MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opeq12i Structured version   Visualization version   GIF version

Theorem opeq12i 4842
Description: Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.) (Proof shortened by Eric Schmidt, 4-Apr-2007.)
Hypotheses
Ref Expression
opeq1i.1 𝐴 = 𝐵
opeq12i.2 𝐶 = 𝐷
Assertion
Ref Expression
opeq12i 𝐴, 𝐶⟩ = ⟨𝐵, 𝐷

Proof of Theorem opeq12i
StepHypRef Expression
1 opeq1i.1 . 2 𝐴 = 𝐵
2 opeq12i.2 . 2 𝐶 = 𝐷
3 opeq12 4839 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → ⟨𝐴, 𝐶⟩ = ⟨𝐵, 𝐷⟩)
41, 2, 3mp2an 692 1 𝐴, 𝐶⟩ = ⟨𝐵, 𝐷
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cop 4595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596
This theorem is referenced by:  sbcop  5449  elxp6  8002  addcompq  10903  mulcompq  10905  addassnq  10911  mulassnq  10912  distrnq  10914  1lt2nq  10926  axi2m1  11112  om2uzrdg  13921  pzriprng1ALT  21406  pzriprng1  21408  precsexlemcbv  28108  axlowdimlem6  28874  clwlkclwwlkflem  29933  konigsbergvtx  30175  konigsbergiedg  30176  nvop2  30537  nvvop  30538  phop  30747  hhsssh  31198  cshw1s2  32882  rngoi  37893  isdrngo1  37950  dfswapf2  49250  swapfcoa  49270  diag1a  49294  funcsetc1o  49486
  Copyright terms: Public domain W3C validator