| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sconnpconn | Structured version Visualization version GIF version | ||
| Description: A simply connected space is path-connected. (Contributed by Mario Carneiro, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| sconnpconn | ⊢ (𝐽 ∈ SConn → 𝐽 ∈ PConn) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issconn 35213 | . 2 ⊢ (𝐽 ∈ SConn ↔ (𝐽 ∈ PConn ∧ ∀𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝐽)((0[,]1) × {(𝑓‘0)})))) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐽 ∈ SConn → 𝐽 ∈ PConn) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {csn 4589 class class class wbr 5107 × cxp 5636 ‘cfv 6511 (class class class)co 7387 0cc0 11068 1c1 11069 [,]cicc 13309 Cn ccn 23111 IIcii 24768 ≃phcphtpc 24868 PConncpconn 35206 SConncsconn 35207 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-sconn 35209 |
| This theorem is referenced by: sconntop 35215 txsconn 35228 resconn 35233 iinllyconn 35241 cvmlift2lem10 35299 cvmlift3lem2 35307 cvmlift3 35315 |
| Copyright terms: Public domain | W3C validator |