| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opeq12i | Structured version Visualization version GIF version | ||
| Description: Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.) (Proof shortened by Eric Schmidt, 4-Apr-2007.) |
| Ref | Expression |
|---|---|
| opeq1i.1 | ⊢ 𝐴 = 𝐵 |
| opeq12i.2 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| opeq12i | ⊢ 〈𝐴, 𝐶〉 = 〈𝐵, 𝐷〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | opeq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
| 3 | opeq12 4842 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐷〉) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ 〈𝐴, 𝐶〉 = 〈𝐵, 𝐷〉 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 〈cop 4598 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 |
| This theorem is referenced by: sbcop 5452 elxp6 8005 addcompq 10910 mulcompq 10912 addassnq 10918 mulassnq 10919 distrnq 10921 1lt2nq 10933 axi2m1 11119 om2uzrdg 13928 pzriprng1ALT 21413 pzriprng1 21415 precsexlemcbv 28115 axlowdimlem6 28881 clwlkclwwlkflem 29940 konigsbergvtx 30182 konigsbergiedg 30183 nvop2 30544 nvvop 30545 phop 30754 hhsssh 31205 cshw1s2 32889 rngoi 37900 isdrngo1 37957 dfswapf2 49254 swapfcoa 49274 diag1a 49298 funcsetc1o 49490 |
| Copyright terms: Public domain | W3C validator |