Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sconnpconn Structured version   Visualization version   GIF version

Theorem sconnpconn 35191
Description: A simply connected space is path-connected. (Contributed by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
sconnpconn (𝐽 ∈ SConn → 𝐽 ∈ PConn)

Proof of Theorem sconnpconn
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 issconn 35190 . 2 (𝐽 ∈ SConn ↔ (𝐽 ∈ PConn ∧ ∀𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)}))))
21simplbi 497 1 (𝐽 ∈ SConn → 𝐽 ∈ PConn)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  wral 3050  {csn 4606   class class class wbr 5123   × cxp 5663  cfv 6541  (class class class)co 7413  0cc0 11137  1c1 11138  [,]cicc 13372   Cn ccn 23178  IIcii 24837  phcphtpc 24937  PConncpconn 35183  SConncsconn 35184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-iota 6494  df-fv 6549  df-ov 7416  df-sconn 35186
This theorem is referenced by:  sconntop  35192  txsconn  35205  resconn  35210  iinllyconn  35218  cvmlift2lem10  35276  cvmlift3lem2  35284  cvmlift3  35292
  Copyright terms: Public domain W3C validator