![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sconnpconn | Structured version Visualization version GIF version |
Description: A simply connected space is path-connected. (Contributed by Mario Carneiro, 11-Feb-2015.) |
Ref | Expression |
---|---|
sconnpconn | ⊢ (𝐽 ∈ SConn → 𝐽 ∈ PConn) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issconn 35224 | . 2 ⊢ (𝐽 ∈ SConn ↔ (𝐽 ∈ PConn ∧ ∀𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝐽)((0[,]1) × {(𝑓‘0)})))) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝐽 ∈ SConn → 𝐽 ∈ PConn) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∀wral 3061 {csn 4634 class class class wbr 5151 × cxp 5691 ‘cfv 6569 (class class class)co 7438 0cc0 11162 1c1 11163 [,]cicc 13396 Cn ccn 23257 IIcii 24926 ≃phcphtpc 25026 PConncpconn 35217 SConncsconn 35218 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-iota 6522 df-fv 6577 df-ov 7441 df-sconn 35220 |
This theorem is referenced by: sconntop 35226 txsconn 35239 resconn 35244 iinllyconn 35252 cvmlift2lem10 35310 cvmlift3lem2 35318 cvmlift3 35326 |
Copyright terms: Public domain | W3C validator |