Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwsal Structured version   Visualization version   GIF version

Theorem pwsal 42599
 Description: The power set of a given set is a sigma-algebra (the so called discrete sigma-algebra). (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
pwsal (𝑋𝑉 → 𝒫 𝑋 ∈ SAlg)

Proof of Theorem pwsal
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 0elpw 5255 . . . 4 ∅ ∈ 𝒫 𝑋
21a1i 11 . . 3 (𝑋𝑉 → ∅ ∈ 𝒫 𝑋)
3 unipw 5342 . . . . . . . 8 𝒫 𝑋 = 𝑋
43difeq1i 4094 . . . . . . 7 ( 𝒫 𝑋𝑦) = (𝑋𝑦)
54a1i 11 . . . . . 6 (𝑋𝑉 → ( 𝒫 𝑋𝑦) = (𝑋𝑦))
6 difssd 4108 . . . . . . 7 (𝑋𝑉 → (𝑋𝑦) ⊆ 𝑋)
7 difexg 5230 . . . . . . . 8 (𝑋𝑉 → (𝑋𝑦) ∈ V)
8 elpwg 4541 . . . . . . . 8 ((𝑋𝑦) ∈ V → ((𝑋𝑦) ∈ 𝒫 𝑋 ↔ (𝑋𝑦) ⊆ 𝑋))
97, 8syl 17 . . . . . . 7 (𝑋𝑉 → ((𝑋𝑦) ∈ 𝒫 𝑋 ↔ (𝑋𝑦) ⊆ 𝑋))
106, 9mpbird 259 . . . . . 6 (𝑋𝑉 → (𝑋𝑦) ∈ 𝒫 𝑋)
115, 10eqeltrd 2913 . . . . 5 (𝑋𝑉 → ( 𝒫 𝑋𝑦) ∈ 𝒫 𝑋)
1211adantr 483 . . . 4 ((𝑋𝑉𝑦 ∈ 𝒫 𝑋) → ( 𝒫 𝑋𝑦) ∈ 𝒫 𝑋)
1312ralrimiva 3182 . . 3 (𝑋𝑉 → ∀𝑦 ∈ 𝒫 𝑋( 𝒫 𝑋𝑦) ∈ 𝒫 𝑋)
14 elpwi 4547 . . . . . . . . 9 (𝑦 ∈ 𝒫 𝒫 𝑋𝑦 ⊆ 𝒫 𝑋)
1514unissd 4847 . . . . . . . 8 (𝑦 ∈ 𝒫 𝒫 𝑋 𝑦 𝒫 𝑋)
1615, 3sseqtrdi 4016 . . . . . . 7 (𝑦 ∈ 𝒫 𝒫 𝑋 𝑦𝑋)
17 vuniex 7464 . . . . . . . . 9 𝑦 ∈ V
1817a1i 11 . . . . . . . 8 (𝑦 ∈ 𝒫 𝒫 𝑋 𝑦 ∈ V)
19 elpwg 4541 . . . . . . . 8 ( 𝑦 ∈ V → ( 𝑦 ∈ 𝒫 𝑋 𝑦𝑋))
2018, 19syl 17 . . . . . . 7 (𝑦 ∈ 𝒫 𝒫 𝑋 → ( 𝑦 ∈ 𝒫 𝑋 𝑦𝑋))
2116, 20mpbird 259 . . . . . 6 (𝑦 ∈ 𝒫 𝒫 𝑋 𝑦 ∈ 𝒫 𝑋)
2221adantl 484 . . . . 5 ((𝑋𝑉𝑦 ∈ 𝒫 𝒫 𝑋) → 𝑦 ∈ 𝒫 𝑋)
2322a1d 25 . . . 4 ((𝑋𝑉𝑦 ∈ 𝒫 𝒫 𝑋) → (𝑦 ≼ ω → 𝑦 ∈ 𝒫 𝑋))
2423ralrimiva 3182 . . 3 (𝑋𝑉 → ∀𝑦 ∈ 𝒫 𝒫 𝑋(𝑦 ≼ ω → 𝑦 ∈ 𝒫 𝑋))
252, 13, 243jca 1124 . 2 (𝑋𝑉 → (∅ ∈ 𝒫 𝑋 ∧ ∀𝑦 ∈ 𝒫 𝑋( 𝒫 𝑋𝑦) ∈ 𝒫 𝑋 ∧ ∀𝑦 ∈ 𝒫 𝒫 𝑋(𝑦 ≼ ω → 𝑦 ∈ 𝒫 𝑋)))
26 pwexg 5278 . . 3 (𝑋𝑉 → 𝒫 𝑋 ∈ V)
27 issal 42598 . . 3 (𝒫 𝑋 ∈ V → (𝒫 𝑋 ∈ SAlg ↔ (∅ ∈ 𝒫 𝑋 ∧ ∀𝑦 ∈ 𝒫 𝑋( 𝒫 𝑋𝑦) ∈ 𝒫 𝑋 ∧ ∀𝑦 ∈ 𝒫 𝒫 𝑋(𝑦 ≼ ω → 𝑦 ∈ 𝒫 𝑋))))
2826, 27syl 17 . 2 (𝑋𝑉 → (𝒫 𝑋 ∈ SAlg ↔ (∅ ∈ 𝒫 𝑋 ∧ ∀𝑦 ∈ 𝒫 𝑋( 𝒫 𝑋𝑦) ∈ 𝒫 𝑋 ∧ ∀𝑦 ∈ 𝒫 𝒫 𝑋(𝑦 ≼ ω → 𝑦 ∈ 𝒫 𝑋))))
2925, 28mpbird 259 1 (𝑋𝑉 → 𝒫 𝑋 ∈ SAlg)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 208   ∧ wa 398   ∧ w3a 1083   = wceq 1533   ∈ wcel 2110  ∀wral 3138  Vcvv 3494   ∖ cdif 3932   ⊆ wss 3935  ∅c0 4290  𝒫 cpw 4538  ∪ cuni 4837   class class class wbr 5065  ωcom 7579   ≼ cdom 8506  SAlgcsalg 42592 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rab 3147  df-v 3496  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-pw 4540  df-sn 4567  df-pr 4569  df-uni 4838  df-salg 42593 This theorem is referenced by:  salgenval  42605  salgenn0  42613  salgencntex  42625  psmeasure  42752
 Copyright terms: Public domain W3C validator