Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwsal Structured version   Visualization version   GIF version

Theorem pwsal 43856
Description: The power set of a given set is a sigma-algebra (the so called discrete sigma-algebra). (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
pwsal (𝑋𝑉 → 𝒫 𝑋 ∈ SAlg)

Proof of Theorem pwsal
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 0elpw 5278 . . . 4 ∅ ∈ 𝒫 𝑋
21a1i 11 . . 3 (𝑋𝑉 → ∅ ∈ 𝒫 𝑋)
3 unipw 5366 . . . . . . . 8 𝒫 𝑋 = 𝑋
43difeq1i 4053 . . . . . . 7 ( 𝒫 𝑋𝑦) = (𝑋𝑦)
54a1i 11 . . . . . 6 (𝑋𝑉 → ( 𝒫 𝑋𝑦) = (𝑋𝑦))
6 difssd 4067 . . . . . . 7 (𝑋𝑉 → (𝑋𝑦) ⊆ 𝑋)
7 difexg 5251 . . . . . . . 8 (𝑋𝑉 → (𝑋𝑦) ∈ V)
8 elpwg 4536 . . . . . . . 8 ((𝑋𝑦) ∈ V → ((𝑋𝑦) ∈ 𝒫 𝑋 ↔ (𝑋𝑦) ⊆ 𝑋))
97, 8syl 17 . . . . . . 7 (𝑋𝑉 → ((𝑋𝑦) ∈ 𝒫 𝑋 ↔ (𝑋𝑦) ⊆ 𝑋))
106, 9mpbird 256 . . . . . 6 (𝑋𝑉 → (𝑋𝑦) ∈ 𝒫 𝑋)
115, 10eqeltrd 2839 . . . . 5 (𝑋𝑉 → ( 𝒫 𝑋𝑦) ∈ 𝒫 𝑋)
1211adantr 481 . . . 4 ((𝑋𝑉𝑦 ∈ 𝒫 𝑋) → ( 𝒫 𝑋𝑦) ∈ 𝒫 𝑋)
1312ralrimiva 3103 . . 3 (𝑋𝑉 → ∀𝑦 ∈ 𝒫 𝑋( 𝒫 𝑋𝑦) ∈ 𝒫 𝑋)
14 elpwi 4542 . . . . . . . . 9 (𝑦 ∈ 𝒫 𝒫 𝑋𝑦 ⊆ 𝒫 𝑋)
1514unissd 4849 . . . . . . . 8 (𝑦 ∈ 𝒫 𝒫 𝑋 𝑦 𝒫 𝑋)
1615, 3sseqtrdi 3971 . . . . . . 7 (𝑦 ∈ 𝒫 𝒫 𝑋 𝑦𝑋)
17 vuniex 7592 . . . . . . . . 9 𝑦 ∈ V
1817a1i 11 . . . . . . . 8 (𝑦 ∈ 𝒫 𝒫 𝑋 𝑦 ∈ V)
19 elpwg 4536 . . . . . . . 8 ( 𝑦 ∈ V → ( 𝑦 ∈ 𝒫 𝑋 𝑦𝑋))
2018, 19syl 17 . . . . . . 7 (𝑦 ∈ 𝒫 𝒫 𝑋 → ( 𝑦 ∈ 𝒫 𝑋 𝑦𝑋))
2116, 20mpbird 256 . . . . . 6 (𝑦 ∈ 𝒫 𝒫 𝑋 𝑦 ∈ 𝒫 𝑋)
2221adantl 482 . . . . 5 ((𝑋𝑉𝑦 ∈ 𝒫 𝒫 𝑋) → 𝑦 ∈ 𝒫 𝑋)
2322a1d 25 . . . 4 ((𝑋𝑉𝑦 ∈ 𝒫 𝒫 𝑋) → (𝑦 ≼ ω → 𝑦 ∈ 𝒫 𝑋))
2423ralrimiva 3103 . . 3 (𝑋𝑉 → ∀𝑦 ∈ 𝒫 𝒫 𝑋(𝑦 ≼ ω → 𝑦 ∈ 𝒫 𝑋))
252, 13, 243jca 1127 . 2 (𝑋𝑉 → (∅ ∈ 𝒫 𝑋 ∧ ∀𝑦 ∈ 𝒫 𝑋( 𝒫 𝑋𝑦) ∈ 𝒫 𝑋 ∧ ∀𝑦 ∈ 𝒫 𝒫 𝑋(𝑦 ≼ ω → 𝑦 ∈ 𝒫 𝑋)))
26 pwexg 5301 . . 3 (𝑋𝑉 → 𝒫 𝑋 ∈ V)
27 issal 43855 . . 3 (𝒫 𝑋 ∈ V → (𝒫 𝑋 ∈ SAlg ↔ (∅ ∈ 𝒫 𝑋 ∧ ∀𝑦 ∈ 𝒫 𝑋( 𝒫 𝑋𝑦) ∈ 𝒫 𝑋 ∧ ∀𝑦 ∈ 𝒫 𝒫 𝑋(𝑦 ≼ ω → 𝑦 ∈ 𝒫 𝑋))))
2826, 27syl 17 . 2 (𝑋𝑉 → (𝒫 𝑋 ∈ SAlg ↔ (∅ ∈ 𝒫 𝑋 ∧ ∀𝑦 ∈ 𝒫 𝑋( 𝒫 𝑋𝑦) ∈ 𝒫 𝑋 ∧ ∀𝑦 ∈ 𝒫 𝒫 𝑋(𝑦 ≼ ω → 𝑦 ∈ 𝒫 𝑋))))
2925, 28mpbird 256 1 (𝑋𝑉 → 𝒫 𝑋 ∈ SAlg)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  cdif 3884  wss 3887  c0 4256  𝒫 cpw 4533   cuni 4839   class class class wbr 5074  ωcom 7712  cdom 8731  SAlgcsalg 43849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-pw 4535  df-sn 4562  df-pr 4564  df-uni 4840  df-salg 43850
This theorem is referenced by:  salgenval  43862  salgenn0  43870  salgencntex  43882  psmeasure  44009
  Copyright terms: Public domain W3C validator