| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sconnpconn | Structured version Visualization version GIF version | ||
| Description: A simply connected space is path-connected. (Contributed by Mario Carneiro, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| sconnpconn | ⊢ (𝐽 ∈ SConn → 𝐽 ∈ PConn) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issconn 35219 | . 2 ⊢ (𝐽 ∈ SConn ↔ (𝐽 ∈ PConn ∧ ∀𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝐽)((0[,]1) × {(𝑓‘0)})))) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐽 ∈ SConn → 𝐽 ∈ PConn) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {csn 4577 class class class wbr 5092 × cxp 5617 ‘cfv 6482 (class class class)co 7349 0cc0 11009 1c1 11010 [,]cicc 13251 Cn ccn 23109 IIcii 24766 ≃phcphtpc 24866 PConncpconn 35212 SConncsconn 35213 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-iota 6438 df-fv 6490 df-ov 7352 df-sconn 35215 |
| This theorem is referenced by: sconntop 35221 txsconn 35234 resconn 35239 iinllyconn 35247 cvmlift2lem10 35305 cvmlift3lem2 35313 cvmlift3 35321 |
| Copyright terms: Public domain | W3C validator |