Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfpimbor1lem1 Structured version   Visualization version   GIF version

Theorem smfpimbor1lem1 46836
Description: Every open set belongs to 𝑇. This is the second step in the proof of Proposition 121E (f) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfpimbor1lem1.s (𝜑𝑆 ∈ SAlg)
smfpimbor1lem1.f (𝜑𝐹 ∈ (SMblFn‘𝑆))
smfpimbor1lem1.a 𝐷 = dom 𝐹
smfpimbor1lem1.j 𝐽 = (topGen‘ran (,))
smfpimbor1lem1.8 (𝜑𝐺𝐽)
smfpimbor1lem1.t 𝑇 = {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)}
Assertion
Ref Expression
smfpimbor1lem1 (𝜑𝐺𝑇)
Distinct variable groups:   𝐷,𝑒   𝑒,𝐹   𝑆,𝑒   𝜑,𝑒
Allowed substitution hints:   𝑇(𝑒)   𝐺(𝑒)   𝐽(𝑒)

Proof of Theorem smfpimbor1lem1
Dummy variables 𝑞 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smfpimbor1lem1.j . . 3 𝐽 = (topGen‘ran (,))
2 smfpimbor1lem1.8 . . 3 (𝜑𝐺𝐽)
31, 2tgqioo2 45587 . 2 (𝜑 → ∃𝑞(𝑞 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐺 = 𝑞))
4 simprr 772 . . . . 5 ((𝜑 ∧ (𝑞 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐺 = 𝑞)) → 𝐺 = 𝑞)
5 smfpimbor1lem1.s . . . . . . . . 9 (𝜑𝑆 ∈ SAlg)
6 smfpimbor1lem1.f . . . . . . . . 9 (𝜑𝐹 ∈ (SMblFn‘𝑆))
7 smfpimbor1lem1.a . . . . . . . . 9 𝐷 = dom 𝐹
8 smfpimbor1lem1.t . . . . . . . . 9 𝑇 = {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)}
95, 6, 7, 8smfresal 46826 . . . . . . . 8 (𝜑𝑇 ∈ SAlg)
109adantr 480 . . . . . . 7 ((𝜑𝑞 ⊆ ((,) “ (ℚ × ℚ))) → 𝑇 ∈ SAlg)
11 iooex 13263 . . . . . . . . . . . 12 (,) ∈ V
1211imaexi 45258 . . . . . . . . . . 11 ((,) “ (ℚ × ℚ)) ∈ V
1312a1i 11 . . . . . . . . . 10 (𝑞 ⊆ ((,) “ (ℚ × ℚ)) → ((,) “ (ℚ × ℚ)) ∈ V)
14 id 22 . . . . . . . . . 10 (𝑞 ⊆ ((,) “ (ℚ × ℚ)) → 𝑞 ⊆ ((,) “ (ℚ × ℚ)))
1513, 14ssexd 5257 . . . . . . . . 9 (𝑞 ⊆ ((,) “ (ℚ × ℚ)) → 𝑞 ∈ V)
1615adantl 481 . . . . . . . 8 ((𝜑𝑞 ⊆ ((,) “ (ℚ × ℚ))) → 𝑞 ∈ V)
17 simpr 484 . . . . . . . . 9 ((𝜑𝑞 ⊆ ((,) “ (ℚ × ℚ))) → 𝑞 ⊆ ((,) “ (ℚ × ℚ)))
18 ioofun 45591 . . . . . . . . . . . . . . 15 Fun (,)
1918a1i 11 . . . . . . . . . . . . . 14 (𝑞 ∈ ((,) “ (ℚ × ℚ)) → Fun (,))
20 id 22 . . . . . . . . . . . . . 14 (𝑞 ∈ ((,) “ (ℚ × ℚ)) → 𝑞 ∈ ((,) “ (ℚ × ℚ)))
21 fvelima 6882 . . . . . . . . . . . . . 14 ((Fun (,) ∧ 𝑞 ∈ ((,) “ (ℚ × ℚ))) → ∃𝑝 ∈ (ℚ × ℚ)((,)‘𝑝) = 𝑞)
2219, 20, 21syl2anc 584 . . . . . . . . . . . . 13 (𝑞 ∈ ((,) “ (ℚ × ℚ)) → ∃𝑝 ∈ (ℚ × ℚ)((,)‘𝑝) = 𝑞)
2322adantl 481 . . . . . . . . . . . 12 ((𝜑𝑞 ∈ ((,) “ (ℚ × ℚ))) → ∃𝑝 ∈ (ℚ × ℚ)((,)‘𝑝) = 𝑞)
24 id 22 . . . . . . . . . . . . . . . . . . . 20 (((,)‘𝑝) = 𝑞 → ((,)‘𝑝) = 𝑞)
2524eqcomd 2737 . . . . . . . . . . . . . . . . . . 19 (((,)‘𝑝) = 𝑞𝑞 = ((,)‘𝑝))
2625adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ (ℚ × ℚ) ∧ ((,)‘𝑝) = 𝑞) → 𝑞 = ((,)‘𝑝))
27 1st2nd2 7955 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 ∈ (ℚ × ℚ) → 𝑝 = ⟨(1st𝑝), (2nd𝑝)⟩)
2827fveq2d 6821 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ (ℚ × ℚ) → ((,)‘𝑝) = ((,)‘⟨(1st𝑝), (2nd𝑝)⟩))
29 df-ov 7344 . . . . . . . . . . . . . . . . . . . . . 22 ((1st𝑝)(,)(2nd𝑝)) = ((,)‘⟨(1st𝑝), (2nd𝑝)⟩)
3029eqcomi 2740 . . . . . . . . . . . . . . . . . . . . 21 ((,)‘⟨(1st𝑝), (2nd𝑝)⟩) = ((1st𝑝)(,)(2nd𝑝))
3130a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ (ℚ × ℚ) → ((,)‘⟨(1st𝑝), (2nd𝑝)⟩) = ((1st𝑝)(,)(2nd𝑝)))
3228, 31eqtrd 2766 . . . . . . . . . . . . . . . . . . 19 (𝑝 ∈ (ℚ × ℚ) → ((,)‘𝑝) = ((1st𝑝)(,)(2nd𝑝)))
3332adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ (ℚ × ℚ) ∧ ((,)‘𝑝) = 𝑞) → ((,)‘𝑝) = ((1st𝑝)(,)(2nd𝑝)))
3426, 33eqtrd 2766 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℚ × ℚ) ∧ ((,)‘𝑝) = 𝑞) → 𝑞 = ((1st𝑝)(,)(2nd𝑝)))
35343adant1 1130 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ (ℚ × ℚ) ∧ ((,)‘𝑝) = 𝑞) → 𝑞 = ((1st𝑝)(,)(2nd𝑝)))
36 ioossre 13302 . . . . . . . . . . . . . . . . . . . . 21 ((1st𝑝)(,)(2nd𝑝)) ⊆ ℝ
37 ovex 7374 . . . . . . . . . . . . . . . . . . . . . 22 ((1st𝑝)(,)(2nd𝑝)) ∈ V
3837elpw 4549 . . . . . . . . . . . . . . . . . . . . 21 (((1st𝑝)(,)(2nd𝑝)) ∈ 𝒫 ℝ ↔ ((1st𝑝)(,)(2nd𝑝)) ⊆ ℝ)
3936, 38mpbir 231 . . . . . . . . . . . . . . . . . . . 20 ((1st𝑝)(,)(2nd𝑝)) ∈ 𝒫 ℝ
4039a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 ∈ (ℚ × ℚ)) → ((1st𝑝)(,)(2nd𝑝)) ∈ 𝒫 ℝ)
415adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑝 ∈ (ℚ × ℚ)) → 𝑆 ∈ SAlg)
426adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑝 ∈ (ℚ × ℚ)) → 𝐹 ∈ (SMblFn‘𝑆))
43 xp1st 7948 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 ∈ (ℚ × ℚ) → (1st𝑝) ∈ ℚ)
4443qred 12848 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 ∈ (ℚ × ℚ) → (1st𝑝) ∈ ℝ)
4544rexrd 11157 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 ∈ (ℚ × ℚ) → (1st𝑝) ∈ ℝ*)
4645adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑝 ∈ (ℚ × ℚ)) → (1st𝑝) ∈ ℝ*)
47 xp2nd 7949 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 ∈ (ℚ × ℚ) → (2nd𝑝) ∈ ℚ)
4847qred 12848 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 ∈ (ℚ × ℚ) → (2nd𝑝) ∈ ℝ)
4948rexrd 11157 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 ∈ (ℚ × ℚ) → (2nd𝑝) ∈ ℝ*)
5049adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑝 ∈ (ℚ × ℚ)) → (2nd𝑝) ∈ ℝ*)
5141, 42, 7, 46, 50smfpimioo 46825 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 ∈ (ℚ × ℚ)) → (𝐹 “ ((1st𝑝)(,)(2nd𝑝))) ∈ (𝑆t 𝐷))
5240, 51jca 511 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑝 ∈ (ℚ × ℚ)) → (((1st𝑝)(,)(2nd𝑝)) ∈ 𝒫 ℝ ∧ (𝐹 “ ((1st𝑝)(,)(2nd𝑝))) ∈ (𝑆t 𝐷)))
53 imaeq2 6000 . . . . . . . . . . . . . . . . . . . 20 (𝑒 = ((1st𝑝)(,)(2nd𝑝)) → (𝐹𝑒) = (𝐹 “ ((1st𝑝)(,)(2nd𝑝))))
5453eleq1d 2816 . . . . . . . . . . . . . . . . . . 19 (𝑒 = ((1st𝑝)(,)(2nd𝑝)) → ((𝐹𝑒) ∈ (𝑆t 𝐷) ↔ (𝐹 “ ((1st𝑝)(,)(2nd𝑝))) ∈ (𝑆t 𝐷)))
5554, 8elrab2 3645 . . . . . . . . . . . . . . . . . 18 (((1st𝑝)(,)(2nd𝑝)) ∈ 𝑇 ↔ (((1st𝑝)(,)(2nd𝑝)) ∈ 𝒫 ℝ ∧ (𝐹 “ ((1st𝑝)(,)(2nd𝑝))) ∈ (𝑆t 𝐷)))
5652, 55sylibr 234 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (ℚ × ℚ)) → ((1st𝑝)(,)(2nd𝑝)) ∈ 𝑇)
57563adant3 1132 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ (ℚ × ℚ) ∧ ((,)‘𝑝) = 𝑞) → ((1st𝑝)(,)(2nd𝑝)) ∈ 𝑇)
5835, 57eqeltrd 2831 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ (ℚ × ℚ) ∧ ((,)‘𝑝) = 𝑞) → 𝑞𝑇)
59583exp 1119 . . . . . . . . . . . . . 14 (𝜑 → (𝑝 ∈ (ℚ × ℚ) → (((,)‘𝑝) = 𝑞𝑞𝑇)))
6059rexlimdv 3131 . . . . . . . . . . . . 13 (𝜑 → (∃𝑝 ∈ (ℚ × ℚ)((,)‘𝑝) = 𝑞𝑞𝑇))
6160adantr 480 . . . . . . . . . . . 12 ((𝜑𝑞 ∈ ((,) “ (ℚ × ℚ))) → (∃𝑝 ∈ (ℚ × ℚ)((,)‘𝑝) = 𝑞𝑞𝑇))
6223, 61mpd 15 . . . . . . . . . . 11 ((𝜑𝑞 ∈ ((,) “ (ℚ × ℚ))) → 𝑞𝑇)
6362ssd 45117 . . . . . . . . . 10 (𝜑 → ((,) “ (ℚ × ℚ)) ⊆ 𝑇)
6463adantr 480 . . . . . . . . 9 ((𝜑𝑞 ⊆ ((,) “ (ℚ × ℚ))) → ((,) “ (ℚ × ℚ)) ⊆ 𝑇)
6517, 64sstrd 3940 . . . . . . . 8 ((𝜑𝑞 ⊆ ((,) “ (ℚ × ℚ))) → 𝑞𝑇)
6616, 65elpwd 4551 . . . . . . 7 ((𝜑𝑞 ⊆ ((,) “ (ℚ × ℚ))) → 𝑞 ∈ 𝒫 𝑇)
67 ssdomg 8917 . . . . . . . . . 10 (((,) “ (ℚ × ℚ)) ∈ V → (𝑞 ⊆ ((,) “ (ℚ × ℚ)) → 𝑞 ≼ ((,) “ (ℚ × ℚ))))
6812, 67ax-mp 5 . . . . . . . . 9 (𝑞 ⊆ ((,) “ (ℚ × ℚ)) → 𝑞 ≼ ((,) “ (ℚ × ℚ)))
69 qct 45401 . . . . . . . . . . . . 13 ℚ ≼ ω
7069, 69pm3.2i 470 . . . . . . . . . . . 12 (ℚ ≼ ω ∧ ℚ ≼ ω)
71 xpct 9902 . . . . . . . . . . . 12 ((ℚ ≼ ω ∧ ℚ ≼ ω) → (ℚ × ℚ) ≼ ω)
7270, 71ax-mp 5 . . . . . . . . . . 11 (ℚ × ℚ) ≼ ω
73 fimact 10421 . . . . . . . . . . 11 (((ℚ × ℚ) ≼ ω ∧ Fun (,)) → ((,) “ (ℚ × ℚ)) ≼ ω)
7472, 18, 73mp2an 692 . . . . . . . . . 10 ((,) “ (ℚ × ℚ)) ≼ ω
7574a1i 11 . . . . . . . . 9 (𝑞 ⊆ ((,) “ (ℚ × ℚ)) → ((,) “ (ℚ × ℚ)) ≼ ω)
76 domtr 8924 . . . . . . . . 9 ((𝑞 ≼ ((,) “ (ℚ × ℚ)) ∧ ((,) “ (ℚ × ℚ)) ≼ ω) → 𝑞 ≼ ω)
7768, 75, 76syl2anc 584 . . . . . . . 8 (𝑞 ⊆ ((,) “ (ℚ × ℚ)) → 𝑞 ≼ ω)
7877adantl 481 . . . . . . 7 ((𝜑𝑞 ⊆ ((,) “ (ℚ × ℚ))) → 𝑞 ≼ ω)
7910, 66, 78salunicl 46354 . . . . . 6 ((𝜑𝑞 ⊆ ((,) “ (ℚ × ℚ))) → 𝑞𝑇)
8079adantrr 717 . . . . 5 ((𝜑 ∧ (𝑞 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐺 = 𝑞)) → 𝑞𝑇)
814, 80eqeltrd 2831 . . . 4 ((𝜑 ∧ (𝑞 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐺 = 𝑞)) → 𝐺𝑇)
8281ex 412 . . 3 (𝜑 → ((𝑞 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐺 = 𝑞) → 𝐺𝑇))
8382exlimdv 1934 . 2 (𝜑 → (∃𝑞(𝑞 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐺 = 𝑞) → 𝐺𝑇))
843, 83mpd 15 1 (𝜑𝐺𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  wrex 3056  {crab 3395  Vcvv 3436  wss 3897  𝒫 cpw 4545  cop 4577   cuni 4854   class class class wbr 5086   × cxp 5609  ccnv 5610  dom cdm 5611  ran crn 5612  cima 5614  Fun wfun 6470  cfv 6476  (class class class)co 7341  ωcom 7791  1st c1st 7914  2nd c2nd 7915  cdom 8862  cr 11000  *cxr 11140  cq 12841  (,)cioo 13240  t crest 17319  topGenctg 17336  SAlgcsalg 46346  SMblFncsmblfn 46733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-inf2 9526  ax-cc 10321  ax-ac2 10349  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-omul 8385  df-er 8617  df-map 8747  df-pm 8748  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-sup 9321  df-inf 9322  df-oi 9391  df-card 9827  df-acn 9830  df-ac 10002  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-n0 12377  df-z 12464  df-uz 12728  df-q 12842  df-rp 12886  df-ioo 13244  df-ico 13246  df-fl 13691  df-rest 17321  df-topgen 17342  df-bases 22856  df-salg 46347  df-smblfn 46734
This theorem is referenced by:  smfpimbor1lem2  46837
  Copyright terms: Public domain W3C validator