MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opeq12i Structured version   Visualization version   GIF version

Theorem opeq12i 4845
Description: Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.) (Proof shortened by Eric Schmidt, 4-Apr-2007.)
Hypotheses
Ref Expression
opeq1i.1 𝐴 = 𝐵
opeq12i.2 𝐶 = 𝐷
Assertion
Ref Expression
opeq12i 𝐴, 𝐶⟩ = ⟨𝐵, 𝐷

Proof of Theorem opeq12i
StepHypRef Expression
1 opeq1i.1 . 2 𝐴 = 𝐵
2 opeq12i.2 . 2 𝐶 = 𝐷
3 opeq12 4842 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → ⟨𝐴, 𝐶⟩ = ⟨𝐵, 𝐷⟩)
41, 2, 3mp2an 692 1 𝐴, 𝐶⟩ = ⟨𝐵, 𝐷
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cop 4598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599
This theorem is referenced by:  sbcop  5452  elxp6  8005  addcompq  10910  mulcompq  10912  addassnq  10918  mulassnq  10919  distrnq  10921  1lt2nq  10933  axi2m1  11119  om2uzrdg  13928  pzriprng1ALT  21413  pzriprng1  21415  precsexlemcbv  28115  axlowdimlem6  28881  clwlkclwwlkflem  29940  konigsbergvtx  30182  konigsbergiedg  30183  nvop2  30544  nvvop  30545  phop  30754  hhsssh  31205  cshw1s2  32889  rngoi  37900  isdrngo1  37957  dfswapf2  49254  swapfcoa  49274  diag1a  49298  funcsetc1o  49490
  Copyright terms: Public domain W3C validator