Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sconntop Structured version   Visualization version   GIF version

Theorem sconntop 32773
Description: A simply connected space is a topology. (Contributed by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
sconntop (𝐽 ∈ SConn → 𝐽 ∈ Top)

Proof of Theorem sconntop
StepHypRef Expression
1 sconnpconn 32772 . 2 (𝐽 ∈ SConn → 𝐽 ∈ PConn)
2 pconntop 32770 . 2 (𝐽 ∈ PConn → 𝐽 ∈ Top)
31, 2syl 17 1 (𝐽 ∈ SConn → 𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2114  Topctop 21656  PConncpconn 32764  SConncsconn 32765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-ext 2711
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-ex 1787  df-sb 2075  df-clab 2718  df-cleq 2731  df-clel 2812  df-ral 3059  df-rex 3060  df-rab 3063  df-v 3402  df-un 3858  df-in 3860  df-ss 3870  df-sn 4527  df-pr 4529  df-op 4533  df-uni 4807  df-br 5041  df-iota 6307  df-fv 6357  df-ov 7185  df-pconn 32766  df-sconn 32767
This theorem is referenced by:  sconnpi1  32784  txsconn  32786  cvmlift3lem6  32869  cvmlift3lem7  32870  cvmlift3lem8  32871  cvmlift3lem9  32872
  Copyright terms: Public domain W3C validator