| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > saliunclf | Structured version Visualization version GIF version | ||
| Description: SAlg sigma-algebra is closed under countable indexed union. (Contributed by Glauco Siliprandi, 24-Jan-2025.) |
| Ref | Expression |
|---|---|
| saliunclf.1 | ⊢ Ⅎ𝑘𝜑 |
| saliunclf.2 | ⊢ Ⅎ𝑘𝑆 |
| saliunclf.3 | ⊢ Ⅎ𝑘𝐾 |
| saliunclf.4 | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| saliunclf.5 | ⊢ (𝜑 → 𝐾 ≼ ω) |
| saliunclf.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → 𝐸 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| saliunclf | ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐾 𝐸 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | saliunclf.1 | . . . 4 ⊢ Ⅎ𝑘𝜑 | |
| 2 | saliunclf.6 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → 𝐸 ∈ 𝑆) | |
| 3 | 1, 2 | ralrimia 3231 | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ 𝐾 𝐸 ∈ 𝑆) |
| 4 | dfiun3g 5906 | . . 3 ⊢ (∀𝑘 ∈ 𝐾 𝐸 ∈ 𝑆 → ∪ 𝑘 ∈ 𝐾 𝐸 = ∪ ran (𝑘 ∈ 𝐾 ↦ 𝐸)) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐾 𝐸 = ∪ ran (𝑘 ∈ 𝐾 ↦ 𝐸)) |
| 6 | saliunclf.4 | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 7 | saliunclf.3 | . . . . 5 ⊢ Ⅎ𝑘𝐾 | |
| 8 | saliunclf.2 | . . . . 5 ⊢ Ⅎ𝑘𝑆 | |
| 9 | eqid 2731 | . . . . 5 ⊢ (𝑘 ∈ 𝐾 ↦ 𝐸) = (𝑘 ∈ 𝐾 ↦ 𝐸) | |
| 10 | 1, 7, 8, 9, 2 | rnmptssdff 45382 | . . . 4 ⊢ (𝜑 → ran (𝑘 ∈ 𝐾 ↦ 𝐸) ⊆ 𝑆) |
| 11 | 6, 10 | sselpwd 5264 | . . 3 ⊢ (𝜑 → ran (𝑘 ∈ 𝐾 ↦ 𝐸) ∈ 𝒫 𝑆) |
| 12 | saliunclf.5 | . . . 4 ⊢ (𝜑 → 𝐾 ≼ ω) | |
| 13 | 7 | rn1st 45380 | . . . 4 ⊢ (𝐾 ≼ ω → ran (𝑘 ∈ 𝐾 ↦ 𝐸) ≼ ω) |
| 14 | 12, 13 | syl 17 | . . 3 ⊢ (𝜑 → ran (𝑘 ∈ 𝐾 ↦ 𝐸) ≼ ω) |
| 15 | 6, 11, 14 | salunicl 46424 | . 2 ⊢ (𝜑 → ∪ ran (𝑘 ∈ 𝐾 ↦ 𝐸) ∈ 𝑆) |
| 16 | 5, 15 | eqeltrd 2831 | 1 ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐾 𝐸 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2111 Ⅎwnfc 2879 ∀wral 3047 ∪ cuni 4856 ∪ ciun 4939 class class class wbr 5089 ↦ cmpt 5170 ran crn 5615 ωcom 7796 ≼ cdom 8867 SAlgcsalg 46416 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-card 9832 df-acn 9835 df-salg 46417 |
| This theorem is referenced by: saliuncl 46431 saliinclf 46434 smfsupdmmbllem 46952 smfinfdmmbllem 46956 |
| Copyright terms: Public domain | W3C validator |