Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resconn Structured version   Visualization version   GIF version

Theorem resconn 32493
Description: A subset of is simply connected iff it is connected. (Contributed by Mario Carneiro, 9-Mar-2015.)
Hypothesis
Ref Expression
resconn.1 𝐽 = ((topGen‘ran (,)) ↾t 𝐴)
Assertion
Ref Expression
resconn (𝐴 ⊆ ℝ → (𝐽 ∈ SConn ↔ 𝐽 ∈ Conn))

Proof of Theorem resconn
Dummy variables 𝑡 𝑠 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sconnpconn 32474 . . 3 (𝐽 ∈ SConn → 𝐽 ∈ PConn)
2 pconnconn 32478 . . 3 (𝐽 ∈ PConn → 𝐽 ∈ Conn)
31, 2syl 17 . 2 (𝐽 ∈ SConn → 𝐽 ∈ Conn)
4 eqid 2821 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
5 eqid 2821 . . . . . . 7 (topGen‘ran (,)) = (topGen‘ran (,))
64, 5rerest 23411 . . . . . 6 (𝐴 ⊆ ℝ → ((TopOpen‘ℂfld) ↾t 𝐴) = ((topGen‘ran (,)) ↾t 𝐴))
7 resconn.1 . . . . . 6 𝐽 = ((topGen‘ran (,)) ↾t 𝐴)
86, 7syl6eqr 2874 . . . . 5 (𝐴 ⊆ ℝ → ((TopOpen‘ℂfld) ↾t 𝐴) = 𝐽)
98adantr 483 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) → ((TopOpen‘ℂfld) ↾t 𝐴) = 𝐽)
10 simpl 485 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) → 𝐴 ⊆ ℝ)
11 ax-resscn 10593 . . . . . 6 ℝ ⊆ ℂ
1210, 11sstrdi 3978 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) → 𝐴 ⊆ ℂ)
13 df-3an 1085 . . . . . 6 ((𝑥𝐴𝑦𝐴𝑡 ∈ (0[,]1)) ↔ ((𝑥𝐴𝑦𝐴) ∧ 𝑡 ∈ (0[,]1)))
14 oveq2 7163 . . . . . . . . . . . 12 (𝑧 = 𝑥 → (𝑡 · 𝑧) = (𝑡 · 𝑥))
15 oveq2 7163 . . . . . . . . . . . 12 (𝑤 = 𝑦 → ((1 − 𝑡) · 𝑤) = ((1 − 𝑡) · 𝑦))
1614, 15oveqan12d 7174 . . . . . . . . . . 11 ((𝑧 = 𝑥𝑤 = 𝑦) → ((𝑡 · 𝑧) + ((1 − 𝑡) · 𝑤)) = ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))
1716eleq1d 2897 . . . . . . . . . 10 ((𝑧 = 𝑥𝑤 = 𝑦) → (((𝑡 · 𝑧) + ((1 − 𝑡) · 𝑤)) ∈ 𝐴 ↔ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝐴))
1817ralbidv 3197 . . . . . . . . 9 ((𝑧 = 𝑥𝑤 = 𝑦) → (∀𝑡 ∈ (0[,]1)((𝑡 · 𝑧) + ((1 − 𝑡) · 𝑤)) ∈ 𝐴 ↔ ∀𝑡 ∈ (0[,]1)((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝐴))
19 oveq2 7163 . . . . . . . . . . . 12 (𝑧 = 𝑦 → (𝑡 · 𝑧) = (𝑡 · 𝑦))
20 oveq2 7163 . . . . . . . . . . . 12 (𝑤 = 𝑥 → ((1 − 𝑡) · 𝑤) = ((1 − 𝑡) · 𝑥))
2119, 20oveqan12d 7174 . . . . . . . . . . 11 ((𝑧 = 𝑦𝑤 = 𝑥) → ((𝑡 · 𝑧) + ((1 − 𝑡) · 𝑤)) = ((𝑡 · 𝑦) + ((1 − 𝑡) · 𝑥)))
2221eleq1d 2897 . . . . . . . . . 10 ((𝑧 = 𝑦𝑤 = 𝑥) → (((𝑡 · 𝑧) + ((1 − 𝑡) · 𝑤)) ∈ 𝐴 ↔ ((𝑡 · 𝑦) + ((1 − 𝑡) · 𝑥)) ∈ 𝐴))
2322ralbidv 3197 . . . . . . . . 9 ((𝑧 = 𝑦𝑤 = 𝑥) → (∀𝑡 ∈ (0[,]1)((𝑡 · 𝑧) + ((1 − 𝑡) · 𝑤)) ∈ 𝐴 ↔ ∀𝑡 ∈ (0[,]1)((𝑡 · 𝑦) + ((1 − 𝑡) · 𝑥)) ∈ 𝐴))
24 unitssre 12884 . . . . . . . . . . . . . . . . 17 (0[,]1) ⊆ ℝ
2524, 11sstri 3975 . . . . . . . . . . . . . . . 16 (0[,]1) ⊆ ℂ
26 simpr 487 . . . . . . . . . . . . . . . 16 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → 𝑠 ∈ (0[,]1))
2725, 26sseldi 3964 . . . . . . . . . . . . . . 15 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → 𝑠 ∈ ℂ)
2812adantr 483 . . . . . . . . . . . . . . . . 17 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → 𝐴 ⊆ ℂ)
29 simpr2 1191 . . . . . . . . . . . . . . . . 17 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → 𝑦𝐴)
3028, 29sseldd 3967 . . . . . . . . . . . . . . . 16 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → 𝑦 ∈ ℂ)
3130adantr 483 . . . . . . . . . . . . . . 15 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → 𝑦 ∈ ℂ)
3227, 31mulcld 10660 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → (𝑠 · 𝑦) ∈ ℂ)
33 ax-1cn 10594 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
34 subcl 10884 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ 𝑠 ∈ ℂ) → (1 − 𝑠) ∈ ℂ)
3533, 27, 34sylancr 589 . . . . . . . . . . . . . . 15 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → (1 − 𝑠) ∈ ℂ)
36 simpr1 1190 . . . . . . . . . . . . . . . . 17 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → 𝑥𝐴)
3728, 36sseldd 3967 . . . . . . . . . . . . . . . 16 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → 𝑥 ∈ ℂ)
3837adantr 483 . . . . . . . . . . . . . . 15 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → 𝑥 ∈ ℂ)
3935, 38mulcld 10660 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → ((1 − 𝑠) · 𝑥) ∈ ℂ)
4032, 39addcomd 10841 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → ((𝑠 · 𝑦) + ((1 − 𝑠) · 𝑥)) = (((1 − 𝑠) · 𝑥) + (𝑠 · 𝑦)))
41 nncan 10914 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ 𝑠 ∈ ℂ) → (1 − (1 − 𝑠)) = 𝑠)
4233, 27, 41sylancr 589 . . . . . . . . . . . . . . 15 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → (1 − (1 − 𝑠)) = 𝑠)
4342oveq1d 7170 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → ((1 − (1 − 𝑠)) · 𝑦) = (𝑠 · 𝑦))
4443oveq2d 7171 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → (((1 − 𝑠) · 𝑥) + ((1 − (1 − 𝑠)) · 𝑦)) = (((1 − 𝑠) · 𝑥) + (𝑠 · 𝑦)))
4540, 44eqtr4d 2859 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → ((𝑠 · 𝑦) + ((1 − 𝑠) · 𝑥)) = (((1 − 𝑠) · 𝑥) + ((1 − (1 − 𝑠)) · 𝑦)))
46 iirev 23532 . . . . . . . . . . . . . 14 (𝑠 ∈ (0[,]1) → (1 − 𝑠) ∈ (0[,]1))
4746adantl 484 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → (1 − 𝑠) ∈ (0[,]1))
487eleq1i 2903 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐽 ∈ Conn ↔ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn)
49 reconn 23435 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴 ⊆ ℝ → (((topGen‘ran (,)) ↾t 𝐴) ∈ Conn ↔ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴))
5048, 49syl5bb 285 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ⊆ ℝ → (𝐽 ∈ Conn ↔ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴))
5150biimpa 479 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) → ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴)
5251r19.21bi 3208 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ 𝑥𝐴) → ∀𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴)
5352r19.21bi 3208 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → (𝑥[,]𝑦) ⊆ 𝐴)
5453anasss 469 . . . . . . . . . . . . . . . . . 18 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥[,]𝑦) ⊆ 𝐴)
55543adantr3 1167 . . . . . . . . . . . . . . . . 17 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → (𝑥[,]𝑦) ⊆ 𝐴)
5655adantr 483 . . . . . . . . . . . . . . . 16 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → (𝑥[,]𝑦) ⊆ 𝐴)
57 simpr 487 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝑡 ∈ (0[,]1))
5824, 57sseldi 3964 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝑡 ∈ ℝ)
59 simplll 773 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝐴 ⊆ ℝ)
6036adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝑥𝐴)
6159, 60sseldd 3967 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝑥 ∈ ℝ)
6258, 61remulcld 10670 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → (𝑡 · 𝑥) ∈ ℝ)
63 1re 10640 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℝ
64 resubcl 10949 . . . . . . . . . . . . . . . . . . . 20 ((1 ∈ ℝ ∧ 𝑡 ∈ ℝ) → (1 − 𝑡) ∈ ℝ)
6563, 58, 64sylancr 589 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → (1 − 𝑡) ∈ ℝ)
6629adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝑦𝐴)
6759, 66sseldd 3967 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝑦 ∈ ℝ)
6865, 67remulcld 10670 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((1 − 𝑡) · 𝑦) ∈ ℝ)
6962, 68readdcld 10669 . . . . . . . . . . . . . . . . 17 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ ℝ)
7058recnd 10668 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝑡 ∈ ℂ)
71 pncan3 10893 . . . . . . . . . . . . . . . . . . . . 21 ((𝑡 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑡 + (1 − 𝑡)) = 1)
7270, 33, 71sylancl 588 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → (𝑡 + (1 − 𝑡)) = 1)
7372oveq1d 7170 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 + (1 − 𝑡)) · 𝑥) = (1 · 𝑥))
7465recnd 10668 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → (1 − 𝑡) ∈ ℂ)
7537adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝑥 ∈ ℂ)
7670, 74, 75adddird 10665 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 + (1 − 𝑡)) · 𝑥) = ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑥)))
7775mulid2d 10658 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → (1 · 𝑥) = 𝑥)
7873, 76, 773eqtr3d 2864 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑥)) = 𝑥)
7965, 61remulcld 10670 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((1 − 𝑡) · 𝑥) ∈ ℝ)
80 elicc01 12853 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 ∈ (0[,]1) ↔ (𝑡 ∈ ℝ ∧ 0 ≤ 𝑡𝑡 ≤ 1))
8157, 80sylib 220 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → (𝑡 ∈ ℝ ∧ 0 ≤ 𝑡𝑡 ≤ 1))
8281simp3d 1140 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝑡 ≤ 1)
83 subge0 11152 . . . . . . . . . . . . . . . . . . . . . 22 ((1 ∈ ℝ ∧ 𝑡 ∈ ℝ) → (0 ≤ (1 − 𝑡) ↔ 𝑡 ≤ 1))
8463, 58, 83sylancr 589 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → (0 ≤ (1 − 𝑡) ↔ 𝑡 ≤ 1))
8582, 84mpbird 259 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 0 ≤ (1 − 𝑡))
86 simplr3 1213 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝑥𝑦)
8761, 67, 65, 85, 86lemul2ad 11579 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((1 − 𝑡) · 𝑥) ≤ ((1 − 𝑡) · 𝑦))
8879, 68, 62, 87leadd2dd 11254 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑥)) ≤ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))
8978, 88eqbrtrrd 5089 . . . . . . . . . . . . . . . . 17 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝑥 ≤ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))
9058, 67remulcld 10670 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → (𝑡 · 𝑦) ∈ ℝ)
9181simp2d 1139 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 0 ≤ 𝑡)
9261, 67, 58, 91, 86lemul2ad 11579 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → (𝑡 · 𝑥) ≤ (𝑡 · 𝑦))
9362, 90, 68, 92leadd1dd 11253 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ≤ ((𝑡 · 𝑦) + ((1 − 𝑡) · 𝑦)))
9472oveq1d 7170 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 + (1 − 𝑡)) · 𝑦) = (1 · 𝑦))
9530adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝑦 ∈ ℂ)
9670, 74, 95adddird 10665 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 + (1 − 𝑡)) · 𝑦) = ((𝑡 · 𝑦) + ((1 − 𝑡) · 𝑦)))
9795mulid2d 10658 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → (1 · 𝑦) = 𝑦)
9894, 96, 973eqtr3d 2864 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · 𝑦) + ((1 − 𝑡) · 𝑦)) = 𝑦)
9993, 98breqtrd 5091 . . . . . . . . . . . . . . . . 17 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ≤ 𝑦)
100 elicc2 12800 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ (𝑥[,]𝑦) ↔ (((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ ℝ ∧ 𝑥 ≤ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∧ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ≤ 𝑦)))
10161, 67, 100syl2anc 586 . . . . . . . . . . . . . . . . 17 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → (((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ (𝑥[,]𝑦) ↔ (((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ ℝ ∧ 𝑥 ≤ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∧ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ≤ 𝑦)))
10269, 89, 99, 101mpbir3and 1338 . . . . . . . . . . . . . . . 16 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ (𝑥[,]𝑦))
10356, 102sseldd 3967 . . . . . . . . . . . . . . 15 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝐴)
104103ralrimiva 3182 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → ∀𝑡 ∈ (0[,]1)((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝐴)
105104adantr 483 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → ∀𝑡 ∈ (0[,]1)((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝐴)
106 oveq1 7162 . . . . . . . . . . . . . . . 16 (𝑡 = (1 − 𝑠) → (𝑡 · 𝑥) = ((1 − 𝑠) · 𝑥))
107 oveq2 7163 . . . . . . . . . . . . . . . . 17 (𝑡 = (1 − 𝑠) → (1 − 𝑡) = (1 − (1 − 𝑠)))
108107oveq1d 7170 . . . . . . . . . . . . . . . 16 (𝑡 = (1 − 𝑠) → ((1 − 𝑡) · 𝑦) = ((1 − (1 − 𝑠)) · 𝑦))
109106, 108oveq12d 7173 . . . . . . . . . . . . . . 15 (𝑡 = (1 − 𝑠) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) = (((1 − 𝑠) · 𝑥) + ((1 − (1 − 𝑠)) · 𝑦)))
110109eleq1d 2897 . . . . . . . . . . . . . 14 (𝑡 = (1 − 𝑠) → (((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝐴 ↔ (((1 − 𝑠) · 𝑥) + ((1 − (1 − 𝑠)) · 𝑦)) ∈ 𝐴))
111110rspcv 3617 . . . . . . . . . . . . 13 ((1 − 𝑠) ∈ (0[,]1) → (∀𝑡 ∈ (0[,]1)((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝐴 → (((1 − 𝑠) · 𝑥) + ((1 − (1 − 𝑠)) · 𝑦)) ∈ 𝐴))
11247, 105, 111sylc 65 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → (((1 − 𝑠) · 𝑥) + ((1 − (1 − 𝑠)) · 𝑦)) ∈ 𝐴)
11345, 112eqeltrd 2913 . . . . . . . . . . 11 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → ((𝑠 · 𝑦) + ((1 − 𝑠) · 𝑥)) ∈ 𝐴)
114113ralrimiva 3182 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → ∀𝑠 ∈ (0[,]1)((𝑠 · 𝑦) + ((1 − 𝑠) · 𝑥)) ∈ 𝐴)
115 oveq1 7162 . . . . . . . . . . . . 13 (𝑠 = 𝑡 → (𝑠 · 𝑦) = (𝑡 · 𝑦))
116 oveq2 7163 . . . . . . . . . . . . . 14 (𝑠 = 𝑡 → (1 − 𝑠) = (1 − 𝑡))
117116oveq1d 7170 . . . . . . . . . . . . 13 (𝑠 = 𝑡 → ((1 − 𝑠) · 𝑥) = ((1 − 𝑡) · 𝑥))
118115, 117oveq12d 7173 . . . . . . . . . . . 12 (𝑠 = 𝑡 → ((𝑠 · 𝑦) + ((1 − 𝑠) · 𝑥)) = ((𝑡 · 𝑦) + ((1 − 𝑡) · 𝑥)))
119118eleq1d 2897 . . . . . . . . . . 11 (𝑠 = 𝑡 → (((𝑠 · 𝑦) + ((1 − 𝑠) · 𝑥)) ∈ 𝐴 ↔ ((𝑡 · 𝑦) + ((1 − 𝑡) · 𝑥)) ∈ 𝐴))
120119cbvralvw 3449 . . . . . . . . . 10 (∀𝑠 ∈ (0[,]1)((𝑠 · 𝑦) + ((1 − 𝑠) · 𝑥)) ∈ 𝐴 ↔ ∀𝑡 ∈ (0[,]1)((𝑡 · 𝑦) + ((1 − 𝑡) · 𝑥)) ∈ 𝐴)
121114, 120sylib 220 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → ∀𝑡 ∈ (0[,]1)((𝑡 · 𝑦) + ((1 − 𝑡) · 𝑥)) ∈ 𝐴)
12218, 23, 10, 121, 104wloglei 11171 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴)) → ∀𝑡 ∈ (0[,]1)((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝐴)
123122r19.21bi 3208 . . . . . . 7 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝐴)
124123anasss 469 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ ((𝑥𝐴𝑦𝐴) ∧ 𝑡 ∈ (0[,]1))) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝐴)
12513, 124sylan2b 595 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑡 ∈ (0[,]1))) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝐴)
126 eqid 2821 . . . . 5 ((TopOpen‘ℂfld) ↾t 𝐴) = ((TopOpen‘ℂfld) ↾t 𝐴)
12712, 125, 4, 126cvxsconn 32490 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) → ((TopOpen‘ℂfld) ↾t 𝐴) ∈ SConn)
1289, 127eqeltrrd 2914 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) → 𝐽 ∈ SConn)
129128ex 415 . 2 (𝐴 ⊆ ℝ → (𝐽 ∈ Conn → 𝐽 ∈ SConn))
1303, 129impbid2 228 1 (𝐴 ⊆ ℝ → (𝐽 ∈ SConn ↔ 𝐽 ∈ Conn))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  wss 3935   class class class wbr 5065  ran crn 5555  cfv 6354  (class class class)co 7155  cc 10534  cr 10535  0cc0 10536  1c1 10537   + caddc 10539   · cmul 10541  cle 10675  cmin 10869  (,)cioo 12737  [,]cicc 12740  t crest 16693  TopOpenctopn 16694  topGenctg 16710  fldccnfld 20544  Conncconn 22018  PConncpconn 32466  SConncsconn 32467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614  ax-addf 10615  ax-mulf 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-iin 4921  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7408  df-om 7580  df-1st 7688  df-2nd 7689  df-supp 7830  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-2o 8102  df-oadd 8105  df-er 8288  df-map 8407  df-ixp 8461  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-fsupp 8833  df-fi 8874  df-sup 8905  df-inf 8906  df-oi 8973  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-dec 12098  df-uz 12243  df-q 12348  df-rp 12389  df-xneg 12506  df-xadd 12507  df-xmul 12508  df-ioo 12741  df-ico 12743  df-icc 12744  df-fz 12892  df-fzo 13033  df-seq 13369  df-exp 13429  df-hash 13690  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-mulr 16578  df-starv 16579  df-sca 16580  df-vsca 16581  df-ip 16582  df-tset 16583  df-ple 16584  df-ds 16586  df-unif 16587  df-hom 16588  df-cco 16589  df-rest 16695  df-topn 16696  df-0g 16714  df-gsum 16715  df-topgen 16716  df-pt 16717  df-prds 16720  df-xrs 16774  df-qtop 16779  df-imas 16780  df-xps 16782  df-mre 16856  df-mrc 16857  df-acs 16859  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-submnd 17956  df-mulg 18224  df-cntz 18446  df-cmn 18907  df-psmet 20536  df-xmet 20537  df-met 20538  df-bl 20539  df-mopn 20540  df-cnfld 20545  df-top 21501  df-topon 21518  df-topsp 21540  df-bases 21553  df-cld 21626  df-cn 21834  df-cnp 21835  df-conn 22019  df-tx 22169  df-hmeo 22362  df-xms 22929  df-ms 22930  df-tms 22931  df-ii 23484  df-htpy 23573  df-phtpy 23574  df-phtpc 23595  df-pconn 32468  df-sconn 32469
This theorem is referenced by:  ioosconn  32494  iccsconn  32495  iccllysconn  32497
  Copyright terms: Public domain W3C validator