Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sconnpconn Structured version   Visualization version   GIF version

Theorem sconnpconn 35197
Description: A simply connected space is path-connected. (Contributed by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
sconnpconn (𝐽 ∈ SConn → 𝐽 ∈ PConn)

Proof of Theorem sconnpconn
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 issconn 35196 . 2 (𝐽 ∈ SConn ↔ (𝐽 ∈ PConn ∧ ∀𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)}))))
21simplbi 497 1 (𝐽 ∈ SConn → 𝐽 ∈ PConn)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  wral 3067  {csn 4648   class class class wbr 5166   × cxp 5698  cfv 6575  (class class class)co 7450  0cc0 11186  1c1 11187  [,]cicc 13412   Cn ccn 23255  IIcii 24922  phcphtpc 25022  PConncpconn 35189  SConncsconn 35190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6527  df-fv 6583  df-ov 7453  df-sconn 35192
This theorem is referenced by:  sconntop  35198  txsconn  35211  resconn  35216  iinllyconn  35224  cvmlift2lem10  35282  cvmlift3lem2  35290  cvmlift3  35298
  Copyright terms: Public domain W3C validator