Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfpimbor1lem1 Structured version   Visualization version   GIF version

Theorem smfpimbor1lem1 46958
Description: Every open set belongs to 𝑇. This is the second step in the proof of Proposition 121E (f) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfpimbor1lem1.s (𝜑𝑆 ∈ SAlg)
smfpimbor1lem1.f (𝜑𝐹 ∈ (SMblFn‘𝑆))
smfpimbor1lem1.a 𝐷 = dom 𝐹
smfpimbor1lem1.j 𝐽 = (topGen‘ran (,))
smfpimbor1lem1.8 (𝜑𝐺𝐽)
smfpimbor1lem1.t 𝑇 = {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)}
Assertion
Ref Expression
smfpimbor1lem1 (𝜑𝐺𝑇)
Distinct variable groups:   𝐷,𝑒   𝑒,𝐹   𝑆,𝑒   𝜑,𝑒
Allowed substitution hints:   𝑇(𝑒)   𝐺(𝑒)   𝐽(𝑒)

Proof of Theorem smfpimbor1lem1
Dummy variables 𝑞 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smfpimbor1lem1.j . . 3 𝐽 = (topGen‘ran (,))
2 smfpimbor1lem1.8 . . 3 (𝜑𝐺𝐽)
31, 2tgqioo2 45709 . 2 (𝜑 → ∃𝑞(𝑞 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐺 = 𝑞))
4 simprr 772 . . . . 5 ((𝜑 ∧ (𝑞 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐺 = 𝑞)) → 𝐺 = 𝑞)
5 smfpimbor1lem1.s . . . . . . . . 9 (𝜑𝑆 ∈ SAlg)
6 smfpimbor1lem1.f . . . . . . . . 9 (𝜑𝐹 ∈ (SMblFn‘𝑆))
7 smfpimbor1lem1.a . . . . . . . . 9 𝐷 = dom 𝐹
8 smfpimbor1lem1.t . . . . . . . . 9 𝑇 = {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)}
95, 6, 7, 8smfresal 46948 . . . . . . . 8 (𝜑𝑇 ∈ SAlg)
109adantr 480 . . . . . . 7 ((𝜑𝑞 ⊆ ((,) “ (ℚ × ℚ))) → 𝑇 ∈ SAlg)
11 iooex 13275 . . . . . . . . . . . 12 (,) ∈ V
1211imaexi 45381 . . . . . . . . . . 11 ((,) “ (ℚ × ℚ)) ∈ V
1312a1i 11 . . . . . . . . . 10 (𝑞 ⊆ ((,) “ (ℚ × ℚ)) → ((,) “ (ℚ × ℚ)) ∈ V)
14 id 22 . . . . . . . . . 10 (𝑞 ⊆ ((,) “ (ℚ × ℚ)) → 𝑞 ⊆ ((,) “ (ℚ × ℚ)))
1513, 14ssexd 5266 . . . . . . . . 9 (𝑞 ⊆ ((,) “ (ℚ × ℚ)) → 𝑞 ∈ V)
1615adantl 481 . . . . . . . 8 ((𝜑𝑞 ⊆ ((,) “ (ℚ × ℚ))) → 𝑞 ∈ V)
17 simpr 484 . . . . . . . . 9 ((𝜑𝑞 ⊆ ((,) “ (ℚ × ℚ))) → 𝑞 ⊆ ((,) “ (ℚ × ℚ)))
18 ioofun 45713 . . . . . . . . . . . . . . 15 Fun (,)
1918a1i 11 . . . . . . . . . . . . . 14 (𝑞 ∈ ((,) “ (ℚ × ℚ)) → Fun (,))
20 id 22 . . . . . . . . . . . . . 14 (𝑞 ∈ ((,) “ (ℚ × ℚ)) → 𝑞 ∈ ((,) “ (ℚ × ℚ)))
21 fvelima 6896 . . . . . . . . . . . . . 14 ((Fun (,) ∧ 𝑞 ∈ ((,) “ (ℚ × ℚ))) → ∃𝑝 ∈ (ℚ × ℚ)((,)‘𝑝) = 𝑞)
2219, 20, 21syl2anc 584 . . . . . . . . . . . . 13 (𝑞 ∈ ((,) “ (ℚ × ℚ)) → ∃𝑝 ∈ (ℚ × ℚ)((,)‘𝑝) = 𝑞)
2322adantl 481 . . . . . . . . . . . 12 ((𝜑𝑞 ∈ ((,) “ (ℚ × ℚ))) → ∃𝑝 ∈ (ℚ × ℚ)((,)‘𝑝) = 𝑞)
24 id 22 . . . . . . . . . . . . . . . . . . . 20 (((,)‘𝑝) = 𝑞 → ((,)‘𝑝) = 𝑞)
2524eqcomd 2739 . . . . . . . . . . . . . . . . . . 19 (((,)‘𝑝) = 𝑞𝑞 = ((,)‘𝑝))
2625adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ (ℚ × ℚ) ∧ ((,)‘𝑝) = 𝑞) → 𝑞 = ((,)‘𝑝))
27 1st2nd2 7969 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 ∈ (ℚ × ℚ) → 𝑝 = ⟨(1st𝑝), (2nd𝑝)⟩)
2827fveq2d 6835 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ (ℚ × ℚ) → ((,)‘𝑝) = ((,)‘⟨(1st𝑝), (2nd𝑝)⟩))
29 df-ov 7358 . . . . . . . . . . . . . . . . . . . . . 22 ((1st𝑝)(,)(2nd𝑝)) = ((,)‘⟨(1st𝑝), (2nd𝑝)⟩)
3029eqcomi 2742 . . . . . . . . . . . . . . . . . . . . 21 ((,)‘⟨(1st𝑝), (2nd𝑝)⟩) = ((1st𝑝)(,)(2nd𝑝))
3130a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ (ℚ × ℚ) → ((,)‘⟨(1st𝑝), (2nd𝑝)⟩) = ((1st𝑝)(,)(2nd𝑝)))
3228, 31eqtrd 2768 . . . . . . . . . . . . . . . . . . 19 (𝑝 ∈ (ℚ × ℚ) → ((,)‘𝑝) = ((1st𝑝)(,)(2nd𝑝)))
3332adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ (ℚ × ℚ) ∧ ((,)‘𝑝) = 𝑞) → ((,)‘𝑝) = ((1st𝑝)(,)(2nd𝑝)))
3426, 33eqtrd 2768 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℚ × ℚ) ∧ ((,)‘𝑝) = 𝑞) → 𝑞 = ((1st𝑝)(,)(2nd𝑝)))
35343adant1 1130 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ (ℚ × ℚ) ∧ ((,)‘𝑝) = 𝑞) → 𝑞 = ((1st𝑝)(,)(2nd𝑝)))
36 ioossre 13314 . . . . . . . . . . . . . . . . . . . . 21 ((1st𝑝)(,)(2nd𝑝)) ⊆ ℝ
37 ovex 7388 . . . . . . . . . . . . . . . . . . . . . 22 ((1st𝑝)(,)(2nd𝑝)) ∈ V
3837elpw 4555 . . . . . . . . . . . . . . . . . . . . 21 (((1st𝑝)(,)(2nd𝑝)) ∈ 𝒫 ℝ ↔ ((1st𝑝)(,)(2nd𝑝)) ⊆ ℝ)
3936, 38mpbir 231 . . . . . . . . . . . . . . . . . . . 20 ((1st𝑝)(,)(2nd𝑝)) ∈ 𝒫 ℝ
4039a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 ∈ (ℚ × ℚ)) → ((1st𝑝)(,)(2nd𝑝)) ∈ 𝒫 ℝ)
415adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑝 ∈ (ℚ × ℚ)) → 𝑆 ∈ SAlg)
426adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑝 ∈ (ℚ × ℚ)) → 𝐹 ∈ (SMblFn‘𝑆))
43 xp1st 7962 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 ∈ (ℚ × ℚ) → (1st𝑝) ∈ ℚ)
4443qred 12859 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 ∈ (ℚ × ℚ) → (1st𝑝) ∈ ℝ)
4544rexrd 11173 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 ∈ (ℚ × ℚ) → (1st𝑝) ∈ ℝ*)
4645adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑝 ∈ (ℚ × ℚ)) → (1st𝑝) ∈ ℝ*)
47 xp2nd 7963 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 ∈ (ℚ × ℚ) → (2nd𝑝) ∈ ℚ)
4847qred 12859 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 ∈ (ℚ × ℚ) → (2nd𝑝) ∈ ℝ)
4948rexrd 11173 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 ∈ (ℚ × ℚ) → (2nd𝑝) ∈ ℝ*)
5049adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑝 ∈ (ℚ × ℚ)) → (2nd𝑝) ∈ ℝ*)
5141, 42, 7, 46, 50smfpimioo 46947 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 ∈ (ℚ × ℚ)) → (𝐹 “ ((1st𝑝)(,)(2nd𝑝))) ∈ (𝑆t 𝐷))
5240, 51jca 511 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑝 ∈ (ℚ × ℚ)) → (((1st𝑝)(,)(2nd𝑝)) ∈ 𝒫 ℝ ∧ (𝐹 “ ((1st𝑝)(,)(2nd𝑝))) ∈ (𝑆t 𝐷)))
53 imaeq2 6012 . . . . . . . . . . . . . . . . . . . 20 (𝑒 = ((1st𝑝)(,)(2nd𝑝)) → (𝐹𝑒) = (𝐹 “ ((1st𝑝)(,)(2nd𝑝))))
5453eleq1d 2818 . . . . . . . . . . . . . . . . . . 19 (𝑒 = ((1st𝑝)(,)(2nd𝑝)) → ((𝐹𝑒) ∈ (𝑆t 𝐷) ↔ (𝐹 “ ((1st𝑝)(,)(2nd𝑝))) ∈ (𝑆t 𝐷)))
5554, 8elrab2 3646 . . . . . . . . . . . . . . . . . 18 (((1st𝑝)(,)(2nd𝑝)) ∈ 𝑇 ↔ (((1st𝑝)(,)(2nd𝑝)) ∈ 𝒫 ℝ ∧ (𝐹 “ ((1st𝑝)(,)(2nd𝑝))) ∈ (𝑆t 𝐷)))
5652, 55sylibr 234 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (ℚ × ℚ)) → ((1st𝑝)(,)(2nd𝑝)) ∈ 𝑇)
57563adant3 1132 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ (ℚ × ℚ) ∧ ((,)‘𝑝) = 𝑞) → ((1st𝑝)(,)(2nd𝑝)) ∈ 𝑇)
5835, 57eqeltrd 2833 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ (ℚ × ℚ) ∧ ((,)‘𝑝) = 𝑞) → 𝑞𝑇)
59583exp 1119 . . . . . . . . . . . . . 14 (𝜑 → (𝑝 ∈ (ℚ × ℚ) → (((,)‘𝑝) = 𝑞𝑞𝑇)))
6059rexlimdv 3132 . . . . . . . . . . . . 13 (𝜑 → (∃𝑝 ∈ (ℚ × ℚ)((,)‘𝑝) = 𝑞𝑞𝑇))
6160adantr 480 . . . . . . . . . . . 12 ((𝜑𝑞 ∈ ((,) “ (ℚ × ℚ))) → (∃𝑝 ∈ (ℚ × ℚ)((,)‘𝑝) = 𝑞𝑞𝑇))
6223, 61mpd 15 . . . . . . . . . . 11 ((𝜑𝑞 ∈ ((,) “ (ℚ × ℚ))) → 𝑞𝑇)
6362ssd 45241 . . . . . . . . . 10 (𝜑 → ((,) “ (ℚ × ℚ)) ⊆ 𝑇)
6463adantr 480 . . . . . . . . 9 ((𝜑𝑞 ⊆ ((,) “ (ℚ × ℚ))) → ((,) “ (ℚ × ℚ)) ⊆ 𝑇)
6517, 64sstrd 3941 . . . . . . . 8 ((𝜑𝑞 ⊆ ((,) “ (ℚ × ℚ))) → 𝑞𝑇)
6616, 65elpwd 4557 . . . . . . 7 ((𝜑𝑞 ⊆ ((,) “ (ℚ × ℚ))) → 𝑞 ∈ 𝒫 𝑇)
67 ssdomg 8933 . . . . . . . . . 10 (((,) “ (ℚ × ℚ)) ∈ V → (𝑞 ⊆ ((,) “ (ℚ × ℚ)) → 𝑞 ≼ ((,) “ (ℚ × ℚ))))
6812, 67ax-mp 5 . . . . . . . . 9 (𝑞 ⊆ ((,) “ (ℚ × ℚ)) → 𝑞 ≼ ((,) “ (ℚ × ℚ)))
69 qct 45523 . . . . . . . . . . . . 13 ℚ ≼ ω
7069, 69pm3.2i 470 . . . . . . . . . . . 12 (ℚ ≼ ω ∧ ℚ ≼ ω)
71 xpct 9918 . . . . . . . . . . . 12 ((ℚ ≼ ω ∧ ℚ ≼ ω) → (ℚ × ℚ) ≼ ω)
7270, 71ax-mp 5 . . . . . . . . . . 11 (ℚ × ℚ) ≼ ω
73 fimact 10437 . . . . . . . . . . 11 (((ℚ × ℚ) ≼ ω ∧ Fun (,)) → ((,) “ (ℚ × ℚ)) ≼ ω)
7472, 18, 73mp2an 692 . . . . . . . . . 10 ((,) “ (ℚ × ℚ)) ≼ ω
7574a1i 11 . . . . . . . . 9 (𝑞 ⊆ ((,) “ (ℚ × ℚ)) → ((,) “ (ℚ × ℚ)) ≼ ω)
76 domtr 8940 . . . . . . . . 9 ((𝑞 ≼ ((,) “ (ℚ × ℚ)) ∧ ((,) “ (ℚ × ℚ)) ≼ ω) → 𝑞 ≼ ω)
7768, 75, 76syl2anc 584 . . . . . . . 8 (𝑞 ⊆ ((,) “ (ℚ × ℚ)) → 𝑞 ≼ ω)
7877adantl 481 . . . . . . 7 ((𝜑𝑞 ⊆ ((,) “ (ℚ × ℚ))) → 𝑞 ≼ ω)
7910, 66, 78salunicl 46476 . . . . . 6 ((𝜑𝑞 ⊆ ((,) “ (ℚ × ℚ))) → 𝑞𝑇)
8079adantrr 717 . . . . 5 ((𝜑 ∧ (𝑞 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐺 = 𝑞)) → 𝑞𝑇)
814, 80eqeltrd 2833 . . . 4 ((𝜑 ∧ (𝑞 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐺 = 𝑞)) → 𝐺𝑇)
8281ex 412 . . 3 (𝜑 → ((𝑞 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐺 = 𝑞) → 𝐺𝑇))
8382exlimdv 1934 . 2 (𝜑 → (∃𝑞(𝑞 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐺 = 𝑞) → 𝐺𝑇))
843, 83mpd 15 1 (𝜑𝐺𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2113  wrex 3057  {crab 3396  Vcvv 3437  wss 3898  𝒫 cpw 4551  cop 4583   cuni 4860   class class class wbr 5095   × cxp 5619  ccnv 5620  dom cdm 5621  ran crn 5622  cima 5624  Fun wfun 6483  cfv 6489  (class class class)co 7355  ωcom 7805  1st c1st 7928  2nd c2nd 7929  cdom 8877  cr 11016  *cxr 11156  cq 12852  (,)cioo 13252  t crest 17331  topGenctg 17348  SAlgcsalg 46468  SMblFncsmblfn 46855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9542  ax-cc 10337  ax-ac2 10365  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-oadd 8398  df-omul 8399  df-er 8631  df-map 8761  df-pm 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9337  df-inf 9338  df-oi 9407  df-card 9843  df-acn 9846  df-ac 10018  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-n0 12393  df-z 12480  df-uz 12743  df-q 12853  df-rp 12897  df-ioo 13256  df-ico 13258  df-fl 13703  df-rest 17333  df-topgen 17354  df-bases 22881  df-salg 46469  df-smblfn 46856
This theorem is referenced by:  smfpimbor1lem2  46959
  Copyright terms: Public domain W3C validator