![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opeq12i | Structured version Visualization version GIF version |
Description: Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.) (Proof shortened by Eric Schmidt, 4-Apr-2007.) |
Ref | Expression |
---|---|
opeq1i.1 | ⊢ 𝐴 = 𝐵 |
opeq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
opeq12i | ⊢ 〈𝐴, 𝐶〉 = 〈𝐵, 𝐷〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | opeq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
3 | opeq12 4880 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐷〉) | |
4 | 1, 2, 3 | mp2an 692 | 1 ⊢ 〈𝐴, 𝐶〉 = 〈𝐵, 𝐷〉 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 〈cop 4637 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 |
This theorem is referenced by: sbcop 5500 elxp6 8047 addcompq 10988 mulcompq 10990 addassnq 10996 mulassnq 10997 distrnq 10999 1lt2nq 11011 axi2m1 11197 om2uzrdg 13994 pzriprng1ALT 21525 pzriprng1 21527 precsexlemcbv 28245 axlowdimlem6 28977 clwlkclwwlkflem 30033 konigsbergvtx 30275 konigsbergiedg 30276 nvop2 30637 nvvop 30638 phop 30847 hhsssh 31298 cshw1s2 32930 rngoi 37886 isdrngo1 37943 |
Copyright terms: Public domain | W3C validator |