Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  txsconn Structured version   Visualization version   GIF version

Theorem txsconn 35263
Description: The topological product of two simply connected spaces is simply connected. (Contributed by Mario Carneiro, 12-Feb-2015.)
Assertion
Ref Expression
txsconn ((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) → (𝑅 ×t 𝑆) ∈ SConn)

Proof of Theorem txsconn
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sconnpconn 35249 . . 3 (𝑅 ∈ SConn → 𝑅 ∈ PConn)
2 sconnpconn 35249 . . 3 (𝑆 ∈ SConn → 𝑆 ∈ PConn)
3 txpconn 35254 . . 3 ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) → (𝑅 ×t 𝑆) ∈ PConn)
41, 2, 3syl2an 596 . 2 ((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) → (𝑅 ×t 𝑆) ∈ PConn)
5 simpll 766 . . . . . . . . 9 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑅 ∈ SConn)
6 simprl 770 . . . . . . . . . 10 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑓 ∈ (II Cn (𝑅 ×t 𝑆)))
7 sconntop 35250 . . . . . . . . . . . . 13 (𝑅 ∈ SConn → 𝑅 ∈ Top)
87ad2antrr 726 . . . . . . . . . . . 12 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑅 ∈ Top)
9 eqid 2735 . . . . . . . . . . . . 13 𝑅 = 𝑅
109toptopon 22855 . . . . . . . . . . . 12 (𝑅 ∈ Top ↔ 𝑅 ∈ (TopOn‘ 𝑅))
118, 10sylib 218 . . . . . . . . . . 11 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑅 ∈ (TopOn‘ 𝑅))
12 sconntop 35250 . . . . . . . . . . . . 13 (𝑆 ∈ SConn → 𝑆 ∈ Top)
1312ad2antlr 727 . . . . . . . . . . . 12 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑆 ∈ Top)
14 eqid 2735 . . . . . . . . . . . . 13 𝑆 = 𝑆
1514toptopon 22855 . . . . . . . . . . . 12 (𝑆 ∈ Top ↔ 𝑆 ∈ (TopOn‘ 𝑆))
1613, 15sylib 218 . . . . . . . . . . 11 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑆 ∈ (TopOn‘ 𝑆))
17 tx1cn 23547 . . . . . . . . . . 11 ((𝑅 ∈ (TopOn‘ 𝑅) ∧ 𝑆 ∈ (TopOn‘ 𝑆)) → (1st ↾ ( 𝑅 × 𝑆)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅))
1811, 16, 17syl2anc 584 . . . . . . . . . 10 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → (1st ↾ ( 𝑅 × 𝑆)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅))
19 cnco 23204 . . . . . . . . . 10 ((𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (1st ↾ ( 𝑅 × 𝑆)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅)) → ((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓) ∈ (II Cn 𝑅))
206, 18, 19syl2anc 584 . . . . . . . . 9 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → ((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓) ∈ (II Cn 𝑅))
21 simprr 772 . . . . . . . . . . 11 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑓‘0) = (𝑓‘1))
2221fveq2d 6880 . . . . . . . . . 10 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → ((1st ↾ ( 𝑅 × 𝑆))‘(𝑓‘0)) = ((1st ↾ ( 𝑅 × 𝑆))‘(𝑓‘1)))
23 iitopon 24823 . . . . . . . . . . . . 13 II ∈ (TopOn‘(0[,]1))
2423a1i 11 . . . . . . . . . . . 12 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → II ∈ (TopOn‘(0[,]1)))
25 txtopon 23529 . . . . . . . . . . . . 13 ((𝑅 ∈ (TopOn‘ 𝑅) ∧ 𝑆 ∈ (TopOn‘ 𝑆)) → (𝑅 ×t 𝑆) ∈ (TopOn‘( 𝑅 × 𝑆)))
2611, 16, 25syl2anc 584 . . . . . . . . . . . 12 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑅 ×t 𝑆) ∈ (TopOn‘( 𝑅 × 𝑆)))
27 cnf2 23187 . . . . . . . . . . . 12 ((II ∈ (TopOn‘(0[,]1)) ∧ (𝑅 ×t 𝑆) ∈ (TopOn‘( 𝑅 × 𝑆)) ∧ 𝑓 ∈ (II Cn (𝑅 ×t 𝑆))) → 𝑓:(0[,]1)⟶( 𝑅 × 𝑆))
2824, 26, 6, 27syl3anc 1373 . . . . . . . . . . 11 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑓:(0[,]1)⟶( 𝑅 × 𝑆))
29 0elunit 13486 . . . . . . . . . . 11 0 ∈ (0[,]1)
30 fvco3 6978 . . . . . . . . . . 11 ((𝑓:(0[,]1)⟶( 𝑅 × 𝑆) ∧ 0 ∈ (0[,]1)) → (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0) = ((1st ↾ ( 𝑅 × 𝑆))‘(𝑓‘0)))
3128, 29, 30sylancl 586 . . . . . . . . . 10 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0) = ((1st ↾ ( 𝑅 × 𝑆))‘(𝑓‘0)))
32 1elunit 13487 . . . . . . . . . . 11 1 ∈ (0[,]1)
33 fvco3 6978 . . . . . . . . . . 11 ((𝑓:(0[,]1)⟶( 𝑅 × 𝑆) ∧ 1 ∈ (0[,]1)) → (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘1) = ((1st ↾ ( 𝑅 × 𝑆))‘(𝑓‘1)))
3428, 32, 33sylancl 586 . . . . . . . . . 10 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘1) = ((1st ↾ ( 𝑅 × 𝑆))‘(𝑓‘1)))
3522, 31, 343eqtr4d 2780 . . . . . . . . 9 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0) = (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘1))
36 sconnpht 35251 . . . . . . . . 9 ((𝑅 ∈ SConn ∧ ((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓) ∈ (II Cn 𝑅) ∧ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0) = (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘1)) → ((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)( ≃ph𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)}))
375, 20, 35, 36syl3anc 1373 . . . . . . . 8 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → ((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)( ≃ph𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)}))
38 isphtpc 24944 . . . . . . . 8 (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)( ≃ph𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)}) ↔ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓) ∈ (II Cn 𝑅) ∧ ((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)}) ∈ (II Cn 𝑅) ∧ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ≠ ∅))
3937, 38sylib 218 . . . . . . 7 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓) ∈ (II Cn 𝑅) ∧ ((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)}) ∈ (II Cn 𝑅) ∧ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ≠ ∅))
4039simp3d 1144 . . . . . 6 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ≠ ∅)
41 n0 4328 . . . . . 6 ((((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ≠ ∅ ↔ ∃𝑔 𝑔 ∈ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})))
4240, 41sylib 218 . . . . 5 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → ∃𝑔 𝑔 ∈ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})))
43 simplr 768 . . . . . . . . 9 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑆 ∈ SConn)
44 tx2cn 23548 . . . . . . . . . . 11 ((𝑅 ∈ (TopOn‘ 𝑅) ∧ 𝑆 ∈ (TopOn‘ 𝑆)) → (2nd ↾ ( 𝑅 × 𝑆)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆))
4511, 16, 44syl2anc 584 . . . . . . . . . 10 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → (2nd ↾ ( 𝑅 × 𝑆)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆))
46 cnco 23204 . . . . . . . . . 10 ((𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (2nd ↾ ( 𝑅 × 𝑆)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆)) → ((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓) ∈ (II Cn 𝑆))
476, 45, 46syl2anc 584 . . . . . . . . 9 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → ((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓) ∈ (II Cn 𝑆))
4821fveq2d 6880 . . . . . . . . . 10 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → ((2nd ↾ ( 𝑅 × 𝑆))‘(𝑓‘0)) = ((2nd ↾ ( 𝑅 × 𝑆))‘(𝑓‘1)))
49 fvco3 6978 . . . . . . . . . . 11 ((𝑓:(0[,]1)⟶( 𝑅 × 𝑆) ∧ 0 ∈ (0[,]1)) → (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0) = ((2nd ↾ ( 𝑅 × 𝑆))‘(𝑓‘0)))
5028, 29, 49sylancl 586 . . . . . . . . . 10 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0) = ((2nd ↾ ( 𝑅 × 𝑆))‘(𝑓‘0)))
51 fvco3 6978 . . . . . . . . . . 11 ((𝑓:(0[,]1)⟶( 𝑅 × 𝑆) ∧ 1 ∈ (0[,]1)) → (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘1) = ((2nd ↾ ( 𝑅 × 𝑆))‘(𝑓‘1)))
5228, 32, 51sylancl 586 . . . . . . . . . 10 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘1) = ((2nd ↾ ( 𝑅 × 𝑆))‘(𝑓‘1)))
5348, 50, 523eqtr4d 2780 . . . . . . . . 9 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0) = (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘1))
54 sconnpht 35251 . . . . . . . . 9 ((𝑆 ∈ SConn ∧ ((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓) ∈ (II Cn 𝑆) ∧ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0) = (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘1)) → ((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)( ≃ph𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)}))
5543, 47, 53, 54syl3anc 1373 . . . . . . . 8 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → ((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)( ≃ph𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)}))
56 isphtpc 24944 . . . . . . . 8 (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)( ≃ph𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)}) ↔ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓) ∈ (II Cn 𝑆) ∧ ((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)}) ∈ (II Cn 𝑆) ∧ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ≠ ∅))
5755, 56sylib 218 . . . . . . 7 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓) ∈ (II Cn 𝑆) ∧ ((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)}) ∈ (II Cn 𝑆) ∧ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ≠ ∅))
5857simp3d 1144 . . . . . 6 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ≠ ∅)
59 n0 4328 . . . . . 6 ((((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ≠ ∅ ↔ ∃ ∈ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})))
6058, 59sylib 218 . . . . 5 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → ∃ ∈ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})))
61 exdistrv 1955 . . . . . 6 (∃𝑔(𝑔 ∈ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ∧ ∈ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)}))) ↔ (∃𝑔 𝑔 ∈ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ∧ ∃ ∈ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)}))))
628adantr 480 . . . . . . . . 9 ((((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) ∧ (𝑔 ∈ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ∧ ∈ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})))) → 𝑅 ∈ Top)
6313adantr 480 . . . . . . . . 9 ((((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) ∧ (𝑔 ∈ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ∧ ∈ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})))) → 𝑆 ∈ Top)
646adantr 480 . . . . . . . . 9 ((((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) ∧ (𝑔 ∈ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ∧ ∈ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})))) → 𝑓 ∈ (II Cn (𝑅 ×t 𝑆)))
65 eqid 2735 . . . . . . . . 9 ((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓) = ((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)
66 eqid 2735 . . . . . . . . 9 ((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓) = ((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)
67 simprl 770 . . . . . . . . 9 ((((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) ∧ (𝑔 ∈ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ∧ ∈ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})))) → 𝑔 ∈ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})))
68 simprr 772 . . . . . . . . 9 ((((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) ∧ (𝑔 ∈ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ∧ ∈ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})))) → ∈ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})))
6962, 63, 64, 65, 66, 67, 68txsconnlem 35262 . . . . . . . 8 ((((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) ∧ (𝑔 ∈ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ∧ ∈ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})))) → 𝑓( ≃ph‘(𝑅 ×t 𝑆))((0[,]1) × {(𝑓‘0)}))
7069ex 412 . . . . . . 7 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → ((𝑔 ∈ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ∧ ∈ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)}))) → 𝑓( ≃ph‘(𝑅 ×t 𝑆))((0[,]1) × {(𝑓‘0)})))
7170exlimdvv 1934 . . . . . 6 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → (∃𝑔(𝑔 ∈ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ∧ ∈ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)}))) → 𝑓( ≃ph‘(𝑅 ×t 𝑆))((0[,]1) × {(𝑓‘0)})))
7261, 71biimtrrid 243 . . . . 5 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → ((∃𝑔 𝑔 ∈ (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑅)((0[,]1) × {(((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)})) ∧ ∃ ∈ (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)(PHtpy‘𝑆)((0[,]1) × {(((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝑓)‘0)}))) → 𝑓( ≃ph‘(𝑅 ×t 𝑆))((0[,]1) × {(𝑓‘0)})))
7342, 60, 72mp2and 699 . . . 4 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ (𝑓 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑓( ≃ph‘(𝑅 ×t 𝑆))((0[,]1) × {(𝑓‘0)}))
7473expr 456 . . 3 (((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) ∧ 𝑓 ∈ (II Cn (𝑅 ×t 𝑆))) → ((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘(𝑅 ×t 𝑆))((0[,]1) × {(𝑓‘0)})))
7574ralrimiva 3132 . 2 ((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) → ∀𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘(𝑅 ×t 𝑆))((0[,]1) × {(𝑓‘0)})))
76 issconn 35248 . 2 ((𝑅 ×t 𝑆) ∈ SConn ↔ ((𝑅 ×t 𝑆) ∈ PConn ∧ ∀𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘(𝑅 ×t 𝑆))((0[,]1) × {(𝑓‘0)}))))
774, 75, 76sylanbrc 583 1 ((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) → (𝑅 ×t 𝑆) ∈ SConn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2108  wne 2932  wral 3051  c0 4308  {csn 4601   cuni 4883   class class class wbr 5119   × cxp 5652  cres 5656  ccom 5658  wf 6527  cfv 6531  (class class class)co 7405  1st c1st 7986  2nd c2nd 7987  0cc0 11129  1c1 11130  [,]cicc 13365  Topctop 22831  TopOnctopon 22848   Cn ccn 23162   ×t ctx 23498  IIcii 24819  PHtpycphtpy 24918  phcphtpc 24919  PConncpconn 35241  SConncsconn 35242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-icc 13369  df-seq 14020  df-exp 14080  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-topgen 17457  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-top 22832  df-topon 22849  df-bases 22884  df-cn 23165  df-cnp 23166  df-tx 23500  df-ii 24821  df-htpy 24920  df-phtpy 24921  df-phtpc 24942  df-pconn 35243  df-sconn 35244
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator