Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sconnpconn Structured version   Visualization version   GIF version

Theorem sconnpconn 35220
Description: A simply connected space is path-connected. (Contributed by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
sconnpconn (𝐽 ∈ SConn → 𝐽 ∈ PConn)

Proof of Theorem sconnpconn
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 issconn 35219 . 2 (𝐽 ∈ SConn ↔ (𝐽 ∈ PConn ∧ ∀𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)}))))
21simplbi 497 1 (𝐽 ∈ SConn → 𝐽 ∈ PConn)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wral 3044  {csn 4577   class class class wbr 5092   × cxp 5617  cfv 6482  (class class class)co 7349  0cc0 11009  1c1 11010  [,]cicc 13251   Cn ccn 23109  IIcii 24766  phcphtpc 24866  PConncpconn 35212  SConncsconn 35213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-iota 6438  df-fv 6490  df-ov 7352  df-sconn 35215
This theorem is referenced by:  sconntop  35221  txsconn  35234  resconn  35239  iinllyconn  35247  cvmlift2lem10  35305  cvmlift3lem2  35313  cvmlift3  35321
  Copyright terms: Public domain W3C validator