| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opeq12i | Structured version Visualization version GIF version | ||
| Description: Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.) (Proof shortened by Eric Schmidt, 4-Apr-2007.) |
| Ref | Expression |
|---|---|
| opeq1i.1 | ⊢ 𝐴 = 𝐵 |
| opeq12i.2 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| opeq12i | ⊢ 〈𝐴, 𝐶〉 = 〈𝐵, 𝐷〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | opeq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
| 3 | opeq12 4839 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐷〉) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ 〈𝐴, 𝐶〉 = 〈𝐵, 𝐷〉 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 〈cop 4595 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 |
| This theorem is referenced by: sbcop 5449 elxp6 8002 addcompq 10903 mulcompq 10905 addassnq 10911 mulassnq 10912 distrnq 10914 1lt2nq 10926 axi2m1 11112 om2uzrdg 13921 pzriprng1ALT 21406 pzriprng1 21408 precsexlemcbv 28108 axlowdimlem6 28874 clwlkclwwlkflem 29933 konigsbergvtx 30175 konigsbergiedg 30176 nvop2 30537 nvvop 30538 phop 30747 hhsssh 31198 cshw1s2 32882 rngoi 37893 isdrngo1 37950 dfswapf2 49250 swapfcoa 49270 diag1a 49294 funcsetc1o 49486 |
| Copyright terms: Public domain | W3C validator |