Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  txsconn Structured version   Visualization version   GIF version

Theorem txsconn 31826
Description: The topological product of two simply connected spaces is simply connected. (Contributed by Mario Carneiro, 12-Feb-2015.)
Assertion
Ref Expression
txsconn ((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) → (𝑅 ×t 𝑆) ∈ SConn)

Proof of Theorem txsconn
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sconnpconn 31812 . . 3 (𝑅 ∈ SConn → 𝑅 ∈ PConn)
2 sconnpconn 31812 . . 3 (𝑆 ∈ SConn → 𝑆 ∈ PConn)
3 txpconn 31817 . . 3 ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) → (𝑅 ×t 𝑆) ∈ PConn)
41, 2, 3syl2an 589 . 2 ((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) → (𝑅 ×t 𝑆) ∈ PConn)
5 simpll 757 . . . . . . . . 9 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑅 ∈ SConn)
6 simprl 761 . . . . . . . . . 10 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑓 ∈ (II Cn (𝑅 ×t 𝑆)))
7 sconntop 31813 . . . . . . . . . . . . 13 (𝑅 ∈ SConn → 𝑅 ∈ Top)
87ad2antrr 716 . . . . . . . . . . . 12 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑅 ∈ Top)
9 eqid 2778 . . . . . . . . . . . . 13 𝑅 = 𝑅
109toptopon 21133 . . . . . . . . . . . 12 (𝑅 ∈ Top ↔ 𝑅 ∈ (TopOn‘ 𝑅))
118, 10sylib 210 . . . . . . . . . . 11 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑅 ∈ (TopOn‘ 𝑅))
12 sconntop 31813 . . . . . . . . . . . . 13 (𝑆 ∈ SConn → 𝑆 ∈ Top)
1312ad2antlr 717 . . . . . . . . . . . 12 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑆 ∈ Top)
14 eqid 2778 . . . . . . . . . . . . 13 𝑆 = 𝑆
1514toptopon 21133 . . . . . . . . . . . 12 (𝑆 ∈ Top ↔ 𝑆 ∈ (TopOn‘ 𝑆))
1613, 15sylib 210 . . . . . . . . . . 11 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑆 ∈ (TopOn‘ 𝑆))
17 tx1cn 21825 . . . . . . . . . . 11 ((𝑅 ∈ (TopOn‘ 𝑅) ∧ 𝑆 ∈ (TopOn‘ 𝑆)) → (1st ↾ ( 𝑅 × 𝑆)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅))
1811, 16, 17syl2anc 579 . . . . . . . . . 10 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → (1st ↾ ( 𝑅 × 𝑆)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅))
19 cnco 21482 . . . . . . . . . 10 ((𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (1st ↾ ( 𝑅 × 𝑆)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅)) → ((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓) ∈ (II Cn 𝑅))
206, 18, 19syl2anc 579 . . . . . . . . 9 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → ((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓) ∈ (II Cn 𝑅))
21 simprr 763 . . . . . . . . . . 11 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑓‘0) = (𝑓‘1))
2221fveq2d 6452 . . . . . . . . . 10 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → ((1st ↾ ( 𝑅 × 𝑆))‘(𝑓‘0)) = ((1st ↾ ( 𝑅 × 𝑆))‘(𝑓‘1)))
23 iitopon 23094 . . . . . . . . . . . . 13 II ∈ (TopOn‘(0[,]1))
2423a1i 11 . . . . . . . . . . . 12 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → II ∈ (TopOn‘(0[,]1)))
25 txtopon 21807 . . . . . . . . . . . . 13 ((𝑅 ∈ (TopOn‘ 𝑅) ∧ 𝑆 ∈ (TopOn‘ 𝑆)) → (𝑅 ×t 𝑆) ∈ (TopOn‘( 𝑅 × 𝑆)))
2611, 16, 25syl2anc 579 . . . . . . . . . . . 12 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑅 ×t 𝑆) ∈ (TopOn‘( 𝑅 × 𝑆)))
27 cnf2 21465 . . . . . . . . . . . 12 ((II ∈ (TopOn‘(0[,]1)) ∧ (𝑅 ×t 𝑆) ∈ (TopOn‘( 𝑅 × 𝑆)) ∧ 𝑓 ∈ (II Cn (𝑅 ×t 𝑆))) → 𝑓:(0[,]1)⟶( 𝑅 × 𝑆))
2824, 26, 6, 27syl3anc 1439 . . . . . . . . . . 11 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑓:(0[,]1)⟶( 𝑅 × 𝑆))
29 0elunit 12609 . . . . . . . . . . 11 0 ∈ (0[,]1)
30 fvco3 6537 . . . . . . . . . . 11 ((𝑓:(0[,]1)⟶( 𝑅 × 𝑆) ∧ 0 ∈ (0[,]1)) → (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0) = ((1st ↾ ( 𝑅 × 𝑆))‘(𝑓‘0)))
3128, 29, 30sylancl 580 . . . . . . . . . 10 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0) = ((1st ↾ ( 𝑅 × 𝑆))‘(𝑓‘0)))
32 1elunit 12610 . . . . . . . . . . 11 1 ∈ (0[,]1)
33 fvco3 6537 . . . . . . . . . . 11 ((𝑓:(0[,]1)⟶( 𝑅 × 𝑆) ∧ 1 ∈ (0[,]1)) → (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘1) = ((1st ↾ ( 𝑅 × 𝑆))‘(𝑓‘1)))
3428, 32, 33sylancl 580 . . . . . . . . . 10 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘1) = ((1st ↾ ( 𝑅 × 𝑆))‘(𝑓‘1)))
3522, 31, 343eqtr4d 2824 . . . . . . . . 9 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0) = (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘1))
36 sconnpht 31814 . . . . . . . . 9 ((𝑅 ∈ SConn ∧ ((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓) ∈ (II Cn 𝑅) ∧ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0) = (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘1)) → ((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)( ≃ph𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)}))
375, 20, 35, 36syl3anc 1439 . . . . . . . 8 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → ((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)( ≃ph𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)}))
38 isphtpc 23205 . . . . . . . 8 (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)( ≃ph𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)}) ↔ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓) ∈ (II Cn 𝑅) ∧ ((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)}) ∈ (II Cn 𝑅) ∧ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ≠ ∅))
3937, 38sylib 210 . . . . . . 7 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓) ∈ (II Cn 𝑅) ∧ ((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)}) ∈ (II Cn 𝑅) ∧ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ≠ ∅))
4039simp3d 1135 . . . . . 6 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ≠ ∅)
41 n0 4159 . . . . . 6 ((((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ≠ ∅ ↔ ∃𝑔 𝑔 ∈ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})))
4240, 41sylib 210 . . . . 5 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → ∃𝑔 𝑔 ∈ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})))
43 simplr 759 . . . . . . . . 9 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑆 ∈ SConn)
44 tx2cn 21826 . . . . . . . . . . 11 ((𝑅 ∈ (TopOn‘ 𝑅) ∧ 𝑆 ∈ (TopOn‘ 𝑆)) → (2nd ↾ ( 𝑅 × 𝑆)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆))
4511, 16, 44syl2anc 579 . . . . . . . . . 10 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → (2nd ↾ ( 𝑅 × 𝑆)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆))
46 cnco 21482 . . . . . . . . . 10 ((𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (2nd ↾ ( 𝑅 × 𝑆)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆)) → ((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓) ∈ (II Cn 𝑆))
476, 45, 46syl2anc 579 . . . . . . . . 9 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → ((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓) ∈ (II Cn 𝑆))
4821fveq2d 6452 . . . . . . . . . 10 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → ((2nd ↾ ( 𝑅 × 𝑆))‘(𝑓‘0)) = ((2nd ↾ ( 𝑅 × 𝑆))‘(𝑓‘1)))
49 fvco3 6537 . . . . . . . . . . 11 ((𝑓:(0[,]1)⟶( 𝑅 × 𝑆) ∧ 0 ∈ (0[,]1)) → (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0) = ((2nd ↾ ( 𝑅 × 𝑆))‘(𝑓‘0)))
5028, 29, 49sylancl 580 . . . . . . . . . 10 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0) = ((2nd ↾ ( 𝑅 × 𝑆))‘(𝑓‘0)))
51 fvco3 6537 . . . . . . . . . . 11 ((𝑓:(0[,]1)⟶( 𝑅 × 𝑆) ∧ 1 ∈ (0[,]1)) → (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘1) = ((2nd ↾ ( 𝑅 × 𝑆))‘(𝑓‘1)))
5228, 32, 51sylancl 580 . . . . . . . . . 10 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘1) = ((2nd ↾ ( 𝑅 × 𝑆))‘(𝑓‘1)))
5348, 50, 523eqtr4d 2824 . . . . . . . . 9 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0) = (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘1))
54 sconnpht 31814 . . . . . . . . 9 ((𝑆 ∈ SConn ∧ ((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓) ∈ (II Cn 𝑆) ∧ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0) = (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘1)) → ((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)( ≃ph𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)}))
5543, 47, 53, 54syl3anc 1439 . . . . . . . 8 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → ((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)( ≃ph𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)}))
56 isphtpc 23205 . . . . . . . 8 (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)( ≃ph𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)}) ↔ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓) ∈ (II Cn 𝑆) ∧ ((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)}) ∈ (II Cn 𝑆) ∧ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ≠ ∅))
5755, 56sylib 210 . . . . . . 7 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓) ∈ (II Cn 𝑆) ∧ ((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)}) ∈ (II Cn 𝑆) ∧ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ≠ ∅))
5857simp3d 1135 . . . . . 6 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ≠ ∅)
59 n0 4159 . . . . . 6 ((((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ≠ ∅ ↔ ∃ ∈ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})))
6058, 59sylib 210 . . . . 5 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → ∃ ∈ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})))
61 exdistrv 1998 . . . . . 6 (∃𝑔(𝑔 ∈ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ∧ ∈ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)}))) ↔ (∃𝑔 𝑔 ∈ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ∧ ∃ ∈ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)}))))
628adantr 474 . . . . . . . . 9 ((((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) ∧ (𝑔 ∈ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ∧ ∈ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})))) → 𝑅 ∈ Top)
6313adantr 474 . . . . . . . . 9 ((((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) ∧ (𝑔 ∈ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ∧ ∈ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})))) → 𝑆 ∈ Top)
646adantr 474 . . . . . . . . 9 ((((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) ∧ (𝑔 ∈ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ∧ ∈ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})))) → 𝑓 ∈ (II Cn (𝑅 ×t 𝑆)))
65 eqid 2778 . . . . . . . . 9 ((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓) = ((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)
66 eqid 2778 . . . . . . . . 9 ((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓) = ((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)
67 simprl 761 . . . . . . . . 9 ((((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) ∧ (𝑔 ∈ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ∧ ∈ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})))) → 𝑔 ∈ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})))
68 simprr 763 . . . . . . . . 9 ((((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) ∧ (𝑔 ∈ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ∧ ∈ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})))) → ∈ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})))
6962, 63, 64, 65, 66, 67, 68txsconnlem 31825 . . . . . . . 8 ((((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) ∧ (𝑔 ∈ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ∧ ∈ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})))) → 𝑓( ≃ph‘(𝑅 ×t 𝑆))((0[,]1) × {(𝑓‘0)}))
7069ex 403 . . . . . . 7 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → ((𝑔 ∈ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ∧ ∈ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)}))) → 𝑓( ≃ph‘(𝑅 ×t 𝑆))((0[,]1) × {(𝑓‘0)})))
7170exlimdvv 1977 . . . . . 6 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → (∃𝑔(𝑔 ∈ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ∧ ∈ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)}))) → 𝑓( ≃ph‘(𝑅 ×t 𝑆))((0[,]1) × {(𝑓‘0)})))
7261, 71syl5bir 235 . . . . 5 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → ((∃𝑔 𝑔 ∈ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ∧ ∃ ∈ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)}))) → 𝑓( ≃ph‘(𝑅 ×t 𝑆))((0[,]1) × {(𝑓‘0)})))
7342, 60, 72mp2and 689 . . . 4 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑓( ≃ph‘(𝑅 ×t 𝑆))((0[,]1) × {(𝑓‘0)}))
7473expr 450 . . 3 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ 𝑓 ∈ (II Cn (𝑅 ×t 𝑆))) → ((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘(𝑅 ×t 𝑆))((0[,]1) × {(𝑓‘0)})))
7574ralrimiva 3148 . 2 ((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) → ∀𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘(𝑅 ×t 𝑆))((0[,]1) × {(𝑓‘0)})))
76 issconn 31811 . 2 ((𝑅 ×t 𝑆) ∈ SConn ↔ ((𝑅 ×t 𝑆) ∈ PConn ∧ ∀𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘(𝑅 ×t 𝑆))((0[,]1) × {(𝑓‘0)}))))
774, 75, 76sylanbrc 578 1 ((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) → (𝑅 ×t 𝑆) ∈ SConn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1071   = wceq 1601  wex 1823  wcel 2107  wne 2969  wral 3090  c0 4141  {csn 4398   cuni 4673   class class class wbr 4888   × cxp 5355  cres 5359  ccom 5361  wf 6133  cfv 6137  (class class class)co 6924  1st c1st 7445  2nd c2nd 7446  0cc0 10274  1c1 10275  [,]cicc 12494  Topctop 21109  TopOnctopon 21126   Cn ccn 21440   ×t ctx 21776  IIcii 23090  PHtpycphtpy 23179  phcphtpc 23180  PConncpconn 31804  SConncsconn 31805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351  ax-pre-sup 10352
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-1st 7447  df-2nd 7448  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-er 8028  df-map 8144  df-en 8244  df-dom 8245  df-sdom 8246  df-sup 8638  df-inf 8639  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-div 11035  df-nn 11379  df-2 11442  df-3 11443  df-n0 11647  df-z 11733  df-uz 11997  df-q 12100  df-rp 12142  df-xneg 12261  df-xadd 12262  df-xmul 12263  df-icc 12498  df-seq 13124  df-exp 13183  df-cj 14250  df-re 14251  df-im 14252  df-sqrt 14386  df-abs 14387  df-topgen 16494  df-psmet 20138  df-xmet 20139  df-met 20140  df-bl 20141  df-mopn 20142  df-top 21110  df-topon 21127  df-bases 21162  df-cn 21443  df-cnp 21444  df-tx 21778  df-ii 23092  df-htpy 23181  df-phtpy 23182  df-phtpc 23203  df-pconn 31806  df-sconn 31807
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator