![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sconnpconn | Structured version Visualization version GIF version |
Description: A simply connected space is path-connected. (Contributed by Mario Carneiro, 11-Feb-2015.) |
Ref | Expression |
---|---|
sconnpconn | ⊢ (𝐽 ∈ SConn → 𝐽 ∈ PConn) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issconn 35196 | . 2 ⊢ (𝐽 ∈ SConn ↔ (𝐽 ∈ PConn ∧ ∀𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝐽)((0[,]1) × {(𝑓‘0)})))) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝐽 ∈ SConn → 𝐽 ∈ PConn) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∀wral 3067 {csn 4648 class class class wbr 5166 × cxp 5698 ‘cfv 6575 (class class class)co 7450 0cc0 11186 1c1 11187 [,]cicc 13412 Cn ccn 23255 IIcii 24922 ≃phcphtpc 25022 PConncpconn 35189 SConncsconn 35190 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6527 df-fv 6583 df-ov 7453 df-sconn 35192 |
This theorem is referenced by: sconntop 35198 txsconn 35211 resconn 35216 iinllyconn 35224 cvmlift2lem10 35282 cvmlift3lem2 35290 cvmlift3 35298 |
Copyright terms: Public domain | W3C validator |