Step | Hyp | Ref
| Expression |
1 | | smfpimbor1lem1.j |
. . 3
⊢ 𝐽 = (topGen‘ran
(,)) |
2 | | smfpimbor1lem1.8 |
. . 3
⊢ (𝜑 → 𝐺 ∈ 𝐽) |
3 | 1, 2 | tgqioo2 42550 |
. 2
⊢ (𝜑 → ∃𝑞(𝑞 ⊆ ((,) “ (ℚ ×
ℚ)) ∧ 𝐺 = ∪ 𝑞)) |
4 | | simprr 772 |
. . . . 5
⊢ ((𝜑 ∧ (𝑞 ⊆ ((,) “ (ℚ ×
ℚ)) ∧ 𝐺 = ∪ 𝑞))
→ 𝐺 = ∪ 𝑞) |
5 | | smfpimbor1lem1.s |
. . . . . . . . 9
⊢ (𝜑 → 𝑆 ∈ SAlg) |
6 | | smfpimbor1lem1.f |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
7 | | smfpimbor1lem1.a |
. . . . . . . . 9
⊢ 𝐷 = dom 𝐹 |
8 | | smfpimbor1lem1.t |
. . . . . . . . 9
⊢ 𝑇 = {𝑒 ∈ 𝒫 ℝ ∣ (◡𝐹 “ 𝑒) ∈ (𝑆 ↾t 𝐷)} |
9 | 5, 6, 7, 8 | smfresal 43786 |
. . . . . . . 8
⊢ (𝜑 → 𝑇 ∈ SAlg) |
10 | 9 | adantr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑞 ⊆ ((,) “ (ℚ ×
ℚ))) → 𝑇 ∈
SAlg) |
11 | | iooex 12802 |
. . . . . . . . . . . 12
⊢ (,)
∈ V |
12 | 11 | imaexi 42220 |
. . . . . . . . . . 11
⊢ ((,)
“ (ℚ × ℚ)) ∈ V |
13 | 12 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑞 ⊆ ((,) “ (ℚ
× ℚ)) → ((,) “ (ℚ × ℚ)) ∈
V) |
14 | | id 22 |
. . . . . . . . . 10
⊢ (𝑞 ⊆ ((,) “ (ℚ
× ℚ)) → 𝑞
⊆ ((,) “ (ℚ × ℚ))) |
15 | 13, 14 | ssexd 5194 |
. . . . . . . . 9
⊢ (𝑞 ⊆ ((,) “ (ℚ
× ℚ)) → 𝑞
∈ V) |
16 | 15 | adantl 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑞 ⊆ ((,) “ (ℚ ×
ℚ))) → 𝑞 ∈
V) |
17 | | simpr 488 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑞 ⊆ ((,) “ (ℚ ×
ℚ))) → 𝑞 ⊆
((,) “ (ℚ × ℚ))) |
18 | | ioofun 42554 |
. . . . . . . . . . . . . . 15
⊢ Fun
(,) |
19 | 18 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑞 ∈ ((,) “ (ℚ
× ℚ)) → Fun (,)) |
20 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝑞 ∈ ((,) “ (ℚ
× ℚ)) → 𝑞
∈ ((,) “ (ℚ × ℚ))) |
21 | | fvelima 6719 |
. . . . . . . . . . . . . 14
⊢ ((Fun (,)
∧ 𝑞 ∈ ((,) “
(ℚ × ℚ))) → ∃𝑝 ∈ (ℚ ×
ℚ)((,)‘𝑝) =
𝑞) |
22 | 19, 20, 21 | syl2anc 587 |
. . . . . . . . . . . . 13
⊢ (𝑞 ∈ ((,) “ (ℚ
× ℚ)) → ∃𝑝 ∈ (ℚ ×
ℚ)((,)‘𝑝) =
𝑞) |
23 | 22 | adantl 485 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑞 ∈ ((,) “ (ℚ ×
ℚ))) → ∃𝑝
∈ (ℚ × ℚ)((,)‘𝑝) = 𝑞) |
24 | | id 22 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((,)‘𝑝) =
𝑞 → ((,)‘𝑝) = 𝑞) |
25 | 24 | eqcomd 2764 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((,)‘𝑝) =
𝑞 → 𝑞 = ((,)‘𝑝)) |
26 | 25 | adantl 485 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑝 ∈ (ℚ ×
ℚ) ∧ ((,)‘𝑝) = 𝑞) → 𝑞 = ((,)‘𝑝)) |
27 | | 1st2nd2 7732 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑝 ∈ (ℚ ×
ℚ) → 𝑝 =
〈(1st ‘𝑝), (2nd ‘𝑝)〉) |
28 | 27 | fveq2d 6662 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑝 ∈ (ℚ ×
ℚ) → ((,)‘𝑝) = ((,)‘〈(1st
‘𝑝), (2nd
‘𝑝)〉)) |
29 | | df-ov 7153 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((1st ‘𝑝)(,)(2nd ‘𝑝)) = ((,)‘〈(1st
‘𝑝), (2nd
‘𝑝)〉) |
30 | 29 | eqcomi 2767 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((,)‘〈(1st ‘𝑝), (2nd ‘𝑝)〉) = ((1st ‘𝑝)(,)(2nd ‘𝑝)) |
31 | 30 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑝 ∈ (ℚ ×
ℚ) → ((,)‘〈(1st ‘𝑝), (2nd ‘𝑝)〉) = ((1st ‘𝑝)(,)(2nd ‘𝑝))) |
32 | 28, 31 | eqtrd 2793 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑝 ∈ (ℚ ×
ℚ) → ((,)‘𝑝) = ((1st ‘𝑝)(,)(2nd ‘𝑝))) |
33 | 32 | adantr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑝 ∈ (ℚ ×
ℚ) ∧ ((,)‘𝑝) = 𝑞) → ((,)‘𝑝) = ((1st ‘𝑝)(,)(2nd ‘𝑝))) |
34 | 26, 33 | eqtrd 2793 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑝 ∈ (ℚ ×
ℚ) ∧ ((,)‘𝑝) = 𝑞) → 𝑞 = ((1st ‘𝑝)(,)(2nd ‘𝑝))) |
35 | 34 | 3adant1 1127 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑝 ∈ (ℚ × ℚ) ∧
((,)‘𝑝) = 𝑞) → 𝑞 = ((1st ‘𝑝)(,)(2nd ‘𝑝))) |
36 | | ioossre 12840 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((1st ‘𝑝)(,)(2nd ‘𝑝)) ⊆ ℝ |
37 | | ovex 7183 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((1st ‘𝑝)(,)(2nd ‘𝑝)) ∈ V |
38 | 37 | elpw 4498 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((1st ‘𝑝)(,)(2nd ‘𝑝)) ∈ 𝒫 ℝ ↔
((1st ‘𝑝)(,)(2nd ‘𝑝)) ⊆ ℝ) |
39 | 36, 38 | mpbir 234 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((1st ‘𝑝)(,)(2nd ‘𝑝)) ∈ 𝒫 ℝ |
40 | 39 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑝 ∈ (ℚ × ℚ)) →
((1st ‘𝑝)(,)(2nd ‘𝑝)) ∈ 𝒫 ℝ) |
41 | 5 | adantr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑝 ∈ (ℚ × ℚ)) →
𝑆 ∈
SAlg) |
42 | 6 | adantr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑝 ∈ (ℚ × ℚ)) →
𝐹 ∈
(SMblFn‘𝑆)) |
43 | | xp1st 7725 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑝 ∈ (ℚ ×
ℚ) → (1st ‘𝑝) ∈ ℚ) |
44 | 43 | qred 12395 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑝 ∈ (ℚ ×
ℚ) → (1st ‘𝑝) ∈ ℝ) |
45 | 44 | rexrd 10729 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑝 ∈ (ℚ ×
ℚ) → (1st ‘𝑝) ∈
ℝ*) |
46 | 45 | adantl 485 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑝 ∈ (ℚ × ℚ)) →
(1st ‘𝑝)
∈ ℝ*) |
47 | | xp2nd 7726 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑝 ∈ (ℚ ×
ℚ) → (2nd ‘𝑝) ∈ ℚ) |
48 | 47 | qred 12395 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑝 ∈ (ℚ ×
ℚ) → (2nd ‘𝑝) ∈ ℝ) |
49 | 48 | rexrd 10729 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑝 ∈ (ℚ ×
ℚ) → (2nd ‘𝑝) ∈
ℝ*) |
50 | 49 | adantl 485 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑝 ∈ (ℚ × ℚ)) →
(2nd ‘𝑝)
∈ ℝ*) |
51 | 41, 42, 7, 46, 50 | smfpimioo 43785 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑝 ∈ (ℚ × ℚ)) →
(◡𝐹 “ ((1st ‘𝑝)(,)(2nd ‘𝑝))) ∈ (𝑆 ↾t 𝐷)) |
52 | 40, 51 | jca 515 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑝 ∈ (ℚ × ℚ)) →
(((1st ‘𝑝)(,)(2nd ‘𝑝)) ∈ 𝒫 ℝ ∧ (◡𝐹 “ ((1st ‘𝑝)(,)(2nd ‘𝑝))) ∈ (𝑆 ↾t 𝐷))) |
53 | | imaeq2 5897 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑒 = ((1st ‘𝑝)(,)(2nd ‘𝑝)) → (◡𝐹 “ 𝑒) = (◡𝐹 “ ((1st ‘𝑝)(,)(2nd ‘𝑝)))) |
54 | 53 | eleq1d 2836 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑒 = ((1st ‘𝑝)(,)(2nd ‘𝑝)) → ((◡𝐹 “ 𝑒) ∈ (𝑆 ↾t 𝐷) ↔ (◡𝐹 “ ((1st ‘𝑝)(,)(2nd ‘𝑝))) ∈ (𝑆 ↾t 𝐷))) |
55 | 54, 8 | elrab2 3605 |
. . . . . . . . . . . . . . . . . 18
⊢
(((1st ‘𝑝)(,)(2nd ‘𝑝)) ∈ 𝑇 ↔ (((1st ‘𝑝)(,)(2nd ‘𝑝)) ∈ 𝒫 ℝ
∧ (◡𝐹 “ ((1st ‘𝑝)(,)(2nd ‘𝑝))) ∈ (𝑆 ↾t 𝐷))) |
56 | 52, 55 | sylibr 237 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑝 ∈ (ℚ × ℚ)) →
((1st ‘𝑝)(,)(2nd ‘𝑝)) ∈ 𝑇) |
57 | 56 | 3adant3 1129 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑝 ∈ (ℚ × ℚ) ∧
((,)‘𝑝) = 𝑞) → ((1st
‘𝑝)(,)(2nd
‘𝑝)) ∈ 𝑇) |
58 | 35, 57 | eqeltrd 2852 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑝 ∈ (ℚ × ℚ) ∧
((,)‘𝑝) = 𝑞) → 𝑞 ∈ 𝑇) |
59 | 58 | 3exp 1116 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑝 ∈ (ℚ × ℚ) →
(((,)‘𝑝) = 𝑞 → 𝑞 ∈ 𝑇))) |
60 | 59 | rexlimdv 3207 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (∃𝑝 ∈ (ℚ ×
ℚ)((,)‘𝑝) =
𝑞 → 𝑞 ∈ 𝑇)) |
61 | 60 | adantr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑞 ∈ ((,) “ (ℚ ×
ℚ))) → (∃𝑝
∈ (ℚ × ℚ)((,)‘𝑝) = 𝑞 → 𝑞 ∈ 𝑇)) |
62 | 23, 61 | mpd 15 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑞 ∈ ((,) “ (ℚ ×
ℚ))) → 𝑞 ∈
𝑇) |
63 | 62 | ssd 42089 |
. . . . . . . . . 10
⊢ (𝜑 → ((,) “ (ℚ
× ℚ)) ⊆ 𝑇) |
64 | 63 | adantr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑞 ⊆ ((,) “ (ℚ ×
ℚ))) → ((,) “ (ℚ × ℚ)) ⊆ 𝑇) |
65 | 17, 64 | sstrd 3902 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑞 ⊆ ((,) “ (ℚ ×
ℚ))) → 𝑞 ⊆
𝑇) |
66 | 16, 65 | elpwd 4502 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑞 ⊆ ((,) “ (ℚ ×
ℚ))) → 𝑞 ∈
𝒫 𝑇) |
67 | | ssdomg 8573 |
. . . . . . . . . 10
⊢ (((,)
“ (ℚ × ℚ)) ∈ V → (𝑞 ⊆ ((,) “ (ℚ ×
ℚ)) → 𝑞 ≼
((,) “ (ℚ × ℚ)))) |
68 | 12, 67 | ax-mp 5 |
. . . . . . . . 9
⊢ (𝑞 ⊆ ((,) “ (ℚ
× ℚ)) → 𝑞
≼ ((,) “ (ℚ × ℚ))) |
69 | | qct 42362 |
. . . . . . . . . . . . 13
⊢ ℚ
≼ ω |
70 | 69, 69 | pm3.2i 474 |
. . . . . . . . . . . 12
⊢ (ℚ
≼ ω ∧ ℚ ≼ ω) |
71 | | xpct 9476 |
. . . . . . . . . . . 12
⊢ ((ℚ
≼ ω ∧ ℚ ≼ ω) → (ℚ × ℚ)
≼ ω) |
72 | 70, 71 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (ℚ
× ℚ) ≼ ω |
73 | | fimact 9995 |
. . . . . . . . . . 11
⊢
(((ℚ × ℚ) ≼ ω ∧ Fun (,)) → ((,)
“ (ℚ × ℚ)) ≼ ω) |
74 | 72, 18, 73 | mp2an 691 |
. . . . . . . . . 10
⊢ ((,)
“ (ℚ × ℚ)) ≼ ω |
75 | 74 | a1i 11 |
. . . . . . . . 9
⊢ (𝑞 ⊆ ((,) “ (ℚ
× ℚ)) → ((,) “ (ℚ × ℚ)) ≼
ω) |
76 | | domtr 8580 |
. . . . . . . . 9
⊢ ((𝑞 ≼ ((,) “ (ℚ
× ℚ)) ∧ ((,) “ (ℚ × ℚ)) ≼
ω) → 𝑞 ≼
ω) |
77 | 68, 75, 76 | syl2anc 587 |
. . . . . . . 8
⊢ (𝑞 ⊆ ((,) “ (ℚ
× ℚ)) → 𝑞
≼ ω) |
78 | 77 | adantl 485 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑞 ⊆ ((,) “ (ℚ ×
ℚ))) → 𝑞 ≼
ω) |
79 | 10, 66, 78 | salunicl 43324 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑞 ⊆ ((,) “ (ℚ ×
ℚ))) → ∪ 𝑞 ∈ 𝑇) |
80 | 79 | adantrr 716 |
. . . . 5
⊢ ((𝜑 ∧ (𝑞 ⊆ ((,) “ (ℚ ×
ℚ)) ∧ 𝐺 = ∪ 𝑞))
→ ∪ 𝑞 ∈ 𝑇) |
81 | 4, 80 | eqeltrd 2852 |
. . . 4
⊢ ((𝜑 ∧ (𝑞 ⊆ ((,) “ (ℚ ×
ℚ)) ∧ 𝐺 = ∪ 𝑞))
→ 𝐺 ∈ 𝑇) |
82 | 81 | ex 416 |
. . 3
⊢ (𝜑 → ((𝑞 ⊆ ((,) “ (ℚ ×
ℚ)) ∧ 𝐺 = ∪ 𝑞)
→ 𝐺 ∈ 𝑇)) |
83 | 82 | exlimdv 1934 |
. 2
⊢ (𝜑 → (∃𝑞(𝑞 ⊆ ((,) “ (ℚ ×
ℚ)) ∧ 𝐺 = ∪ 𝑞)
→ 𝐺 ∈ 𝑇)) |
84 | 3, 83 | mpd 15 |
1
⊢ (𝜑 → 𝐺 ∈ 𝑇) |