Step | Hyp | Ref
| Expression |
1 | | smfpimbor1lem1.j |
. . 3
β’ π½ = (topGenβran
(,)) |
2 | | smfpimbor1lem1.8 |
. . 3
β’ (π β πΊ β π½) |
3 | 1, 2 | tgqioo2 44745 |
. 2
β’ (π β βπ(π β ((,) β (β Γ
β)) β§ πΊ = βͺ π)) |
4 | | simprr 770 |
. . . . 5
β’ ((π β§ (π β ((,) β (β Γ
β)) β§ πΊ = βͺ π))
β πΊ = βͺ π) |
5 | | smfpimbor1lem1.s |
. . . . . . . . 9
β’ (π β π β SAlg) |
6 | | smfpimbor1lem1.f |
. . . . . . . . 9
β’ (π β πΉ β (SMblFnβπ)) |
7 | | smfpimbor1lem1.a |
. . . . . . . . 9
β’ π· = dom πΉ |
8 | | smfpimbor1lem1.t |
. . . . . . . . 9
β’ π = {π β π« β β£ (β‘πΉ β π) β (π βΎt π·)} |
9 | 5, 6, 7, 8 | smfresal 45989 |
. . . . . . . 8
β’ (π β π β SAlg) |
10 | 9 | adantr 480 |
. . . . . . 7
β’ ((π β§ π β ((,) β (β Γ
β))) β π β
SAlg) |
11 | | iooex 13344 |
. . . . . . . . . . . 12
β’ (,)
β V |
12 | 11 | imaexi 44405 |
. . . . . . . . . . 11
β’ ((,)
β (β Γ β)) β V |
13 | 12 | a1i 11 |
. . . . . . . . . 10
β’ (π β ((,) β (β
Γ β)) β ((,) β (β Γ β)) β
V) |
14 | | id 22 |
. . . . . . . . . 10
β’ (π β ((,) β (β
Γ β)) β π
β ((,) β (β Γ β))) |
15 | 13, 14 | ssexd 5314 |
. . . . . . . . 9
β’ (π β ((,) β (β
Γ β)) β π
β V) |
16 | 15 | adantl 481 |
. . . . . . . 8
β’ ((π β§ π β ((,) β (β Γ
β))) β π β
V) |
17 | | simpr 484 |
. . . . . . . . 9
β’ ((π β§ π β ((,) β (β Γ
β))) β π β
((,) β (β Γ β))) |
18 | | ioofun 44749 |
. . . . . . . . . . . . . . 15
β’ Fun
(,) |
19 | 18 | a1i 11 |
. . . . . . . . . . . . . 14
β’ (π β ((,) β (β
Γ β)) β Fun (,)) |
20 | | id 22 |
. . . . . . . . . . . . . 14
β’ (π β ((,) β (β
Γ β)) β π
β ((,) β (β Γ β))) |
21 | | fvelima 6947 |
. . . . . . . . . . . . . 14
β’ ((Fun (,)
β§ π β ((,) β
(β Γ β))) β βπ β (β Γ
β)((,)βπ) =
π) |
22 | 19, 20, 21 | syl2anc 583 |
. . . . . . . . . . . . 13
β’ (π β ((,) β (β
Γ β)) β βπ β (β Γ
β)((,)βπ) =
π) |
23 | 22 | adantl 481 |
. . . . . . . . . . . 12
β’ ((π β§ π β ((,) β (β Γ
β))) β βπ
β (β Γ β)((,)βπ) = π) |
24 | | id 22 |
. . . . . . . . . . . . . . . . . . . 20
β’
(((,)βπ) =
π β ((,)βπ) = π) |
25 | 24 | eqcomd 2730 |
. . . . . . . . . . . . . . . . . . 19
β’
(((,)βπ) =
π β π = ((,)βπ)) |
26 | 25 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
β’ ((π β (β Γ
β) β§ ((,)βπ) = π) β π = ((,)βπ)) |
27 | | 1st2nd2 8007 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π β (β Γ
β) β π =
β¨(1st βπ), (2nd βπ)β©) |
28 | 27 | fveq2d 6885 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π β (β Γ
β) β ((,)βπ) = ((,)ββ¨(1st
βπ), (2nd
βπ)β©)) |
29 | | df-ov 7404 |
. . . . . . . . . . . . . . . . . . . . . 22
β’
((1st βπ)(,)(2nd βπ)) = ((,)ββ¨(1st
βπ), (2nd
βπ)β©) |
30 | 29 | eqcomi 2733 |
. . . . . . . . . . . . . . . . . . . . 21
β’
((,)ββ¨(1st βπ), (2nd βπ)β©) = ((1st βπ)(,)(2nd βπ)) |
31 | 30 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π β (β Γ
β) β ((,)ββ¨(1st βπ), (2nd βπ)β©) = ((1st βπ)(,)(2nd βπ))) |
32 | 28, 31 | eqtrd 2764 |
. . . . . . . . . . . . . . . . . . 19
β’ (π β (β Γ
β) β ((,)βπ) = ((1st βπ)(,)(2nd βπ))) |
33 | 32 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
β’ ((π β (β Γ
β) β§ ((,)βπ) = π) β ((,)βπ) = ((1st βπ)(,)(2nd βπ))) |
34 | 26, 33 | eqtrd 2764 |
. . . . . . . . . . . . . . . . 17
β’ ((π β (β Γ
β) β§ ((,)βπ) = π) β π = ((1st βπ)(,)(2nd βπ))) |
35 | 34 | 3adant1 1127 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ π β (β Γ β) β§
((,)βπ) = π) β π = ((1st βπ)(,)(2nd βπ))) |
36 | | ioossre 13382 |
. . . . . . . . . . . . . . . . . . . . 21
β’
((1st βπ)(,)(2nd βπ)) β β |
37 | | ovex 7434 |
. . . . . . . . . . . . . . . . . . . . . 22
β’
((1st βπ)(,)(2nd βπ)) β V |
38 | 37 | elpw 4598 |
. . . . . . . . . . . . . . . . . . . . 21
β’
(((1st βπ)(,)(2nd βπ)) β π« β β
((1st βπ)(,)(2nd βπ)) β β) |
39 | 36, 38 | mpbir 230 |
. . . . . . . . . . . . . . . . . . . 20
β’
((1st βπ)(,)(2nd βπ)) β π« β |
40 | 39 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β§ π β (β Γ β)) β
((1st βπ)(,)(2nd βπ)) β π« β) |
41 | 5 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β§ π β (β Γ β)) β
π β
SAlg) |
42 | 6 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β§ π β (β Γ β)) β
πΉ β
(SMblFnβπ)) |
43 | | xp1st 8000 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (π β (β Γ
β) β (1st βπ) β β) |
44 | 43 | qred 12936 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (π β (β Γ
β) β (1st βπ) β β) |
45 | 44 | rexrd 11261 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π β (β Γ
β) β (1st βπ) β
β*) |
46 | 45 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β§ π β (β Γ β)) β
(1st βπ)
β β*) |
47 | | xp2nd 8001 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (π β (β Γ
β) β (2nd βπ) β β) |
48 | 47 | qred 12936 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (π β (β Γ
β) β (2nd βπ) β β) |
49 | 48 | rexrd 11261 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π β (β Γ
β) β (2nd βπ) β
β*) |
50 | 49 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β§ π β (β Γ β)) β
(2nd βπ)
β β*) |
51 | 41, 42, 7, 46, 50 | smfpimioo 45988 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β§ π β (β Γ β)) β
(β‘πΉ β ((1st βπ)(,)(2nd βπ))) β (π βΎt π·)) |
52 | 40, 51 | jca 511 |
. . . . . . . . . . . . . . . . . 18
β’ ((π β§ π β (β Γ β)) β
(((1st βπ)(,)(2nd βπ)) β π« β β§ (β‘πΉ β ((1st βπ)(,)(2nd βπ))) β (π βΎt π·))) |
53 | | imaeq2 6045 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π = ((1st βπ)(,)(2nd βπ)) β (β‘πΉ β π) = (β‘πΉ β ((1st βπ)(,)(2nd βπ)))) |
54 | 53 | eleq1d 2810 |
. . . . . . . . . . . . . . . . . . 19
β’ (π = ((1st βπ)(,)(2nd βπ)) β ((β‘πΉ β π) β (π βΎt π·) β (β‘πΉ β ((1st βπ)(,)(2nd βπ))) β (π βΎt π·))) |
55 | 54, 8 | elrab2 3678 |
. . . . . . . . . . . . . . . . . 18
β’
(((1st βπ)(,)(2nd βπ)) β π β (((1st βπ)(,)(2nd βπ)) β π« β
β§ (β‘πΉ β ((1st βπ)(,)(2nd βπ))) β (π βΎt π·))) |
56 | 52, 55 | sylibr 233 |
. . . . . . . . . . . . . . . . 17
β’ ((π β§ π β (β Γ β)) β
((1st βπ)(,)(2nd βπ)) β π) |
57 | 56 | 3adant3 1129 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ π β (β Γ β) β§
((,)βπ) = π) β ((1st
βπ)(,)(2nd
βπ)) β π) |
58 | 35, 57 | eqeltrd 2825 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π β (β Γ β) β§
((,)βπ) = π) β π β π) |
59 | 58 | 3exp 1116 |
. . . . . . . . . . . . . 14
β’ (π β (π β (β Γ β) β
(((,)βπ) = π β π β π))) |
60 | 59 | rexlimdv 3145 |
. . . . . . . . . . . . 13
β’ (π β (βπ β (β Γ
β)((,)βπ) =
π β π β π)) |
61 | 60 | adantr 480 |
. . . . . . . . . . . 12
β’ ((π β§ π β ((,) β (β Γ
β))) β (βπ
β (β Γ β)((,)βπ) = π β π β π)) |
62 | 23, 61 | mpd 15 |
. . . . . . . . . . 11
β’ ((π β§ π β ((,) β (β Γ
β))) β π β
π) |
63 | 62 | ssd 44257 |
. . . . . . . . . 10
β’ (π β ((,) β (β
Γ β)) β π) |
64 | 63 | adantr 480 |
. . . . . . . . 9
β’ ((π β§ π β ((,) β (β Γ
β))) β ((,) β (β Γ β)) β π) |
65 | 17, 64 | sstrd 3984 |
. . . . . . . 8
β’ ((π β§ π β ((,) β (β Γ
β))) β π β
π) |
66 | 16, 65 | elpwd 4600 |
. . . . . . 7
β’ ((π β§ π β ((,) β (β Γ
β))) β π β
π« π) |
67 | | ssdomg 8992 |
. . . . . . . . . 10
β’ (((,)
β (β Γ β)) β V β (π β ((,) β (β Γ
β)) β π βΌ
((,) β (β Γ β)))) |
68 | 12, 67 | ax-mp 5 |
. . . . . . . . 9
β’ (π β ((,) β (β
Γ β)) β π
βΌ ((,) β (β Γ β))) |
69 | | qct 44557 |
. . . . . . . . . . . . 13
β’ β
βΌ Ο |
70 | 69, 69 | pm3.2i 470 |
. . . . . . . . . . . 12
β’ (β
βΌ Ο β§ β βΌ Ο) |
71 | | xpct 10007 |
. . . . . . . . . . . 12
β’ ((β
βΌ Ο β§ β βΌ Ο) β (β Γ β)
βΌ Ο) |
72 | 70, 71 | ax-mp 5 |
. . . . . . . . . . 11
β’ (β
Γ β) βΌ Ο |
73 | | fimact 10526 |
. . . . . . . . . . 11
β’
(((β Γ β) βΌ Ο β§ Fun (,)) β ((,)
β (β Γ β)) βΌ Ο) |
74 | 72, 18, 73 | mp2an 689 |
. . . . . . . . . 10
β’ ((,)
β (β Γ β)) βΌ Ο |
75 | 74 | a1i 11 |
. . . . . . . . 9
β’ (π β ((,) β (β
Γ β)) β ((,) β (β Γ β)) βΌ
Ο) |
76 | | domtr 8999 |
. . . . . . . . 9
β’ ((π βΌ ((,) β (β
Γ β)) β§ ((,) β (β Γ β)) βΌ
Ο) β π βΌ
Ο) |
77 | 68, 75, 76 | syl2anc 583 |
. . . . . . . 8
β’ (π β ((,) β (β
Γ β)) β π
βΌ Ο) |
78 | 77 | adantl 481 |
. . . . . . 7
β’ ((π β§ π β ((,) β (β Γ
β))) β π βΌ
Ο) |
79 | 10, 66, 78 | salunicl 45517 |
. . . . . 6
β’ ((π β§ π β ((,) β (β Γ
β))) β βͺ π β π) |
80 | 79 | adantrr 714 |
. . . . 5
β’ ((π β§ (π β ((,) β (β Γ
β)) β§ πΊ = βͺ π))
β βͺ π β π) |
81 | 4, 80 | eqeltrd 2825 |
. . . 4
β’ ((π β§ (π β ((,) β (β Γ
β)) β§ πΊ = βͺ π))
β πΊ β π) |
82 | 81 | ex 412 |
. . 3
β’ (π β ((π β ((,) β (β Γ
β)) β§ πΊ = βͺ π)
β πΊ β π)) |
83 | 82 | exlimdv 1928 |
. 2
β’ (π β (βπ(π β ((,) β (β Γ
β)) β§ πΊ = βͺ π)
β πΊ β π)) |
84 | 3, 83 | mpd 15 |
1
β’ (π β πΊ β π) |