![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opeq12i | Structured version Visualization version GIF version |
Description: Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.) (Proof shortened by Eric Schmidt, 4-Apr-2007.) |
Ref | Expression |
---|---|
opeq1i.1 | ⊢ 𝐴 = 𝐵 |
opeq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
opeq12i | ⊢ 〈𝐴, 𝐶〉 = 〈𝐵, 𝐷〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | opeq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
3 | opeq12 4899 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐷〉) | |
4 | 1, 2, 3 | mp2an 691 | 1 ⊢ 〈𝐴, 𝐶〉 = 〈𝐵, 𝐷〉 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 〈cop 4654 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 |
This theorem is referenced by: sbcop 5509 elxp6 8064 addcompq 11019 mulcompq 11021 addassnq 11027 mulassnq 11028 distrnq 11030 1lt2nq 11042 axi2m1 11228 om2uzrdg 14007 pzriprng1ALT 21530 pzriprng1 21532 precsexlemcbv 28248 axlowdimlem6 28980 clwlkclwwlkflem 30036 konigsbergvtx 30278 konigsbergiedg 30279 nvop2 30640 nvvop 30641 phop 30850 hhsssh 31301 cshw1s2 32927 rngoi 37859 isdrngo1 37916 |
Copyright terms: Public domain | W3C validator |