MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opeq12i Structured version   Visualization version   GIF version

Theorem opeq12i 4859
Description: Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.) (Proof shortened by Eric Schmidt, 4-Apr-2007.)
Hypotheses
Ref Expression
opeq1i.1 𝐴 = 𝐵
opeq12i.2 𝐶 = 𝐷
Assertion
Ref Expression
opeq12i 𝐴, 𝐶⟩ = ⟨𝐵, 𝐷

Proof of Theorem opeq12i
StepHypRef Expression
1 opeq1i.1 . 2 𝐴 = 𝐵
2 opeq12i.2 . 2 𝐶 = 𝐷
3 opeq12 4856 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → ⟨𝐴, 𝐶⟩ = ⟨𝐵, 𝐷⟩)
41, 2, 3mp2an 692 1 𝐴, 𝐶⟩ = ⟨𝐵, 𝐷
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cop 4612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613
This theorem is referenced by:  sbcop  5469  elxp6  8027  addcompq  10969  mulcompq  10971  addassnq  10977  mulassnq  10978  distrnq  10980  1lt2nq  10992  axi2m1  11178  om2uzrdg  13979  pzriprng1ALT  21462  pzriprng1  21464  precsexlemcbv  28165  axlowdimlem6  28931  clwlkclwwlkflem  29990  konigsbergvtx  30232  konigsbergiedg  30233  nvop2  30594  nvvop  30595  phop  30804  hhsssh  31255  cshw1s2  32941  rngoi  37928  isdrngo1  37985  dfswapf2  49145  swapfcoa  49165  diag1a  49183  funcsetc1o  49349
  Copyright terms: Public domain W3C validator