| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opeq12i | Structured version Visualization version GIF version | ||
| Description: Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.) (Proof shortened by Eric Schmidt, 4-Apr-2007.) |
| Ref | Expression |
|---|---|
| opeq1i.1 | ⊢ 𝐴 = 𝐵 |
| opeq12i.2 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| opeq12i | ⊢ 〈𝐴, 𝐶〉 = 〈𝐵, 𝐷〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | opeq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
| 3 | opeq12 4835 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐷〉) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ 〈𝐴, 𝐶〉 = 〈𝐵, 𝐷〉 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 〈cop 4591 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 |
| This theorem is referenced by: sbcop 5444 elxp6 7981 addcompq 10879 mulcompq 10881 addassnq 10887 mulassnq 10888 distrnq 10890 1lt2nq 10902 axi2m1 11088 om2uzrdg 13897 pzriprng1ALT 21438 pzriprng1 21440 precsexlemcbv 28148 axlowdimlem6 28927 clwlkclwwlkflem 29983 konigsbergvtx 30225 konigsbergiedg 30226 nvop2 30587 nvvop 30588 phop 30797 hhsssh 31248 cshw1s2 32932 rngoi 37886 isdrngo1 37943 dfswapf2 49243 swapfcoa 49263 diag1a 49287 funcsetc1o 49479 |
| Copyright terms: Public domain | W3C validator |