Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfpimbor1lem1 Structured version   Visualization version   GIF version

Theorem smfpimbor1lem1 43796
Description: Every open set belongs to 𝑇. This is the second step in the proof of Proposition 121E (f) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfpimbor1lem1.s (𝜑𝑆 ∈ SAlg)
smfpimbor1lem1.f (𝜑𝐹 ∈ (SMblFn‘𝑆))
smfpimbor1lem1.a 𝐷 = dom 𝐹
smfpimbor1lem1.j 𝐽 = (topGen‘ran (,))
smfpimbor1lem1.8 (𝜑𝐺𝐽)
smfpimbor1lem1.t 𝑇 = {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)}
Assertion
Ref Expression
smfpimbor1lem1 (𝜑𝐺𝑇)
Distinct variable groups:   𝐷,𝑒   𝑒,𝐹   𝑆,𝑒   𝜑,𝑒
Allowed substitution hints:   𝑇(𝑒)   𝐺(𝑒)   𝐽(𝑒)

Proof of Theorem smfpimbor1lem1
Dummy variables 𝑞 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smfpimbor1lem1.j . . 3 𝐽 = (topGen‘ran (,))
2 smfpimbor1lem1.8 . . 3 (𝜑𝐺𝐽)
31, 2tgqioo2 42550 . 2 (𝜑 → ∃𝑞(𝑞 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐺 = 𝑞))
4 simprr 772 . . . . 5 ((𝜑 ∧ (𝑞 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐺 = 𝑞)) → 𝐺 = 𝑞)
5 smfpimbor1lem1.s . . . . . . . . 9 (𝜑𝑆 ∈ SAlg)
6 smfpimbor1lem1.f . . . . . . . . 9 (𝜑𝐹 ∈ (SMblFn‘𝑆))
7 smfpimbor1lem1.a . . . . . . . . 9 𝐷 = dom 𝐹
8 smfpimbor1lem1.t . . . . . . . . 9 𝑇 = {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)}
95, 6, 7, 8smfresal 43786 . . . . . . . 8 (𝜑𝑇 ∈ SAlg)
109adantr 484 . . . . . . 7 ((𝜑𝑞 ⊆ ((,) “ (ℚ × ℚ))) → 𝑇 ∈ SAlg)
11 iooex 12802 . . . . . . . . . . . 12 (,) ∈ V
1211imaexi 42220 . . . . . . . . . . 11 ((,) “ (ℚ × ℚ)) ∈ V
1312a1i 11 . . . . . . . . . 10 (𝑞 ⊆ ((,) “ (ℚ × ℚ)) → ((,) “ (ℚ × ℚ)) ∈ V)
14 id 22 . . . . . . . . . 10 (𝑞 ⊆ ((,) “ (ℚ × ℚ)) → 𝑞 ⊆ ((,) “ (ℚ × ℚ)))
1513, 14ssexd 5194 . . . . . . . . 9 (𝑞 ⊆ ((,) “ (ℚ × ℚ)) → 𝑞 ∈ V)
1615adantl 485 . . . . . . . 8 ((𝜑𝑞 ⊆ ((,) “ (ℚ × ℚ))) → 𝑞 ∈ V)
17 simpr 488 . . . . . . . . 9 ((𝜑𝑞 ⊆ ((,) “ (ℚ × ℚ))) → 𝑞 ⊆ ((,) “ (ℚ × ℚ)))
18 ioofun 42554 . . . . . . . . . . . . . . 15 Fun (,)
1918a1i 11 . . . . . . . . . . . . . 14 (𝑞 ∈ ((,) “ (ℚ × ℚ)) → Fun (,))
20 id 22 . . . . . . . . . . . . . 14 (𝑞 ∈ ((,) “ (ℚ × ℚ)) → 𝑞 ∈ ((,) “ (ℚ × ℚ)))
21 fvelima 6719 . . . . . . . . . . . . . 14 ((Fun (,) ∧ 𝑞 ∈ ((,) “ (ℚ × ℚ))) → ∃𝑝 ∈ (ℚ × ℚ)((,)‘𝑝) = 𝑞)
2219, 20, 21syl2anc 587 . . . . . . . . . . . . 13 (𝑞 ∈ ((,) “ (ℚ × ℚ)) → ∃𝑝 ∈ (ℚ × ℚ)((,)‘𝑝) = 𝑞)
2322adantl 485 . . . . . . . . . . . 12 ((𝜑𝑞 ∈ ((,) “ (ℚ × ℚ))) → ∃𝑝 ∈ (ℚ × ℚ)((,)‘𝑝) = 𝑞)
24 id 22 . . . . . . . . . . . . . . . . . . . 20 (((,)‘𝑝) = 𝑞 → ((,)‘𝑝) = 𝑞)
2524eqcomd 2764 . . . . . . . . . . . . . . . . . . 19 (((,)‘𝑝) = 𝑞𝑞 = ((,)‘𝑝))
2625adantl 485 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ (ℚ × ℚ) ∧ ((,)‘𝑝) = 𝑞) → 𝑞 = ((,)‘𝑝))
27 1st2nd2 7732 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 ∈ (ℚ × ℚ) → 𝑝 = ⟨(1st𝑝), (2nd𝑝)⟩)
2827fveq2d 6662 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ (ℚ × ℚ) → ((,)‘𝑝) = ((,)‘⟨(1st𝑝), (2nd𝑝)⟩))
29 df-ov 7153 . . . . . . . . . . . . . . . . . . . . . 22 ((1st𝑝)(,)(2nd𝑝)) = ((,)‘⟨(1st𝑝), (2nd𝑝)⟩)
3029eqcomi 2767 . . . . . . . . . . . . . . . . . . . . 21 ((,)‘⟨(1st𝑝), (2nd𝑝)⟩) = ((1st𝑝)(,)(2nd𝑝))
3130a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ (ℚ × ℚ) → ((,)‘⟨(1st𝑝), (2nd𝑝)⟩) = ((1st𝑝)(,)(2nd𝑝)))
3228, 31eqtrd 2793 . . . . . . . . . . . . . . . . . . 19 (𝑝 ∈ (ℚ × ℚ) → ((,)‘𝑝) = ((1st𝑝)(,)(2nd𝑝)))
3332adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ (ℚ × ℚ) ∧ ((,)‘𝑝) = 𝑞) → ((,)‘𝑝) = ((1st𝑝)(,)(2nd𝑝)))
3426, 33eqtrd 2793 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℚ × ℚ) ∧ ((,)‘𝑝) = 𝑞) → 𝑞 = ((1st𝑝)(,)(2nd𝑝)))
35343adant1 1127 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ (ℚ × ℚ) ∧ ((,)‘𝑝) = 𝑞) → 𝑞 = ((1st𝑝)(,)(2nd𝑝)))
36 ioossre 12840 . . . . . . . . . . . . . . . . . . . . 21 ((1st𝑝)(,)(2nd𝑝)) ⊆ ℝ
37 ovex 7183 . . . . . . . . . . . . . . . . . . . . . 22 ((1st𝑝)(,)(2nd𝑝)) ∈ V
3837elpw 4498 . . . . . . . . . . . . . . . . . . . . 21 (((1st𝑝)(,)(2nd𝑝)) ∈ 𝒫 ℝ ↔ ((1st𝑝)(,)(2nd𝑝)) ⊆ ℝ)
3936, 38mpbir 234 . . . . . . . . . . . . . . . . . . . 20 ((1st𝑝)(,)(2nd𝑝)) ∈ 𝒫 ℝ
4039a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 ∈ (ℚ × ℚ)) → ((1st𝑝)(,)(2nd𝑝)) ∈ 𝒫 ℝ)
415adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑝 ∈ (ℚ × ℚ)) → 𝑆 ∈ SAlg)
426adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑝 ∈ (ℚ × ℚ)) → 𝐹 ∈ (SMblFn‘𝑆))
43 xp1st 7725 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 ∈ (ℚ × ℚ) → (1st𝑝) ∈ ℚ)
4443qred 12395 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 ∈ (ℚ × ℚ) → (1st𝑝) ∈ ℝ)
4544rexrd 10729 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 ∈ (ℚ × ℚ) → (1st𝑝) ∈ ℝ*)
4645adantl 485 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑝 ∈ (ℚ × ℚ)) → (1st𝑝) ∈ ℝ*)
47 xp2nd 7726 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 ∈ (ℚ × ℚ) → (2nd𝑝) ∈ ℚ)
4847qred 12395 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 ∈ (ℚ × ℚ) → (2nd𝑝) ∈ ℝ)
4948rexrd 10729 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 ∈ (ℚ × ℚ) → (2nd𝑝) ∈ ℝ*)
5049adantl 485 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑝 ∈ (ℚ × ℚ)) → (2nd𝑝) ∈ ℝ*)
5141, 42, 7, 46, 50smfpimioo 43785 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 ∈ (ℚ × ℚ)) → (𝐹 “ ((1st𝑝)(,)(2nd𝑝))) ∈ (𝑆t 𝐷))
5240, 51jca 515 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑝 ∈ (ℚ × ℚ)) → (((1st𝑝)(,)(2nd𝑝)) ∈ 𝒫 ℝ ∧ (𝐹 “ ((1st𝑝)(,)(2nd𝑝))) ∈ (𝑆t 𝐷)))
53 imaeq2 5897 . . . . . . . . . . . . . . . . . . . 20 (𝑒 = ((1st𝑝)(,)(2nd𝑝)) → (𝐹𝑒) = (𝐹 “ ((1st𝑝)(,)(2nd𝑝))))
5453eleq1d 2836 . . . . . . . . . . . . . . . . . . 19 (𝑒 = ((1st𝑝)(,)(2nd𝑝)) → ((𝐹𝑒) ∈ (𝑆t 𝐷) ↔ (𝐹 “ ((1st𝑝)(,)(2nd𝑝))) ∈ (𝑆t 𝐷)))
5554, 8elrab2 3605 . . . . . . . . . . . . . . . . . 18 (((1st𝑝)(,)(2nd𝑝)) ∈ 𝑇 ↔ (((1st𝑝)(,)(2nd𝑝)) ∈ 𝒫 ℝ ∧ (𝐹 “ ((1st𝑝)(,)(2nd𝑝))) ∈ (𝑆t 𝐷)))
5652, 55sylibr 237 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (ℚ × ℚ)) → ((1st𝑝)(,)(2nd𝑝)) ∈ 𝑇)
57563adant3 1129 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ (ℚ × ℚ) ∧ ((,)‘𝑝) = 𝑞) → ((1st𝑝)(,)(2nd𝑝)) ∈ 𝑇)
5835, 57eqeltrd 2852 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ (ℚ × ℚ) ∧ ((,)‘𝑝) = 𝑞) → 𝑞𝑇)
59583exp 1116 . . . . . . . . . . . . . 14 (𝜑 → (𝑝 ∈ (ℚ × ℚ) → (((,)‘𝑝) = 𝑞𝑞𝑇)))
6059rexlimdv 3207 . . . . . . . . . . . . 13 (𝜑 → (∃𝑝 ∈ (ℚ × ℚ)((,)‘𝑝) = 𝑞𝑞𝑇))
6160adantr 484 . . . . . . . . . . . 12 ((𝜑𝑞 ∈ ((,) “ (ℚ × ℚ))) → (∃𝑝 ∈ (ℚ × ℚ)((,)‘𝑝) = 𝑞𝑞𝑇))
6223, 61mpd 15 . . . . . . . . . . 11 ((𝜑𝑞 ∈ ((,) “ (ℚ × ℚ))) → 𝑞𝑇)
6362ssd 42089 . . . . . . . . . 10 (𝜑 → ((,) “ (ℚ × ℚ)) ⊆ 𝑇)
6463adantr 484 . . . . . . . . 9 ((𝜑𝑞 ⊆ ((,) “ (ℚ × ℚ))) → ((,) “ (ℚ × ℚ)) ⊆ 𝑇)
6517, 64sstrd 3902 . . . . . . . 8 ((𝜑𝑞 ⊆ ((,) “ (ℚ × ℚ))) → 𝑞𝑇)
6616, 65elpwd 4502 . . . . . . 7 ((𝜑𝑞 ⊆ ((,) “ (ℚ × ℚ))) → 𝑞 ∈ 𝒫 𝑇)
67 ssdomg 8573 . . . . . . . . . 10 (((,) “ (ℚ × ℚ)) ∈ V → (𝑞 ⊆ ((,) “ (ℚ × ℚ)) → 𝑞 ≼ ((,) “ (ℚ × ℚ))))
6812, 67ax-mp 5 . . . . . . . . 9 (𝑞 ⊆ ((,) “ (ℚ × ℚ)) → 𝑞 ≼ ((,) “ (ℚ × ℚ)))
69 qct 42362 . . . . . . . . . . . . 13 ℚ ≼ ω
7069, 69pm3.2i 474 . . . . . . . . . . . 12 (ℚ ≼ ω ∧ ℚ ≼ ω)
71 xpct 9476 . . . . . . . . . . . 12 ((ℚ ≼ ω ∧ ℚ ≼ ω) → (ℚ × ℚ) ≼ ω)
7270, 71ax-mp 5 . . . . . . . . . . 11 (ℚ × ℚ) ≼ ω
73 fimact 9995 . . . . . . . . . . 11 (((ℚ × ℚ) ≼ ω ∧ Fun (,)) → ((,) “ (ℚ × ℚ)) ≼ ω)
7472, 18, 73mp2an 691 . . . . . . . . . 10 ((,) “ (ℚ × ℚ)) ≼ ω
7574a1i 11 . . . . . . . . 9 (𝑞 ⊆ ((,) “ (ℚ × ℚ)) → ((,) “ (ℚ × ℚ)) ≼ ω)
76 domtr 8580 . . . . . . . . 9 ((𝑞 ≼ ((,) “ (ℚ × ℚ)) ∧ ((,) “ (ℚ × ℚ)) ≼ ω) → 𝑞 ≼ ω)
7768, 75, 76syl2anc 587 . . . . . . . 8 (𝑞 ⊆ ((,) “ (ℚ × ℚ)) → 𝑞 ≼ ω)
7877adantl 485 . . . . . . 7 ((𝜑𝑞 ⊆ ((,) “ (ℚ × ℚ))) → 𝑞 ≼ ω)
7910, 66, 78salunicl 43324 . . . . . 6 ((𝜑𝑞 ⊆ ((,) “ (ℚ × ℚ))) → 𝑞𝑇)
8079adantrr 716 . . . . 5 ((𝜑 ∧ (𝑞 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐺 = 𝑞)) → 𝑞𝑇)
814, 80eqeltrd 2852 . . . 4 ((𝜑 ∧ (𝑞 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐺 = 𝑞)) → 𝐺𝑇)
8281ex 416 . . 3 (𝜑 → ((𝑞 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐺 = 𝑞) → 𝐺𝑇))
8382exlimdv 1934 . 2 (𝜑 → (∃𝑞(𝑞 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐺 = 𝑞) → 𝐺𝑇))
843, 83mpd 15 1 (𝜑𝐺𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wex 1781  wcel 2111  wrex 3071  {crab 3074  Vcvv 3409  wss 3858  𝒫 cpw 4494  cop 4528   cuni 4798   class class class wbr 5032   × cxp 5522  ccnv 5523  dom cdm 5524  ran crn 5525  cima 5527  Fun wfun 6329  cfv 6335  (class class class)co 7150  ωcom 7579  1st c1st 7691  2nd c2nd 7692  cdom 8525  cr 10574  *cxr 10712  cq 12388  (,)cioo 12779  t crest 16752  topGenctg 16769  SAlgcsalg 43316  SMblFncsmblfn 43700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-inf2 9137  ax-cc 9895  ax-ac2 9923  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-pre-sup 10653
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-iin 4886  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-se 5484  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-isom 6344  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-oadd 8116  df-omul 8117  df-er 8299  df-map 8418  df-pm 8419  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-sup 8939  df-inf 8940  df-oi 9007  df-card 9401  df-acn 9404  df-ac 9576  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675  df-n0 11935  df-z 12021  df-uz 12283  df-q 12389  df-rp 12431  df-ioo 12783  df-ico 12785  df-fl 13211  df-rest 16754  df-topgen 16775  df-bases 21646  df-salg 43317  df-smblfn 43701
This theorem is referenced by:  smfpimbor1lem2  43797
  Copyright terms: Public domain W3C validator