![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opeq12i | Structured version Visualization version GIF version |
Description: Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.) (Proof shortened by Eric Schmidt, 4-Apr-2007.) |
Ref | Expression |
---|---|
opeq1i.1 | ⊢ 𝐴 = 𝐵 |
opeq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
opeq12i | ⊢ ⟨𝐴, 𝐶⟩ = ⟨𝐵, 𝐷⟩ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | opeq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
3 | opeq12 4874 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → ⟨𝐴, 𝐶⟩ = ⟨𝐵, 𝐷⟩) | |
4 | 1, 2, 3 | mp2an 688 | 1 ⊢ ⟨𝐴, 𝐶⟩ = ⟨𝐵, 𝐷⟩ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ⟨cop 4633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 |
This theorem is referenced by: sbcop 5488 elxp6 8011 addcompq 10947 mulcompq 10949 addassnq 10955 mulassnq 10956 distrnq 10958 1lt2nq 10970 axi2m1 11156 om2uzrdg 13925 pzriprng1ALT 21265 pzriprng1 21267 precsexlemcbv 27891 axlowdimlem6 28472 clwlkclwwlkflem 29524 konigsbergvtx 29766 konigsbergiedg 29767 nvop2 30128 nvvop 30129 phop 30338 hhsssh 30789 cshw1s2 32391 rngoi 37070 isdrngo1 37127 |
Copyright terms: Public domain | W3C validator |