Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sconnpconn Structured version   Visualization version   GIF version

Theorem sconnpconn 35225
Description: A simply connected space is path-connected. (Contributed by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
sconnpconn (𝐽 ∈ SConn → 𝐽 ∈ PConn)

Proof of Theorem sconnpconn
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 issconn 35224 . 2 (𝐽 ∈ SConn ↔ (𝐽 ∈ PConn ∧ ∀𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)}))))
21simplbi 497 1 (𝐽 ∈ SConn → 𝐽 ∈ PConn)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wral 3061  {csn 4634   class class class wbr 5151   × cxp 5691  cfv 6569  (class class class)co 7438  0cc0 11162  1c1 11163  [,]cicc 13396   Cn ccn 23257  IIcii 24926  phcphtpc 25026  PConncpconn 35217  SConncsconn 35218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-iota 6522  df-fv 6577  df-ov 7441  df-sconn 35220
This theorem is referenced by:  sconntop  35226  txsconn  35239  resconn  35244  iinllyconn  35252  cvmlift2lem10  35310  cvmlift3lem2  35318  cvmlift3  35326
  Copyright terms: Public domain W3C validator