Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfpimbor1lem1 Structured version   Visualization version   GIF version

Theorem smfpimbor1lem1 45029
Description: Every open set belongs to 𝑇. This is the second step in the proof of Proposition 121E (f) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfpimbor1lem1.s (𝜑𝑆 ∈ SAlg)
smfpimbor1lem1.f (𝜑𝐹 ∈ (SMblFn‘𝑆))
smfpimbor1lem1.a 𝐷 = dom 𝐹
smfpimbor1lem1.j 𝐽 = (topGen‘ran (,))
smfpimbor1lem1.8 (𝜑𝐺𝐽)
smfpimbor1lem1.t 𝑇 = {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)}
Assertion
Ref Expression
smfpimbor1lem1 (𝜑𝐺𝑇)
Distinct variable groups:   𝐷,𝑒   𝑒,𝐹   𝑆,𝑒   𝜑,𝑒
Allowed substitution hints:   𝑇(𝑒)   𝐺(𝑒)   𝐽(𝑒)

Proof of Theorem smfpimbor1lem1
Dummy variables 𝑞 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smfpimbor1lem1.j . . 3 𝐽 = (topGen‘ran (,))
2 smfpimbor1lem1.8 . . 3 (𝜑𝐺𝐽)
31, 2tgqioo2 43775 . 2 (𝜑 → ∃𝑞(𝑞 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐺 = 𝑞))
4 simprr 771 . . . . 5 ((𝜑 ∧ (𝑞 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐺 = 𝑞)) → 𝐺 = 𝑞)
5 smfpimbor1lem1.s . . . . . . . . 9 (𝜑𝑆 ∈ SAlg)
6 smfpimbor1lem1.f . . . . . . . . 9 (𝜑𝐹 ∈ (SMblFn‘𝑆))
7 smfpimbor1lem1.a . . . . . . . . 9 𝐷 = dom 𝐹
8 smfpimbor1lem1.t . . . . . . . . 9 𝑇 = {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)}
95, 6, 7, 8smfresal 45019 . . . . . . . 8 (𝜑𝑇 ∈ SAlg)
109adantr 481 . . . . . . 7 ((𝜑𝑞 ⊆ ((,) “ (ℚ × ℚ))) → 𝑇 ∈ SAlg)
11 iooex 13287 . . . . . . . . . . . 12 (,) ∈ V
1211imaexi 43432 . . . . . . . . . . 11 ((,) “ (ℚ × ℚ)) ∈ V
1312a1i 11 . . . . . . . . . 10 (𝑞 ⊆ ((,) “ (ℚ × ℚ)) → ((,) “ (ℚ × ℚ)) ∈ V)
14 id 22 . . . . . . . . . 10 (𝑞 ⊆ ((,) “ (ℚ × ℚ)) → 𝑞 ⊆ ((,) “ (ℚ × ℚ)))
1513, 14ssexd 5281 . . . . . . . . 9 (𝑞 ⊆ ((,) “ (ℚ × ℚ)) → 𝑞 ∈ V)
1615adantl 482 . . . . . . . 8 ((𝜑𝑞 ⊆ ((,) “ (ℚ × ℚ))) → 𝑞 ∈ V)
17 simpr 485 . . . . . . . . 9 ((𝜑𝑞 ⊆ ((,) “ (ℚ × ℚ))) → 𝑞 ⊆ ((,) “ (ℚ × ℚ)))
18 ioofun 43779 . . . . . . . . . . . . . . 15 Fun (,)
1918a1i 11 . . . . . . . . . . . . . 14 (𝑞 ∈ ((,) “ (ℚ × ℚ)) → Fun (,))
20 id 22 . . . . . . . . . . . . . 14 (𝑞 ∈ ((,) “ (ℚ × ℚ)) → 𝑞 ∈ ((,) “ (ℚ × ℚ)))
21 fvelima 6908 . . . . . . . . . . . . . 14 ((Fun (,) ∧ 𝑞 ∈ ((,) “ (ℚ × ℚ))) → ∃𝑝 ∈ (ℚ × ℚ)((,)‘𝑝) = 𝑞)
2219, 20, 21syl2anc 584 . . . . . . . . . . . . 13 (𝑞 ∈ ((,) “ (ℚ × ℚ)) → ∃𝑝 ∈ (ℚ × ℚ)((,)‘𝑝) = 𝑞)
2322adantl 482 . . . . . . . . . . . 12 ((𝜑𝑞 ∈ ((,) “ (ℚ × ℚ))) → ∃𝑝 ∈ (ℚ × ℚ)((,)‘𝑝) = 𝑞)
24 id 22 . . . . . . . . . . . . . . . . . . . 20 (((,)‘𝑝) = 𝑞 → ((,)‘𝑝) = 𝑞)
2524eqcomd 2742 . . . . . . . . . . . . . . . . . . 19 (((,)‘𝑝) = 𝑞𝑞 = ((,)‘𝑝))
2625adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ (ℚ × ℚ) ∧ ((,)‘𝑝) = 𝑞) → 𝑞 = ((,)‘𝑝))
27 1st2nd2 7960 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 ∈ (ℚ × ℚ) → 𝑝 = ⟨(1st𝑝), (2nd𝑝)⟩)
2827fveq2d 6846 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ (ℚ × ℚ) → ((,)‘𝑝) = ((,)‘⟨(1st𝑝), (2nd𝑝)⟩))
29 df-ov 7360 . . . . . . . . . . . . . . . . . . . . . 22 ((1st𝑝)(,)(2nd𝑝)) = ((,)‘⟨(1st𝑝), (2nd𝑝)⟩)
3029eqcomi 2745 . . . . . . . . . . . . . . . . . . . . 21 ((,)‘⟨(1st𝑝), (2nd𝑝)⟩) = ((1st𝑝)(,)(2nd𝑝))
3130a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ (ℚ × ℚ) → ((,)‘⟨(1st𝑝), (2nd𝑝)⟩) = ((1st𝑝)(,)(2nd𝑝)))
3228, 31eqtrd 2776 . . . . . . . . . . . . . . . . . . 19 (𝑝 ∈ (ℚ × ℚ) → ((,)‘𝑝) = ((1st𝑝)(,)(2nd𝑝)))
3332adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ (ℚ × ℚ) ∧ ((,)‘𝑝) = 𝑞) → ((,)‘𝑝) = ((1st𝑝)(,)(2nd𝑝)))
3426, 33eqtrd 2776 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℚ × ℚ) ∧ ((,)‘𝑝) = 𝑞) → 𝑞 = ((1st𝑝)(,)(2nd𝑝)))
35343adant1 1130 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ (ℚ × ℚ) ∧ ((,)‘𝑝) = 𝑞) → 𝑞 = ((1st𝑝)(,)(2nd𝑝)))
36 ioossre 13325 . . . . . . . . . . . . . . . . . . . . 21 ((1st𝑝)(,)(2nd𝑝)) ⊆ ℝ
37 ovex 7390 . . . . . . . . . . . . . . . . . . . . . 22 ((1st𝑝)(,)(2nd𝑝)) ∈ V
3837elpw 4564 . . . . . . . . . . . . . . . . . . . . 21 (((1st𝑝)(,)(2nd𝑝)) ∈ 𝒫 ℝ ↔ ((1st𝑝)(,)(2nd𝑝)) ⊆ ℝ)
3936, 38mpbir 230 . . . . . . . . . . . . . . . . . . . 20 ((1st𝑝)(,)(2nd𝑝)) ∈ 𝒫 ℝ
4039a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 ∈ (ℚ × ℚ)) → ((1st𝑝)(,)(2nd𝑝)) ∈ 𝒫 ℝ)
415adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑝 ∈ (ℚ × ℚ)) → 𝑆 ∈ SAlg)
426adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑝 ∈ (ℚ × ℚ)) → 𝐹 ∈ (SMblFn‘𝑆))
43 xp1st 7953 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 ∈ (ℚ × ℚ) → (1st𝑝) ∈ ℚ)
4443qred 12880 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 ∈ (ℚ × ℚ) → (1st𝑝) ∈ ℝ)
4544rexrd 11205 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 ∈ (ℚ × ℚ) → (1st𝑝) ∈ ℝ*)
4645adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑝 ∈ (ℚ × ℚ)) → (1st𝑝) ∈ ℝ*)
47 xp2nd 7954 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 ∈ (ℚ × ℚ) → (2nd𝑝) ∈ ℚ)
4847qred 12880 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 ∈ (ℚ × ℚ) → (2nd𝑝) ∈ ℝ)
4948rexrd 11205 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 ∈ (ℚ × ℚ) → (2nd𝑝) ∈ ℝ*)
5049adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑝 ∈ (ℚ × ℚ)) → (2nd𝑝) ∈ ℝ*)
5141, 42, 7, 46, 50smfpimioo 45018 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 ∈ (ℚ × ℚ)) → (𝐹 “ ((1st𝑝)(,)(2nd𝑝))) ∈ (𝑆t 𝐷))
5240, 51jca 512 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑝 ∈ (ℚ × ℚ)) → (((1st𝑝)(,)(2nd𝑝)) ∈ 𝒫 ℝ ∧ (𝐹 “ ((1st𝑝)(,)(2nd𝑝))) ∈ (𝑆t 𝐷)))
53 imaeq2 6009 . . . . . . . . . . . . . . . . . . . 20 (𝑒 = ((1st𝑝)(,)(2nd𝑝)) → (𝐹𝑒) = (𝐹 “ ((1st𝑝)(,)(2nd𝑝))))
5453eleq1d 2822 . . . . . . . . . . . . . . . . . . 19 (𝑒 = ((1st𝑝)(,)(2nd𝑝)) → ((𝐹𝑒) ∈ (𝑆t 𝐷) ↔ (𝐹 “ ((1st𝑝)(,)(2nd𝑝))) ∈ (𝑆t 𝐷)))
5554, 8elrab2 3648 . . . . . . . . . . . . . . . . . 18 (((1st𝑝)(,)(2nd𝑝)) ∈ 𝑇 ↔ (((1st𝑝)(,)(2nd𝑝)) ∈ 𝒫 ℝ ∧ (𝐹 “ ((1st𝑝)(,)(2nd𝑝))) ∈ (𝑆t 𝐷)))
5652, 55sylibr 233 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (ℚ × ℚ)) → ((1st𝑝)(,)(2nd𝑝)) ∈ 𝑇)
57563adant3 1132 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ (ℚ × ℚ) ∧ ((,)‘𝑝) = 𝑞) → ((1st𝑝)(,)(2nd𝑝)) ∈ 𝑇)
5835, 57eqeltrd 2838 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ (ℚ × ℚ) ∧ ((,)‘𝑝) = 𝑞) → 𝑞𝑇)
59583exp 1119 . . . . . . . . . . . . . 14 (𝜑 → (𝑝 ∈ (ℚ × ℚ) → (((,)‘𝑝) = 𝑞𝑞𝑇)))
6059rexlimdv 3150 . . . . . . . . . . . . 13 (𝜑 → (∃𝑝 ∈ (ℚ × ℚ)((,)‘𝑝) = 𝑞𝑞𝑇))
6160adantr 481 . . . . . . . . . . . 12 ((𝜑𝑞 ∈ ((,) “ (ℚ × ℚ))) → (∃𝑝 ∈ (ℚ × ℚ)((,)‘𝑝) = 𝑞𝑞𝑇))
6223, 61mpd 15 . . . . . . . . . . 11 ((𝜑𝑞 ∈ ((,) “ (ℚ × ℚ))) → 𝑞𝑇)
6362ssd 43280 . . . . . . . . . 10 (𝜑 → ((,) “ (ℚ × ℚ)) ⊆ 𝑇)
6463adantr 481 . . . . . . . . 9 ((𝜑𝑞 ⊆ ((,) “ (ℚ × ℚ))) → ((,) “ (ℚ × ℚ)) ⊆ 𝑇)
6517, 64sstrd 3954 . . . . . . . 8 ((𝜑𝑞 ⊆ ((,) “ (ℚ × ℚ))) → 𝑞𝑇)
6616, 65elpwd 4566 . . . . . . 7 ((𝜑𝑞 ⊆ ((,) “ (ℚ × ℚ))) → 𝑞 ∈ 𝒫 𝑇)
67 ssdomg 8940 . . . . . . . . . 10 (((,) “ (ℚ × ℚ)) ∈ V → (𝑞 ⊆ ((,) “ (ℚ × ℚ)) → 𝑞 ≼ ((,) “ (ℚ × ℚ))))
6812, 67ax-mp 5 . . . . . . . . 9 (𝑞 ⊆ ((,) “ (ℚ × ℚ)) → 𝑞 ≼ ((,) “ (ℚ × ℚ)))
69 qct 43586 . . . . . . . . . . . . 13 ℚ ≼ ω
7069, 69pm3.2i 471 . . . . . . . . . . . 12 (ℚ ≼ ω ∧ ℚ ≼ ω)
71 xpct 9952 . . . . . . . . . . . 12 ((ℚ ≼ ω ∧ ℚ ≼ ω) → (ℚ × ℚ) ≼ ω)
7270, 71ax-mp 5 . . . . . . . . . . 11 (ℚ × ℚ) ≼ ω
73 fimact 10471 . . . . . . . . . . 11 (((ℚ × ℚ) ≼ ω ∧ Fun (,)) → ((,) “ (ℚ × ℚ)) ≼ ω)
7472, 18, 73mp2an 690 . . . . . . . . . 10 ((,) “ (ℚ × ℚ)) ≼ ω
7574a1i 11 . . . . . . . . 9 (𝑞 ⊆ ((,) “ (ℚ × ℚ)) → ((,) “ (ℚ × ℚ)) ≼ ω)
76 domtr 8947 . . . . . . . . 9 ((𝑞 ≼ ((,) “ (ℚ × ℚ)) ∧ ((,) “ (ℚ × ℚ)) ≼ ω) → 𝑞 ≼ ω)
7768, 75, 76syl2anc 584 . . . . . . . 8 (𝑞 ⊆ ((,) “ (ℚ × ℚ)) → 𝑞 ≼ ω)
7877adantl 482 . . . . . . 7 ((𝜑𝑞 ⊆ ((,) “ (ℚ × ℚ))) → 𝑞 ≼ ω)
7910, 66, 78salunicl 44547 . . . . . 6 ((𝜑𝑞 ⊆ ((,) “ (ℚ × ℚ))) → 𝑞𝑇)
8079adantrr 715 . . . . 5 ((𝜑 ∧ (𝑞 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐺 = 𝑞)) → 𝑞𝑇)
814, 80eqeltrd 2838 . . . 4 ((𝜑 ∧ (𝑞 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐺 = 𝑞)) → 𝐺𝑇)
8281ex 413 . . 3 (𝜑 → ((𝑞 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐺 = 𝑞) → 𝐺𝑇))
8382exlimdv 1936 . 2 (𝜑 → (∃𝑞(𝑞 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐺 = 𝑞) → 𝐺𝑇))
843, 83mpd 15 1 (𝜑𝐺𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  wrex 3073  {crab 3407  Vcvv 3445  wss 3910  𝒫 cpw 4560  cop 4592   cuni 4865   class class class wbr 5105   × cxp 5631  ccnv 5632  dom cdm 5633  ran crn 5634  cima 5636  Fun wfun 6490  cfv 6496  (class class class)co 7357  ωcom 7802  1st c1st 7919  2nd c2nd 7920  cdom 8881  cr 11050  *cxr 11188  cq 12873  (,)cioo 13264  t crest 17302  topGenctg 17319  SAlgcsalg 44539  SMblFncsmblfn 44926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cc 10371  ax-ac2 10399  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-omul 8417  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-acn 9878  df-ac 10052  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-ioo 13268  df-ico 13270  df-fl 13697  df-rest 17304  df-topgen 17325  df-bases 22296  df-salg 44540  df-smblfn 44927
This theorem is referenced by:  smfpimbor1lem2  45030
  Copyright terms: Public domain W3C validator