| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | smfpimbor1lem1.j | . . 3
⊢ 𝐽 = (topGen‘ran
(,)) | 
| 2 |  | smfpimbor1lem1.8 | . . 3
⊢ (𝜑 → 𝐺 ∈ 𝐽) | 
| 3 | 1, 2 | tgqioo2 45565 | . 2
⊢ (𝜑 → ∃𝑞(𝑞 ⊆ ((,) “ (ℚ ×
ℚ)) ∧ 𝐺 = ∪ 𝑞)) | 
| 4 |  | simprr 772 | . . . . 5
⊢ ((𝜑 ∧ (𝑞 ⊆ ((,) “ (ℚ ×
ℚ)) ∧ 𝐺 = ∪ 𝑞))
→ 𝐺 = ∪ 𝑞) | 
| 5 |  | smfpimbor1lem1.s | . . . . . . . . 9
⊢ (𝜑 → 𝑆 ∈ SAlg) | 
| 6 |  | smfpimbor1lem1.f | . . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | 
| 7 |  | smfpimbor1lem1.a | . . . . . . . . 9
⊢ 𝐷 = dom 𝐹 | 
| 8 |  | smfpimbor1lem1.t | . . . . . . . . 9
⊢ 𝑇 = {𝑒 ∈ 𝒫 ℝ ∣ (◡𝐹 “ 𝑒) ∈ (𝑆 ↾t 𝐷)} | 
| 9 | 5, 6, 7, 8 | smfresal 46808 | . . . . . . . 8
⊢ (𝜑 → 𝑇 ∈ SAlg) | 
| 10 | 9 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑞 ⊆ ((,) “ (ℚ ×
ℚ))) → 𝑇 ∈
SAlg) | 
| 11 |  | iooex 13411 | . . . . . . . . . . . 12
⊢ (,)
∈ V | 
| 12 | 11 | imaexi 45231 | . . . . . . . . . . 11
⊢ ((,)
“ (ℚ × ℚ)) ∈ V | 
| 13 | 12 | a1i 11 | . . . . . . . . . 10
⊢ (𝑞 ⊆ ((,) “ (ℚ
× ℚ)) → ((,) “ (ℚ × ℚ)) ∈
V) | 
| 14 |  | id 22 | . . . . . . . . . 10
⊢ (𝑞 ⊆ ((,) “ (ℚ
× ℚ)) → 𝑞
⊆ ((,) “ (ℚ × ℚ))) | 
| 15 | 13, 14 | ssexd 5323 | . . . . . . . . 9
⊢ (𝑞 ⊆ ((,) “ (ℚ
× ℚ)) → 𝑞
∈ V) | 
| 16 | 15 | adantl 481 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑞 ⊆ ((,) “ (ℚ ×
ℚ))) → 𝑞 ∈
V) | 
| 17 |  | simpr 484 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑞 ⊆ ((,) “ (ℚ ×
ℚ))) → 𝑞 ⊆
((,) “ (ℚ × ℚ))) | 
| 18 |  | ioofun 45569 | . . . . . . . . . . . . . . 15
⊢ Fun
(,) | 
| 19 | 18 | a1i 11 | . . . . . . . . . . . . . 14
⊢ (𝑞 ∈ ((,) “ (ℚ
× ℚ)) → Fun (,)) | 
| 20 |  | id 22 | . . . . . . . . . . . . . 14
⊢ (𝑞 ∈ ((,) “ (ℚ
× ℚ)) → 𝑞
∈ ((,) “ (ℚ × ℚ))) | 
| 21 |  | fvelima 6973 | . . . . . . . . . . . . . 14
⊢ ((Fun (,)
∧ 𝑞 ∈ ((,) “
(ℚ × ℚ))) → ∃𝑝 ∈ (ℚ ×
ℚ)((,)‘𝑝) =
𝑞) | 
| 22 | 19, 20, 21 | syl2anc 584 | . . . . . . . . . . . . 13
⊢ (𝑞 ∈ ((,) “ (ℚ
× ℚ)) → ∃𝑝 ∈ (ℚ ×
ℚ)((,)‘𝑝) =
𝑞) | 
| 23 | 22 | adantl 481 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑞 ∈ ((,) “ (ℚ ×
ℚ))) → ∃𝑝
∈ (ℚ × ℚ)((,)‘𝑝) = 𝑞) | 
| 24 |  | id 22 | . . . . . . . . . . . . . . . . . . . 20
⊢
(((,)‘𝑝) =
𝑞 → ((,)‘𝑝) = 𝑞) | 
| 25 | 24 | eqcomd 2742 | . . . . . . . . . . . . . . . . . . 19
⊢
(((,)‘𝑝) =
𝑞 → 𝑞 = ((,)‘𝑝)) | 
| 26 | 25 | adantl 481 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑝 ∈ (ℚ ×
ℚ) ∧ ((,)‘𝑝) = 𝑞) → 𝑞 = ((,)‘𝑝)) | 
| 27 |  | 1st2nd2 8054 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑝 ∈ (ℚ ×
ℚ) → 𝑝 =
〈(1st ‘𝑝), (2nd ‘𝑝)〉) | 
| 28 | 27 | fveq2d 6909 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑝 ∈ (ℚ ×
ℚ) → ((,)‘𝑝) = ((,)‘〈(1st
‘𝑝), (2nd
‘𝑝)〉)) | 
| 29 |  | df-ov 7435 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
((1st ‘𝑝)(,)(2nd ‘𝑝)) = ((,)‘〈(1st
‘𝑝), (2nd
‘𝑝)〉) | 
| 30 | 29 | eqcomi 2745 | . . . . . . . . . . . . . . . . . . . . 21
⊢
((,)‘〈(1st ‘𝑝), (2nd ‘𝑝)〉) = ((1st ‘𝑝)(,)(2nd ‘𝑝)) | 
| 31 | 30 | a1i 11 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑝 ∈ (ℚ ×
ℚ) → ((,)‘〈(1st ‘𝑝), (2nd ‘𝑝)〉) = ((1st ‘𝑝)(,)(2nd ‘𝑝))) | 
| 32 | 28, 31 | eqtrd 2776 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑝 ∈ (ℚ ×
ℚ) → ((,)‘𝑝) = ((1st ‘𝑝)(,)(2nd ‘𝑝))) | 
| 33 | 32 | adantr 480 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑝 ∈ (ℚ ×
ℚ) ∧ ((,)‘𝑝) = 𝑞) → ((,)‘𝑝) = ((1st ‘𝑝)(,)(2nd ‘𝑝))) | 
| 34 | 26, 33 | eqtrd 2776 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑝 ∈ (ℚ ×
ℚ) ∧ ((,)‘𝑝) = 𝑞) → 𝑞 = ((1st ‘𝑝)(,)(2nd ‘𝑝))) | 
| 35 | 34 | 3adant1 1130 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑝 ∈ (ℚ × ℚ) ∧
((,)‘𝑝) = 𝑞) → 𝑞 = ((1st ‘𝑝)(,)(2nd ‘𝑝))) | 
| 36 |  | ioossre 13449 | . . . . . . . . . . . . . . . . . . . . 21
⊢
((1st ‘𝑝)(,)(2nd ‘𝑝)) ⊆ ℝ | 
| 37 |  | ovex 7465 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
((1st ‘𝑝)(,)(2nd ‘𝑝)) ∈ V | 
| 38 | 37 | elpw 4603 | . . . . . . . . . . . . . . . . . . . . 21
⊢
(((1st ‘𝑝)(,)(2nd ‘𝑝)) ∈ 𝒫 ℝ ↔
((1st ‘𝑝)(,)(2nd ‘𝑝)) ⊆ ℝ) | 
| 39 | 36, 38 | mpbir 231 | . . . . . . . . . . . . . . . . . . . 20
⊢
((1st ‘𝑝)(,)(2nd ‘𝑝)) ∈ 𝒫 ℝ | 
| 40 | 39 | a1i 11 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑝 ∈ (ℚ × ℚ)) →
((1st ‘𝑝)(,)(2nd ‘𝑝)) ∈ 𝒫 ℝ) | 
| 41 | 5 | adantr 480 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑝 ∈ (ℚ × ℚ)) →
𝑆 ∈
SAlg) | 
| 42 | 6 | adantr 480 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑝 ∈ (ℚ × ℚ)) →
𝐹 ∈
(SMblFn‘𝑆)) | 
| 43 |  | xp1st 8047 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑝 ∈ (ℚ ×
ℚ) → (1st ‘𝑝) ∈ ℚ) | 
| 44 | 43 | qred 12998 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑝 ∈ (ℚ ×
ℚ) → (1st ‘𝑝) ∈ ℝ) | 
| 45 | 44 | rexrd 11312 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑝 ∈ (ℚ ×
ℚ) → (1st ‘𝑝) ∈
ℝ*) | 
| 46 | 45 | adantl 481 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑝 ∈ (ℚ × ℚ)) →
(1st ‘𝑝)
∈ ℝ*) | 
| 47 |  | xp2nd 8048 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑝 ∈ (ℚ ×
ℚ) → (2nd ‘𝑝) ∈ ℚ) | 
| 48 | 47 | qred 12998 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑝 ∈ (ℚ ×
ℚ) → (2nd ‘𝑝) ∈ ℝ) | 
| 49 | 48 | rexrd 11312 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑝 ∈ (ℚ ×
ℚ) → (2nd ‘𝑝) ∈
ℝ*) | 
| 50 | 49 | adantl 481 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑝 ∈ (ℚ × ℚ)) →
(2nd ‘𝑝)
∈ ℝ*) | 
| 51 | 41, 42, 7, 46, 50 | smfpimioo 46807 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑝 ∈ (ℚ × ℚ)) →
(◡𝐹 “ ((1st ‘𝑝)(,)(2nd ‘𝑝))) ∈ (𝑆 ↾t 𝐷)) | 
| 52 | 40, 51 | jca 511 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑝 ∈ (ℚ × ℚ)) →
(((1st ‘𝑝)(,)(2nd ‘𝑝)) ∈ 𝒫 ℝ ∧ (◡𝐹 “ ((1st ‘𝑝)(,)(2nd ‘𝑝))) ∈ (𝑆 ↾t 𝐷))) | 
| 53 |  | imaeq2 6073 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑒 = ((1st ‘𝑝)(,)(2nd ‘𝑝)) → (◡𝐹 “ 𝑒) = (◡𝐹 “ ((1st ‘𝑝)(,)(2nd ‘𝑝)))) | 
| 54 | 53 | eleq1d 2825 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑒 = ((1st ‘𝑝)(,)(2nd ‘𝑝)) → ((◡𝐹 “ 𝑒) ∈ (𝑆 ↾t 𝐷) ↔ (◡𝐹 “ ((1st ‘𝑝)(,)(2nd ‘𝑝))) ∈ (𝑆 ↾t 𝐷))) | 
| 55 | 54, 8 | elrab2 3694 | . . . . . . . . . . . . . . . . . 18
⊢
(((1st ‘𝑝)(,)(2nd ‘𝑝)) ∈ 𝑇 ↔ (((1st ‘𝑝)(,)(2nd ‘𝑝)) ∈ 𝒫 ℝ
∧ (◡𝐹 “ ((1st ‘𝑝)(,)(2nd ‘𝑝))) ∈ (𝑆 ↾t 𝐷))) | 
| 56 | 52, 55 | sylibr 234 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑝 ∈ (ℚ × ℚ)) →
((1st ‘𝑝)(,)(2nd ‘𝑝)) ∈ 𝑇) | 
| 57 | 56 | 3adant3 1132 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑝 ∈ (ℚ × ℚ) ∧
((,)‘𝑝) = 𝑞) → ((1st
‘𝑝)(,)(2nd
‘𝑝)) ∈ 𝑇) | 
| 58 | 35, 57 | eqeltrd 2840 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑝 ∈ (ℚ × ℚ) ∧
((,)‘𝑝) = 𝑞) → 𝑞 ∈ 𝑇) | 
| 59 | 58 | 3exp 1119 | . . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑝 ∈ (ℚ × ℚ) →
(((,)‘𝑝) = 𝑞 → 𝑞 ∈ 𝑇))) | 
| 60 | 59 | rexlimdv 3152 | . . . . . . . . . . . . 13
⊢ (𝜑 → (∃𝑝 ∈ (ℚ ×
ℚ)((,)‘𝑝) =
𝑞 → 𝑞 ∈ 𝑇)) | 
| 61 | 60 | adantr 480 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑞 ∈ ((,) “ (ℚ ×
ℚ))) → (∃𝑝
∈ (ℚ × ℚ)((,)‘𝑝) = 𝑞 → 𝑞 ∈ 𝑇)) | 
| 62 | 23, 61 | mpd 15 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑞 ∈ ((,) “ (ℚ ×
ℚ))) → 𝑞 ∈
𝑇) | 
| 63 | 62 | ssd 45090 | . . . . . . . . . 10
⊢ (𝜑 → ((,) “ (ℚ
× ℚ)) ⊆ 𝑇) | 
| 64 | 63 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑞 ⊆ ((,) “ (ℚ ×
ℚ))) → ((,) “ (ℚ × ℚ)) ⊆ 𝑇) | 
| 65 | 17, 64 | sstrd 3993 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑞 ⊆ ((,) “ (ℚ ×
ℚ))) → 𝑞 ⊆
𝑇) | 
| 66 | 16, 65 | elpwd 4605 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑞 ⊆ ((,) “ (ℚ ×
ℚ))) → 𝑞 ∈
𝒫 𝑇) | 
| 67 |  | ssdomg 9041 | . . . . . . . . . 10
⊢ (((,)
“ (ℚ × ℚ)) ∈ V → (𝑞 ⊆ ((,) “ (ℚ ×
ℚ)) → 𝑞 ≼
((,) “ (ℚ × ℚ)))) | 
| 68 | 12, 67 | ax-mp 5 | . . . . . . . . 9
⊢ (𝑞 ⊆ ((,) “ (ℚ
× ℚ)) → 𝑞
≼ ((,) “ (ℚ × ℚ))) | 
| 69 |  | qct 45378 | . . . . . . . . . . . . 13
⊢ ℚ
≼ ω | 
| 70 | 69, 69 | pm3.2i 470 | . . . . . . . . . . . 12
⊢ (ℚ
≼ ω ∧ ℚ ≼ ω) | 
| 71 |  | xpct 10057 | . . . . . . . . . . . 12
⊢ ((ℚ
≼ ω ∧ ℚ ≼ ω) → (ℚ × ℚ)
≼ ω) | 
| 72 | 70, 71 | ax-mp 5 | . . . . . . . . . . 11
⊢ (ℚ
× ℚ) ≼ ω | 
| 73 |  | fimact 10576 | . . . . . . . . . . 11
⊢
(((ℚ × ℚ) ≼ ω ∧ Fun (,)) → ((,)
“ (ℚ × ℚ)) ≼ ω) | 
| 74 | 72, 18, 73 | mp2an 692 | . . . . . . . . . 10
⊢ ((,)
“ (ℚ × ℚ)) ≼ ω | 
| 75 | 74 | a1i 11 | . . . . . . . . 9
⊢ (𝑞 ⊆ ((,) “ (ℚ
× ℚ)) → ((,) “ (ℚ × ℚ)) ≼
ω) | 
| 76 |  | domtr 9048 | . . . . . . . . 9
⊢ ((𝑞 ≼ ((,) “ (ℚ
× ℚ)) ∧ ((,) “ (ℚ × ℚ)) ≼
ω) → 𝑞 ≼
ω) | 
| 77 | 68, 75, 76 | syl2anc 584 | . . . . . . . 8
⊢ (𝑞 ⊆ ((,) “ (ℚ
× ℚ)) → 𝑞
≼ ω) | 
| 78 | 77 | adantl 481 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑞 ⊆ ((,) “ (ℚ ×
ℚ))) → 𝑞 ≼
ω) | 
| 79 | 10, 66, 78 | salunicl 46336 | . . . . . 6
⊢ ((𝜑 ∧ 𝑞 ⊆ ((,) “ (ℚ ×
ℚ))) → ∪ 𝑞 ∈ 𝑇) | 
| 80 | 79 | adantrr 717 | . . . . 5
⊢ ((𝜑 ∧ (𝑞 ⊆ ((,) “ (ℚ ×
ℚ)) ∧ 𝐺 = ∪ 𝑞))
→ ∪ 𝑞 ∈ 𝑇) | 
| 81 | 4, 80 | eqeltrd 2840 | . . . 4
⊢ ((𝜑 ∧ (𝑞 ⊆ ((,) “ (ℚ ×
ℚ)) ∧ 𝐺 = ∪ 𝑞))
→ 𝐺 ∈ 𝑇) | 
| 82 | 81 | ex 412 | . . 3
⊢ (𝜑 → ((𝑞 ⊆ ((,) “ (ℚ ×
ℚ)) ∧ 𝐺 = ∪ 𝑞)
→ 𝐺 ∈ 𝑇)) | 
| 83 | 82 | exlimdv 1932 | . 2
⊢ (𝜑 → (∃𝑞(𝑞 ⊆ ((,) “ (ℚ ×
ℚ)) ∧ 𝐺 = ∪ 𝑞)
→ 𝐺 ∈ 𝑇)) | 
| 84 | 3, 83 | mpd 15 | 1
⊢ (𝜑 → 𝐺 ∈ 𝑇) |