Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  txsconn Structured version   Visualization version   GIF version

Theorem txsconn 33835
Description: The topological product of two simply connected spaces is simply connected. (Contributed by Mario Carneiro, 12-Feb-2015.)
Assertion
Ref Expression
txsconn ((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) → (𝑅 ×t 𝑆) ∈ SConn)

Proof of Theorem txsconn
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sconnpconn 33821 . . 3 (𝑅 ∈ SConn → 𝑅 ∈ PConn)
2 sconnpconn 33821 . . 3 (𝑆 ∈ SConn → 𝑆 ∈ PConn)
3 txpconn 33826 . . 3 ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) → (𝑅 ×t 𝑆) ∈ PConn)
41, 2, 3syl2an 596 . 2 ((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) → (𝑅 ×t 𝑆) ∈ PConn)
5 simpll 765 . . . . . . . . 9 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑅 ∈ SConn)
6 simprl 769 . . . . . . . . . 10 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑓 ∈ (II Cn (𝑅 ×t 𝑆)))
7 sconntop 33822 . . . . . . . . . . . . 13 (𝑅 ∈ SConn → 𝑅 ∈ Top)
87ad2antrr 724 . . . . . . . . . . . 12 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑅 ∈ Top)
9 eqid 2736 . . . . . . . . . . . . 13 𝑅 = 𝑅
109toptopon 22266 . . . . . . . . . . . 12 (𝑅 ∈ Top ↔ 𝑅 ∈ (TopOn‘ 𝑅))
118, 10sylib 217 . . . . . . . . . . 11 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑅 ∈ (TopOn‘ 𝑅))
12 sconntop 33822 . . . . . . . . . . . . 13 (𝑆 ∈ SConn → 𝑆 ∈ Top)
1312ad2antlr 725 . . . . . . . . . . . 12 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑆 ∈ Top)
14 eqid 2736 . . . . . . . . . . . . 13 𝑆 = 𝑆
1514toptopon 22266 . . . . . . . . . . . 12 (𝑆 ∈ Top ↔ 𝑆 ∈ (TopOn‘ 𝑆))
1613, 15sylib 217 . . . . . . . . . . 11 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑆 ∈ (TopOn‘ 𝑆))
17 tx1cn 22960 . . . . . . . . . . 11 ((𝑅 ∈ (TopOn‘ 𝑅) ∧ 𝑆 ∈ (TopOn‘ 𝑆)) → (1st ↾ ( 𝑅 × 𝑆)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅))
1811, 16, 17syl2anc 584 . . . . . . . . . 10 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → (1st ↾ ( 𝑅 × 𝑆)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅))
19 cnco 22617 . . . . . . . . . 10 ((𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (1st ↾ ( 𝑅 × 𝑆)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅)) → ((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓) ∈ (II Cn 𝑅))
206, 18, 19syl2anc 584 . . . . . . . . 9 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → ((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓) ∈ (II Cn 𝑅))
21 simprr 771 . . . . . . . . . . 11 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑓‘0) = (𝑓‘1))
2221fveq2d 6846 . . . . . . . . . 10 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → ((1st ↾ ( 𝑅 × 𝑆))‘(𝑓‘0)) = ((1st ↾ ( 𝑅 × 𝑆))‘(𝑓‘1)))
23 iitopon 24242 . . . . . . . . . . . . 13 II ∈ (TopOn‘(0[,]1))
2423a1i 11 . . . . . . . . . . . 12 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → II ∈ (TopOn‘(0[,]1)))
25 txtopon 22942 . . . . . . . . . . . . 13 ((𝑅 ∈ (TopOn‘ 𝑅) ∧ 𝑆 ∈ (TopOn‘ 𝑆)) → (𝑅 ×t 𝑆) ∈ (TopOn‘( 𝑅 × 𝑆)))
2611, 16, 25syl2anc 584 . . . . . . . . . . . 12 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑅 ×t 𝑆) ∈ (TopOn‘( 𝑅 × 𝑆)))
27 cnf2 22600 . . . . . . . . . . . 12 ((II ∈ (TopOn‘(0[,]1)) ∧ (𝑅 ×t 𝑆) ∈ (TopOn‘( 𝑅 × 𝑆)) ∧ 𝑓 ∈ (II Cn (𝑅 ×t 𝑆))) → 𝑓:(0[,]1)⟶( 𝑅 × 𝑆))
2824, 26, 6, 27syl3anc 1371 . . . . . . . . . . 11 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑓:(0[,]1)⟶( 𝑅 × 𝑆))
29 0elunit 13386 . . . . . . . . . . 11 0 ∈ (0[,]1)
30 fvco3 6940 . . . . . . . . . . 11 ((𝑓:(0[,]1)⟶( 𝑅 × 𝑆) ∧ 0 ∈ (0[,]1)) → (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0) = ((1st ↾ ( 𝑅 × 𝑆))‘(𝑓‘0)))
3128, 29, 30sylancl 586 . . . . . . . . . 10 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0) = ((1st ↾ ( 𝑅 × 𝑆))‘(𝑓‘0)))
32 1elunit 13387 . . . . . . . . . . 11 1 ∈ (0[,]1)
33 fvco3 6940 . . . . . . . . . . 11 ((𝑓:(0[,]1)⟶( 𝑅 × 𝑆) ∧ 1 ∈ (0[,]1)) → (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘1) = ((1st ↾ ( 𝑅 × 𝑆))‘(𝑓‘1)))
3428, 32, 33sylancl 586 . . . . . . . . . 10 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘1) = ((1st ↾ ( 𝑅 × 𝑆))‘(𝑓‘1)))
3522, 31, 343eqtr4d 2786 . . . . . . . . 9 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0) = (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘1))
36 sconnpht 33823 . . . . . . . . 9 ((𝑅 ∈ SConn ∧ ((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓) ∈ (II Cn 𝑅) ∧ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0) = (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘1)) → ((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)( ≃ph𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)}))
375, 20, 35, 36syl3anc 1371 . . . . . . . 8 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → ((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)( ≃ph𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)}))
38 isphtpc 24357 . . . . . . . 8 (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)( ≃ph𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)}) ↔ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓) ∈ (II Cn 𝑅) ∧ ((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)}) ∈ (II Cn 𝑅) ∧ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ≠ ∅))
3937, 38sylib 217 . . . . . . 7 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓) ∈ (II Cn 𝑅) ∧ ((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)}) ∈ (II Cn 𝑅) ∧ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ≠ ∅))
4039simp3d 1144 . . . . . 6 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ≠ ∅)
41 n0 4306 . . . . . 6 ((((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ≠ ∅ ↔ ∃𝑔 𝑔 ∈ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})))
4240, 41sylib 217 . . . . 5 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → ∃𝑔 𝑔 ∈ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})))
43 simplr 767 . . . . . . . . 9 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑆 ∈ SConn)
44 tx2cn 22961 . . . . . . . . . . 11 ((𝑅 ∈ (TopOn‘ 𝑅) ∧ 𝑆 ∈ (TopOn‘ 𝑆)) → (2nd ↾ ( 𝑅 × 𝑆)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆))
4511, 16, 44syl2anc 584 . . . . . . . . . 10 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → (2nd ↾ ( 𝑅 × 𝑆)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆))
46 cnco 22617 . . . . . . . . . 10 ((𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (2nd ↾ ( 𝑅 × 𝑆)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆)) → ((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓) ∈ (II Cn 𝑆))
476, 45, 46syl2anc 584 . . . . . . . . 9 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → ((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓) ∈ (II Cn 𝑆))
4821fveq2d 6846 . . . . . . . . . 10 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → ((2nd ↾ ( 𝑅 × 𝑆))‘(𝑓‘0)) = ((2nd ↾ ( 𝑅 × 𝑆))‘(𝑓‘1)))
49 fvco3 6940 . . . . . . . . . . 11 ((𝑓:(0[,]1)⟶( 𝑅 × 𝑆) ∧ 0 ∈ (0[,]1)) → (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0) = ((2nd ↾ ( 𝑅 × 𝑆))‘(𝑓‘0)))
5028, 29, 49sylancl 586 . . . . . . . . . 10 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0) = ((2nd ↾ ( 𝑅 × 𝑆))‘(𝑓‘0)))
51 fvco3 6940 . . . . . . . . . . 11 ((𝑓:(0[,]1)⟶( 𝑅 × 𝑆) ∧ 1 ∈ (0[,]1)) → (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘1) = ((2nd ↾ ( 𝑅 × 𝑆))‘(𝑓‘1)))
5228, 32, 51sylancl 586 . . . . . . . . . 10 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘1) = ((2nd ↾ ( 𝑅 × 𝑆))‘(𝑓‘1)))
5348, 50, 523eqtr4d 2786 . . . . . . . . 9 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0) = (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘1))
54 sconnpht 33823 . . . . . . . . 9 ((𝑆 ∈ SConn ∧ ((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓) ∈ (II Cn 𝑆) ∧ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0) = (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘1)) → ((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)( ≃ph𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)}))
5543, 47, 53, 54syl3anc 1371 . . . . . . . 8 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → ((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)( ≃ph𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)}))
56 isphtpc 24357 . . . . . . . 8 (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)( ≃ph𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)}) ↔ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓) ∈ (II Cn 𝑆) ∧ ((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)}) ∈ (II Cn 𝑆) ∧ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ≠ ∅))
5755, 56sylib 217 . . . . . . 7 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓) ∈ (II Cn 𝑆) ∧ ((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)}) ∈ (II Cn 𝑆) ∧ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ≠ ∅))
5857simp3d 1144 . . . . . 6 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ≠ ∅)
59 n0 4306 . . . . . 6 ((((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ≠ ∅ ↔ ∃ ∈ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})))
6058, 59sylib 217 . . . . 5 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → ∃ ∈ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})))
61 exdistrv 1959 . . . . . 6 (∃𝑔(𝑔 ∈ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ∧ ∈ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)}))) ↔ (∃𝑔 𝑔 ∈ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ∧ ∃ ∈ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)}))))
628adantr 481 . . . . . . . . 9 ((((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) ∧ (𝑔 ∈ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ∧ ∈ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})))) → 𝑅 ∈ Top)
6313adantr 481 . . . . . . . . 9 ((((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) ∧ (𝑔 ∈ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ∧ ∈ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})))) → 𝑆 ∈ Top)
646adantr 481 . . . . . . . . 9 ((((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) ∧ (𝑔 ∈ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ∧ ∈ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})))) → 𝑓 ∈ (II Cn (𝑅 ×t 𝑆)))
65 eqid 2736 . . . . . . . . 9 ((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓) = ((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)
66 eqid 2736 . . . . . . . . 9 ((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓) = ((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)
67 simprl 769 . . . . . . . . 9 ((((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) ∧ (𝑔 ∈ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ∧ ∈ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})))) → 𝑔 ∈ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})))
68 simprr 771 . . . . . . . . 9 ((((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) ∧ (𝑔 ∈ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ∧ ∈ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})))) → ∈ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})))
6962, 63, 64, 65, 66, 67, 68txsconnlem 33834 . . . . . . . 8 ((((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) ∧ (𝑔 ∈ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ∧ ∈ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})))) → 𝑓( ≃ph‘(𝑅 ×t 𝑆))((0[,]1) × {(𝑓‘0)}))
7069ex 413 . . . . . . 7 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → ((𝑔 ∈ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ∧ ∈ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)}))) → 𝑓( ≃ph‘(𝑅 ×t 𝑆))((0[,]1) × {(𝑓‘0)})))
7170exlimdvv 1937 . . . . . 6 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → (∃𝑔(𝑔 ∈ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ∧ ∈ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)}))) → 𝑓( ≃ph‘(𝑅 ×t 𝑆))((0[,]1) × {(𝑓‘0)})))
7261, 71biimtrrid 242 . . . . 5 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → ((∃𝑔 𝑔 ∈ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ∧ ∃ ∈ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)}))) → 𝑓( ≃ph‘(𝑅 ×t 𝑆))((0[,]1) × {(𝑓‘0)})))
7342, 60, 72mp2and 697 . . . 4 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑓( ≃ph‘(𝑅 ×t 𝑆))((0[,]1) × {(𝑓‘0)}))
7473expr 457 . . 3 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ 𝑓 ∈ (II Cn (𝑅 ×t 𝑆))) → ((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘(𝑅 ×t 𝑆))((0[,]1) × {(𝑓‘0)})))
7574ralrimiva 3143 . 2 ((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) → ∀𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘(𝑅 ×t 𝑆))((0[,]1) × {(𝑓‘0)})))
76 issconn 33820 . 2 ((𝑅 ×t 𝑆) ∈ SConn ↔ ((𝑅 ×t 𝑆) ∈ PConn ∧ ∀𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘(𝑅 ×t 𝑆))((0[,]1) × {(𝑓‘0)}))))
774, 75, 76sylanbrc 583 1 ((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) → (𝑅 ×t 𝑆) ∈ SConn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  wne 2943  wral 3064  c0 4282  {csn 4586   cuni 4865   class class class wbr 5105   × cxp 5631  cres 5635  ccom 5637  wf 6492  cfv 6496  (class class class)co 7357  1st c1st 7919  2nd c2nd 7920  0cc0 11051  1c1 11052  [,]cicc 13267  Topctop 22242  TopOnctopon 22259   Cn ccn 22575   ×t ctx 22911  IIcii 24238  PHtpycphtpy 24331  phcphtpc 24332  PConncpconn 33813  SConncsconn 33814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-icc 13271  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-topgen 17325  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-top 22243  df-topon 22260  df-bases 22296  df-cn 22578  df-cnp 22579  df-tx 22913  df-ii 24240  df-htpy 24333  df-phtpy 24334  df-phtpc 24355  df-pconn 33815  df-sconn 33816
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator