑 | |
| 2 | saliunclf.6 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → 𝐸 ∈ 𝑆) | |
| 3 | 1, 2 | ralrimia 3228 | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ 𝐾 𝐸 ∈ 𝑆) |
| 4 | dfiun3g 5909 | . . 3 ⊢ (∀𝑘 ∈ 𝐾 𝐸 ∈ 𝑆 → ∪ 𝑘 ∈ 𝐾 𝐸 = ∪ ran (𝑘 ∈ 𝐾 ↦ 𝐸)) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐾 𝐸 = ∪ ran (𝑘 ∈ 𝐾 ↦ 𝐸)) |
| 6 | saliunclf.4 | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 7 | saliunclf.3 | . . . . 5 ⊢ Ⅎ𝑘𝐾 | |
| 8 | saliunclf.2 | . . . . 5 ⊢ Ⅎ𝑘𝑆 | |
| 9 | eqid 2729 | . . . . 5 ⊢ (𝑘 ∈ 𝐾 ↦ 𝐸) = (𝑘 ∈ 𝐾 ↦ 𝐸) | |
| 10 | 1, 7, 8, 9, 2 | rnmptssdff 45257 | . . . 4 ⊢ (𝜑 → ran (𝑘 ∈ 𝐾 ↦ 𝐸) ⊆ 𝑆) |
| 11 | 6, 10 | sselpwd 5267 | . . 3 ⊢ (𝜑 → ran (𝑘 ∈ 𝐾 ↦ 𝐸) ∈ 𝒫 𝑆) |
| 12 | saliunclf.5 | . . . 4 ⊢ (𝜑 → 𝐾 ≼ ω) | |
| 13 | 7 | rn1st 45255 | . . . 4 ⊢ (𝐾 ≼ ω → ran (𝑘 ∈ 𝐾 ↦ 𝐸) ≼ ω) |
| 14 | 12, 13 | syl 17 | . . 3 ⊢ (𝜑 → ran (𝑘 ∈ 𝐾 ↦ 𝐸) ≼ ω) |
| 15 | 6, 11, 14 | salunicl 46301 | . 2 ⊢ (𝜑 → ∪ ran (𝑘 ∈ 𝐾 ↦ 𝐸) ∈ 𝑆) |
| 16 | 5, 15 | eqeltrd 2828 | 1 ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐾 𝐸 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2876 ∀wral 3044 ∪ cuni 4858 ∪ ciun 4941 class class class wbr 5092 ↦ cmpt 5173 ran crn 5620 ωcom 7799 ≼ cdom 8870 SAlgcsalg 46293 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-card 9835 df-acn 9838 df-salg 46294 |
| This theorem is referenced by: saliuncl 46308 saliinclf 46311 smfsupdmmbllem 46829 smfinfdmmbllem 46833 |
| Copyright terms: Public domain | W3C validator |