Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwsal Structured version   Visualization version   GIF version

Theorem pwsal 43398
Description: The power set of a given set is a sigma-algebra (the so called discrete sigma-algebra). (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
pwsal (𝑋𝑉 → 𝒫 𝑋 ∈ SAlg)

Proof of Theorem pwsal
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 0elpw 5222 . . . 4 ∅ ∈ 𝒫 𝑋
21a1i 11 . . 3 (𝑋𝑉 → ∅ ∈ 𝒫 𝑋)
3 unipw 5309 . . . . . . . 8 𝒫 𝑋 = 𝑋
43difeq1i 4009 . . . . . . 7 ( 𝒫 𝑋𝑦) = (𝑋𝑦)
54a1i 11 . . . . . 6 (𝑋𝑉 → ( 𝒫 𝑋𝑦) = (𝑋𝑦))
6 difssd 4023 . . . . . . 7 (𝑋𝑉 → (𝑋𝑦) ⊆ 𝑋)
7 difexg 5195 . . . . . . . 8 (𝑋𝑉 → (𝑋𝑦) ∈ V)
8 elpwg 4491 . . . . . . . 8 ((𝑋𝑦) ∈ V → ((𝑋𝑦) ∈ 𝒫 𝑋 ↔ (𝑋𝑦) ⊆ 𝑋))
97, 8syl 17 . . . . . . 7 (𝑋𝑉 → ((𝑋𝑦) ∈ 𝒫 𝑋 ↔ (𝑋𝑦) ⊆ 𝑋))
106, 9mpbird 260 . . . . . 6 (𝑋𝑉 → (𝑋𝑦) ∈ 𝒫 𝑋)
115, 10eqeltrd 2833 . . . . 5 (𝑋𝑉 → ( 𝒫 𝑋𝑦) ∈ 𝒫 𝑋)
1211adantr 484 . . . 4 ((𝑋𝑉𝑦 ∈ 𝒫 𝑋) → ( 𝒫 𝑋𝑦) ∈ 𝒫 𝑋)
1312ralrimiva 3096 . . 3 (𝑋𝑉 → ∀𝑦 ∈ 𝒫 𝑋( 𝒫 𝑋𝑦) ∈ 𝒫 𝑋)
14 elpwi 4497 . . . . . . . . 9 (𝑦 ∈ 𝒫 𝒫 𝑋𝑦 ⊆ 𝒫 𝑋)
1514unissd 4806 . . . . . . . 8 (𝑦 ∈ 𝒫 𝒫 𝑋 𝑦 𝒫 𝑋)
1615, 3sseqtrdi 3927 . . . . . . 7 (𝑦 ∈ 𝒫 𝒫 𝑋 𝑦𝑋)
17 vuniex 7483 . . . . . . . . 9 𝑦 ∈ V
1817a1i 11 . . . . . . . 8 (𝑦 ∈ 𝒫 𝒫 𝑋 𝑦 ∈ V)
19 elpwg 4491 . . . . . . . 8 ( 𝑦 ∈ V → ( 𝑦 ∈ 𝒫 𝑋 𝑦𝑋))
2018, 19syl 17 . . . . . . 7 (𝑦 ∈ 𝒫 𝒫 𝑋 → ( 𝑦 ∈ 𝒫 𝑋 𝑦𝑋))
2116, 20mpbird 260 . . . . . 6 (𝑦 ∈ 𝒫 𝒫 𝑋 𝑦 ∈ 𝒫 𝑋)
2221adantl 485 . . . . 5 ((𝑋𝑉𝑦 ∈ 𝒫 𝒫 𝑋) → 𝑦 ∈ 𝒫 𝑋)
2322a1d 25 . . . 4 ((𝑋𝑉𝑦 ∈ 𝒫 𝒫 𝑋) → (𝑦 ≼ ω → 𝑦 ∈ 𝒫 𝑋))
2423ralrimiva 3096 . . 3 (𝑋𝑉 → ∀𝑦 ∈ 𝒫 𝒫 𝑋(𝑦 ≼ ω → 𝑦 ∈ 𝒫 𝑋))
252, 13, 243jca 1129 . 2 (𝑋𝑉 → (∅ ∈ 𝒫 𝑋 ∧ ∀𝑦 ∈ 𝒫 𝑋( 𝒫 𝑋𝑦) ∈ 𝒫 𝑋 ∧ ∀𝑦 ∈ 𝒫 𝒫 𝑋(𝑦 ≼ ω → 𝑦 ∈ 𝒫 𝑋)))
26 pwexg 5245 . . 3 (𝑋𝑉 → 𝒫 𝑋 ∈ V)
27 issal 43397 . . 3 (𝒫 𝑋 ∈ V → (𝒫 𝑋 ∈ SAlg ↔ (∅ ∈ 𝒫 𝑋 ∧ ∀𝑦 ∈ 𝒫 𝑋( 𝒫 𝑋𝑦) ∈ 𝒫 𝑋 ∧ ∀𝑦 ∈ 𝒫 𝒫 𝑋(𝑦 ≼ ω → 𝑦 ∈ 𝒫 𝑋))))
2826, 27syl 17 . 2 (𝑋𝑉 → (𝒫 𝑋 ∈ SAlg ↔ (∅ ∈ 𝒫 𝑋 ∧ ∀𝑦 ∈ 𝒫 𝑋( 𝒫 𝑋𝑦) ∈ 𝒫 𝑋 ∧ ∀𝑦 ∈ 𝒫 𝒫 𝑋(𝑦 ≼ ω → 𝑦 ∈ 𝒫 𝑋))))
2925, 28mpbird 260 1 (𝑋𝑉 → 𝒫 𝑋 ∈ SAlg)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2114  wral 3053  Vcvv 3398  cdif 3840  wss 3843  c0 4211  𝒫 cpw 4488   cuni 4796   class class class wbr 5030  ωcom 7599  cdom 8553  SAlgcsalg 43391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2075  df-clab 2717  df-cleq 2730  df-clel 2811  df-ral 3058  df-rab 3062  df-v 3400  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-pw 4490  df-sn 4517  df-pr 4519  df-uni 4797  df-salg 43392
This theorem is referenced by:  salgenval  43404  salgenn0  43412  salgencntex  43424  psmeasure  43551
  Copyright terms: Public domain W3C validator