Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  txsconn Structured version   Visualization version   GIF version

Theorem txsconn 32490
Description: The topological product of two simply connected spaces is simply connected. (Contributed by Mario Carneiro, 12-Feb-2015.)
Assertion
Ref Expression
txsconn ((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) → (𝑅 ×t 𝑆) ∈ SConn)

Proof of Theorem txsconn
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sconnpconn 32476 . . 3 (𝑅 ∈ SConn → 𝑅 ∈ PConn)
2 sconnpconn 32476 . . 3 (𝑆 ∈ SConn → 𝑆 ∈ PConn)
3 txpconn 32481 . . 3 ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) → (𝑅 ×t 𝑆) ∈ PConn)
41, 2, 3syl2an 597 . 2 ((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) → (𝑅 ×t 𝑆) ∈ PConn)
5 simpll 765 . . . . . . . . 9 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑅 ∈ SConn)
6 simprl 769 . . . . . . . . . 10 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑓 ∈ (II Cn (𝑅 ×t 𝑆)))
7 sconntop 32477 . . . . . . . . . . . . 13 (𝑅 ∈ SConn → 𝑅 ∈ Top)
87ad2antrr 724 . . . . . . . . . . . 12 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑅 ∈ Top)
9 eqid 2823 . . . . . . . . . . . . 13 𝑅 = 𝑅
109toptopon 21527 . . . . . . . . . . . 12 (𝑅 ∈ Top ↔ 𝑅 ∈ (TopOn‘ 𝑅))
118, 10sylib 220 . . . . . . . . . . 11 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑅 ∈ (TopOn‘ 𝑅))
12 sconntop 32477 . . . . . . . . . . . . 13 (𝑆 ∈ SConn → 𝑆 ∈ Top)
1312ad2antlr 725 . . . . . . . . . . . 12 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑆 ∈ Top)
14 eqid 2823 . . . . . . . . . . . . 13 𝑆 = 𝑆
1514toptopon 21527 . . . . . . . . . . . 12 (𝑆 ∈ Top ↔ 𝑆 ∈ (TopOn‘ 𝑆))
1613, 15sylib 220 . . . . . . . . . . 11 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑆 ∈ (TopOn‘ 𝑆))
17 tx1cn 22219 . . . . . . . . . . 11 ((𝑅 ∈ (TopOn‘ 𝑅) ∧ 𝑆 ∈ (TopOn‘ 𝑆)) → (1st ↾ ( 𝑅 × 𝑆)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅))
1811, 16, 17syl2anc 586 . . . . . . . . . 10 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → (1st ↾ ( 𝑅 × 𝑆)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅))
19 cnco 21876 . . . . . . . . . 10 ((𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (1st ↾ ( 𝑅 × 𝑆)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅)) → ((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓) ∈ (II Cn 𝑅))
206, 18, 19syl2anc 586 . . . . . . . . 9 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → ((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓) ∈ (II Cn 𝑅))
21 simprr 771 . . . . . . . . . . 11 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑓‘0) = (𝑓‘1))
2221fveq2d 6676 . . . . . . . . . 10 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → ((1st ↾ ( 𝑅 × 𝑆))‘(𝑓‘0)) = ((1st ↾ ( 𝑅 × 𝑆))‘(𝑓‘1)))
23 iitopon 23489 . . . . . . . . . . . . 13 II ∈ (TopOn‘(0[,]1))
2423a1i 11 . . . . . . . . . . . 12 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → II ∈ (TopOn‘(0[,]1)))
25 txtopon 22201 . . . . . . . . . . . . 13 ((𝑅 ∈ (TopOn‘ 𝑅) ∧ 𝑆 ∈ (TopOn‘ 𝑆)) → (𝑅 ×t 𝑆) ∈ (TopOn‘( 𝑅 × 𝑆)))
2611, 16, 25syl2anc 586 . . . . . . . . . . . 12 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑅 ×t 𝑆) ∈ (TopOn‘( 𝑅 × 𝑆)))
27 cnf2 21859 . . . . . . . . . . . 12 ((II ∈ (TopOn‘(0[,]1)) ∧ (𝑅 ×t 𝑆) ∈ (TopOn‘( 𝑅 × 𝑆)) ∧ 𝑓 ∈ (II Cn (𝑅 ×t 𝑆))) → 𝑓:(0[,]1)⟶( 𝑅 × 𝑆))
2824, 26, 6, 27syl3anc 1367 . . . . . . . . . . 11 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑓:(0[,]1)⟶( 𝑅 × 𝑆))
29 0elunit 12858 . . . . . . . . . . 11 0 ∈ (0[,]1)
30 fvco3 6762 . . . . . . . . . . 11 ((𝑓:(0[,]1)⟶( 𝑅 × 𝑆) ∧ 0 ∈ (0[,]1)) → (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0) = ((1st ↾ ( 𝑅 × 𝑆))‘(𝑓‘0)))
3128, 29, 30sylancl 588 . . . . . . . . . 10 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0) = ((1st ↾ ( 𝑅 × 𝑆))‘(𝑓‘0)))
32 1elunit 12859 . . . . . . . . . . 11 1 ∈ (0[,]1)
33 fvco3 6762 . . . . . . . . . . 11 ((𝑓:(0[,]1)⟶( 𝑅 × 𝑆) ∧ 1 ∈ (0[,]1)) → (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘1) = ((1st ↾ ( 𝑅 × 𝑆))‘(𝑓‘1)))
3428, 32, 33sylancl 588 . . . . . . . . . 10 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘1) = ((1st ↾ ( 𝑅 × 𝑆))‘(𝑓‘1)))
3522, 31, 343eqtr4d 2868 . . . . . . . . 9 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0) = (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘1))
36 sconnpht 32478 . . . . . . . . 9 ((𝑅 ∈ SConn ∧ ((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓) ∈ (II Cn 𝑅) ∧ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0) = (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘1)) → ((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)( ≃ph𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)}))
375, 20, 35, 36syl3anc 1367 . . . . . . . 8 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → ((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)( ≃ph𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)}))
38 isphtpc 23600 . . . . . . . 8 (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)( ≃ph𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)}) ↔ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓) ∈ (II Cn 𝑅) ∧ ((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)}) ∈ (II Cn 𝑅) ∧ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ≠ ∅))
3937, 38sylib 220 . . . . . . 7 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓) ∈ (II Cn 𝑅) ∧ ((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)}) ∈ (II Cn 𝑅) ∧ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ≠ ∅))
4039simp3d 1140 . . . . . 6 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ≠ ∅)
41 n0 4312 . . . . . 6 ((((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ≠ ∅ ↔ ∃𝑔 𝑔 ∈ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})))
4240, 41sylib 220 . . . . 5 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → ∃𝑔 𝑔 ∈ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})))
43 simplr 767 . . . . . . . . 9 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑆 ∈ SConn)
44 tx2cn 22220 . . . . . . . . . . 11 ((𝑅 ∈ (TopOn‘ 𝑅) ∧ 𝑆 ∈ (TopOn‘ 𝑆)) → (2nd ↾ ( 𝑅 × 𝑆)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆))
4511, 16, 44syl2anc 586 . . . . . . . . . 10 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → (2nd ↾ ( 𝑅 × 𝑆)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆))
46 cnco 21876 . . . . . . . . . 10 ((𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (2nd ↾ ( 𝑅 × 𝑆)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆)) → ((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓) ∈ (II Cn 𝑆))
476, 45, 46syl2anc 586 . . . . . . . . 9 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → ((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓) ∈ (II Cn 𝑆))
4821fveq2d 6676 . . . . . . . . . 10 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → ((2nd ↾ ( 𝑅 × 𝑆))‘(𝑓‘0)) = ((2nd ↾ ( 𝑅 × 𝑆))‘(𝑓‘1)))
49 fvco3 6762 . . . . . . . . . . 11 ((𝑓:(0[,]1)⟶( 𝑅 × 𝑆) ∧ 0 ∈ (0[,]1)) → (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0) = ((2nd ↾ ( 𝑅 × 𝑆))‘(𝑓‘0)))
5028, 29, 49sylancl 588 . . . . . . . . . 10 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0) = ((2nd ↾ ( 𝑅 × 𝑆))‘(𝑓‘0)))
51 fvco3 6762 . . . . . . . . . . 11 ((𝑓:(0[,]1)⟶( 𝑅 × 𝑆) ∧ 1 ∈ (0[,]1)) → (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘1) = ((2nd ↾ ( 𝑅 × 𝑆))‘(𝑓‘1)))
5228, 32, 51sylancl 588 . . . . . . . . . 10 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘1) = ((2nd ↾ ( 𝑅 × 𝑆))‘(𝑓‘1)))
5348, 50, 523eqtr4d 2868 . . . . . . . . 9 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0) = (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘1))
54 sconnpht 32478 . . . . . . . . 9 ((𝑆 ∈ SConn ∧ ((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓) ∈ (II Cn 𝑆) ∧ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0) = (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘1)) → ((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)( ≃ph𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)}))
5543, 47, 53, 54syl3anc 1367 . . . . . . . 8 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → ((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)( ≃ph𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)}))
56 isphtpc 23600 . . . . . . . 8 (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)( ≃ph𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)}) ↔ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓) ∈ (II Cn 𝑆) ∧ ((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)}) ∈ (II Cn 𝑆) ∧ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ≠ ∅))
5755, 56sylib 220 . . . . . . 7 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓) ∈ (II Cn 𝑆) ∧ ((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)}) ∈ (II Cn 𝑆) ∧ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ≠ ∅))
5857simp3d 1140 . . . . . 6 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ≠ ∅)
59 n0 4312 . . . . . 6 ((((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ≠ ∅ ↔ ∃ ∈ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})))
6058, 59sylib 220 . . . . 5 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → ∃ ∈ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})))
61 exdistrv 1956 . . . . . 6 (∃𝑔(𝑔 ∈ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ∧ ∈ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)}))) ↔ (∃𝑔 𝑔 ∈ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ∧ ∃ ∈ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)}))))
628adantr 483 . . . . . . . . 9 ((((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) ∧ (𝑔 ∈ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ∧ ∈ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})))) → 𝑅 ∈ Top)
6313adantr 483 . . . . . . . . 9 ((((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) ∧ (𝑔 ∈ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ∧ ∈ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})))) → 𝑆 ∈ Top)
646adantr 483 . . . . . . . . 9 ((((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) ∧ (𝑔 ∈ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ∧ ∈ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})))) → 𝑓 ∈ (II Cn (𝑅 ×t 𝑆)))
65 eqid 2823 . . . . . . . . 9 ((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓) = ((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)
66 eqid 2823 . . . . . . . . 9 ((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓) = ((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)
67 simprl 769 . . . . . . . . 9 ((((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) ∧ (𝑔 ∈ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ∧ ∈ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})))) → 𝑔 ∈ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})))
68 simprr 771 . . . . . . . . 9 ((((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) ∧ (𝑔 ∈ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ∧ ∈ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})))) → ∈ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})))
6962, 63, 64, 65, 66, 67, 68txsconnlem 32489 . . . . . . . 8 ((((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) ∧ (𝑔 ∈ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ∧ ∈ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})))) → 𝑓( ≃ph‘(𝑅 ×t 𝑆))((0[,]1) × {(𝑓‘0)}))
7069ex 415 . . . . . . 7 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → ((𝑔 ∈ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ∧ ∈ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)}))) → 𝑓( ≃ph‘(𝑅 ×t 𝑆))((0[,]1) × {(𝑓‘0)})))
7170exlimdvv 1935 . . . . . 6 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → (∃𝑔(𝑔 ∈ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ∧ ∈ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)}))) → 𝑓( ≃ph‘(𝑅 ×t 𝑆))((0[,]1) × {(𝑓‘0)})))
7261, 71syl5bir 245 . . . . 5 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → ((∃𝑔 𝑔 ∈ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ∧ ∃ ∈ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)}))) → 𝑓( ≃ph‘(𝑅 ×t 𝑆))((0[,]1) × {(𝑓‘0)})))
7342, 60, 72mp2and 697 . . . 4 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑓( ≃ph‘(𝑅 ×t 𝑆))((0[,]1) × {(𝑓‘0)}))
7473expr 459 . . 3 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ 𝑓 ∈ (II Cn (𝑅 ×t 𝑆))) → ((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘(𝑅 ×t 𝑆))((0[,]1) × {(𝑓‘0)})))
7574ralrimiva 3184 . 2 ((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) → ∀𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘(𝑅 ×t 𝑆))((0[,]1) × {(𝑓‘0)})))
76 issconn 32475 . 2 ((𝑅 ×t 𝑆) ∈ SConn ↔ ((𝑅 ×t 𝑆) ∈ PConn ∧ ∀𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘(𝑅 ×t 𝑆))((0[,]1) × {(𝑓‘0)}))))
774, 75, 76sylanbrc 585 1 ((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) → (𝑅 ×t 𝑆) ∈ SConn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wex 1780  wcel 2114  wne 3018  wral 3140  c0 4293  {csn 4569   cuni 4840   class class class wbr 5068   × cxp 5555  cres 5559  ccom 5561  wf 6353  cfv 6357  (class class class)co 7158  1st c1st 7689  2nd c2nd 7690  0cc0 10539  1c1 10540  [,]cicc 12744  Topctop 21503  TopOnctopon 21520   Cn ccn 21834   ×t ctx 22170  IIcii 23485  PHtpycphtpy 23574  phcphtpc 23575  PConncpconn 32468  SConncsconn 32469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-icc 12748  df-seq 13373  df-exp 13433  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-topgen 16719  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-top 21504  df-topon 21521  df-bases 21556  df-cn 21837  df-cnp 21838  df-tx 22172  df-ii 23487  df-htpy 23576  df-phtpy 23577  df-phtpc 23598  df-pconn 32470  df-sconn 32471
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator