| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opeq12i | Structured version Visualization version GIF version | ||
| Description: Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.) (Proof shortened by Eric Schmidt, 4-Apr-2007.) |
| Ref | Expression |
|---|---|
| opeq1i.1 | ⊢ 𝐴 = 𝐵 |
| opeq12i.2 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| opeq12i | ⊢ 〈𝐴, 𝐶〉 = 〈𝐵, 𝐷〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | opeq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
| 3 | opeq12 4826 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐷〉) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ 〈𝐴, 𝐶〉 = 〈𝐵, 𝐷〉 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 〈cop 4583 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 |
| This theorem is referenced by: sbcop 5432 elxp6 7958 addcompq 10844 mulcompq 10846 addassnq 10852 mulassnq 10853 distrnq 10855 1lt2nq 10867 axi2m1 11053 om2uzrdg 13863 pzriprng1ALT 21403 pzriprng1 21405 precsexlemcbv 28113 axlowdimlem6 28892 clwlkclwwlkflem 29948 konigsbergvtx 30190 konigsbergiedg 30191 nvop2 30552 nvvop 30553 phop 30762 hhsssh 31213 cshw1s2 32903 rngoi 37889 isdrngo1 37946 dfswapf2 49256 swapfcoa 49276 diag1a 49300 funcsetc1o 49492 |
| Copyright terms: Public domain | W3C validator |