Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resconn Structured version   Visualization version   GIF version

Theorem resconn 35214
Description: A subset of is simply connected iff it is connected. (Contributed by Mario Carneiro, 9-Mar-2015.)
Hypothesis
Ref Expression
resconn.1 𝐽 = ((topGen‘ran (,)) ↾t 𝐴)
Assertion
Ref Expression
resconn (𝐴 ⊆ ℝ → (𝐽 ∈ SConn ↔ 𝐽 ∈ Conn))

Proof of Theorem resconn
Dummy variables 𝑡 𝑠 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sconnpconn 35195 . . 3 (𝐽 ∈ SConn → 𝐽 ∈ PConn)
2 pconnconn 35199 . . 3 (𝐽 ∈ PConn → 𝐽 ∈ Conn)
31, 2syl 17 . 2 (𝐽 ∈ SConn → 𝐽 ∈ Conn)
4 eqid 2740 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
5 eqid 2740 . . . . . . 7 (topGen‘ran (,)) = (topGen‘ran (,))
64, 5rerest 24845 . . . . . 6 (𝐴 ⊆ ℝ → ((TopOpen‘ℂfld) ↾t 𝐴) = ((topGen‘ran (,)) ↾t 𝐴))
7 resconn.1 . . . . . 6 𝐽 = ((topGen‘ran (,)) ↾t 𝐴)
86, 7eqtr4di 2798 . . . . 5 (𝐴 ⊆ ℝ → ((TopOpen‘ℂfld) ↾t 𝐴) = 𝐽)
98adantr 480 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) → ((TopOpen‘ℂfld) ↾t 𝐴) = 𝐽)
10 simpl 482 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) → 𝐴 ⊆ ℝ)
11 ax-resscn 11241 . . . . . 6 ℝ ⊆ ℂ
1210, 11sstrdi 4021 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) → 𝐴 ⊆ ℂ)
13 df-3an 1089 . . . . . 6 ((𝑥𝐴𝑦𝐴𝑡 ∈ (0[,]1)) ↔ ((𝑥𝐴𝑦𝐴) ∧ 𝑡 ∈ (0[,]1)))
14 oveq2 7456 . . . . . . . . . . . 12 (𝑧 = 𝑥 → (𝑡 · 𝑧) = (𝑡 · 𝑥))
15 oveq2 7456 . . . . . . . . . . . 12 (𝑤 = 𝑦 → ((1 − 𝑡) · 𝑤) = ((1 − 𝑡) · 𝑦))
1614, 15oveqan12d 7467 . . . . . . . . . . 11 ((𝑧 = 𝑥𝑤 = 𝑦) → ((𝑡 · 𝑧) + ((1 − 𝑡) · 𝑤)) = ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))
1716eleq1d 2829 . . . . . . . . . 10 ((𝑧 = 𝑥𝑤 = 𝑦) → (((𝑡 · 𝑧) + ((1 − 𝑡) · 𝑤)) ∈ 𝐴 ↔ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝐴))
1817ralbidv 3184 . . . . . . . . 9 ((𝑧 = 𝑥𝑤 = 𝑦) → (∀𝑡 ∈ (0[,]1)((𝑡 · 𝑧) + ((1 − 𝑡) · 𝑤)) ∈ 𝐴 ↔ ∀𝑡 ∈ (0[,]1)((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝐴))
19 oveq2 7456 . . . . . . . . . . . 12 (𝑧 = 𝑦 → (𝑡 · 𝑧) = (𝑡 · 𝑦))
20 oveq2 7456 . . . . . . . . . . . 12 (𝑤 = 𝑥 → ((1 − 𝑡) · 𝑤) = ((1 − 𝑡) · 𝑥))
2119, 20oveqan12d 7467 . . . . . . . . . . 11 ((𝑧 = 𝑦𝑤 = 𝑥) → ((𝑡 · 𝑧) + ((1 − 𝑡) · 𝑤)) = ((𝑡 · 𝑦) + ((1 − 𝑡) · 𝑥)))
2221eleq1d 2829 . . . . . . . . . 10 ((𝑧 = 𝑦𝑤 = 𝑥) → (((𝑡 · 𝑧) + ((1 − 𝑡) · 𝑤)) ∈ 𝐴 ↔ ((𝑡 · 𝑦) + ((1 − 𝑡) · 𝑥)) ∈ 𝐴))
2322ralbidv 3184 . . . . . . . . 9 ((𝑧 = 𝑦𝑤 = 𝑥) → (∀𝑡 ∈ (0[,]1)((𝑡 · 𝑧) + ((1 − 𝑡) · 𝑤)) ∈ 𝐴 ↔ ∀𝑡 ∈ (0[,]1)((𝑡 · 𝑦) + ((1 − 𝑡) · 𝑥)) ∈ 𝐴))
24 unitssre 13559 . . . . . . . . . . . . . . . . 17 (0[,]1) ⊆ ℝ
2524, 11sstri 4018 . . . . . . . . . . . . . . . 16 (0[,]1) ⊆ ℂ
26 simpr 484 . . . . . . . . . . . . . . . 16 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → 𝑠 ∈ (0[,]1))
2725, 26sselid 4006 . . . . . . . . . . . . . . 15 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → 𝑠 ∈ ℂ)
2812adantr 480 . . . . . . . . . . . . . . . . 17 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → 𝐴 ⊆ ℂ)
29 simpr2 1195 . . . . . . . . . . . . . . . . 17 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → 𝑦𝐴)
3028, 29sseldd 4009 . . . . . . . . . . . . . . . 16 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → 𝑦 ∈ ℂ)
3130adantr 480 . . . . . . . . . . . . . . 15 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → 𝑦 ∈ ℂ)
3227, 31mulcld 11310 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → (𝑠 · 𝑦) ∈ ℂ)
33 ax-1cn 11242 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
34 subcl 11535 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ 𝑠 ∈ ℂ) → (1 − 𝑠) ∈ ℂ)
3533, 27, 34sylancr 586 . . . . . . . . . . . . . . 15 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → (1 − 𝑠) ∈ ℂ)
36 simpr1 1194 . . . . . . . . . . . . . . . . 17 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → 𝑥𝐴)
3728, 36sseldd 4009 . . . . . . . . . . . . . . . 16 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → 𝑥 ∈ ℂ)
3837adantr 480 . . . . . . . . . . . . . . 15 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → 𝑥 ∈ ℂ)
3935, 38mulcld 11310 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → ((1 − 𝑠) · 𝑥) ∈ ℂ)
4032, 39addcomd 11492 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → ((𝑠 · 𝑦) + ((1 − 𝑠) · 𝑥)) = (((1 − 𝑠) · 𝑥) + (𝑠 · 𝑦)))
41 nncan 11565 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ 𝑠 ∈ ℂ) → (1 − (1 − 𝑠)) = 𝑠)
4233, 27, 41sylancr 586 . . . . . . . . . . . . . . 15 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → (1 − (1 − 𝑠)) = 𝑠)
4342oveq1d 7463 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → ((1 − (1 − 𝑠)) · 𝑦) = (𝑠 · 𝑦))
4443oveq2d 7464 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → (((1 − 𝑠) · 𝑥) + ((1 − (1 − 𝑠)) · 𝑦)) = (((1 − 𝑠) · 𝑥) + (𝑠 · 𝑦)))
4540, 44eqtr4d 2783 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → ((𝑠 · 𝑦) + ((1 − 𝑠) · 𝑥)) = (((1 − 𝑠) · 𝑥) + ((1 − (1 − 𝑠)) · 𝑦)))
46 iirev 24975 . . . . . . . . . . . . . 14 (𝑠 ∈ (0[,]1) → (1 − 𝑠) ∈ (0[,]1))
4746adantl 481 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → (1 − 𝑠) ∈ (0[,]1))
487eleq1i 2835 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐽 ∈ Conn ↔ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn)
49 reconn 24869 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴 ⊆ ℝ → (((topGen‘ran (,)) ↾t 𝐴) ∈ Conn ↔ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴))
5048, 49bitrid 283 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ⊆ ℝ → (𝐽 ∈ Conn ↔ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴))
5150biimpa 476 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) → ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴)
5251r19.21bi 3257 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ 𝑥𝐴) → ∀𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴)
5352r19.21bi 3257 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → (𝑥[,]𝑦) ⊆ 𝐴)
5453anasss 466 . . . . . . . . . . . . . . . . . 18 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥[,]𝑦) ⊆ 𝐴)
55543adantr3 1171 . . . . . . . . . . . . . . . . 17 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → (𝑥[,]𝑦) ⊆ 𝐴)
5655adantr 480 . . . . . . . . . . . . . . . 16 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → (𝑥[,]𝑦) ⊆ 𝐴)
57 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝑡 ∈ (0[,]1))
5824, 57sselid 4006 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝑡 ∈ ℝ)
59 simplll 774 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝐴 ⊆ ℝ)
6036adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝑥𝐴)
6159, 60sseldd 4009 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝑥 ∈ ℝ)
6258, 61remulcld 11320 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → (𝑡 · 𝑥) ∈ ℝ)
63 1re 11290 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℝ
64 resubcl 11600 . . . . . . . . . . . . . . . . . . . 20 ((1 ∈ ℝ ∧ 𝑡 ∈ ℝ) → (1 − 𝑡) ∈ ℝ)
6563, 58, 64sylancr 586 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → (1 − 𝑡) ∈ ℝ)
6629adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝑦𝐴)
6759, 66sseldd 4009 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝑦 ∈ ℝ)
6865, 67remulcld 11320 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((1 − 𝑡) · 𝑦) ∈ ℝ)
6962, 68readdcld 11319 . . . . . . . . . . . . . . . . 17 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ ℝ)
7058recnd 11318 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝑡 ∈ ℂ)
71 pncan3 11544 . . . . . . . . . . . . . . . . . . . . 21 ((𝑡 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑡 + (1 − 𝑡)) = 1)
7270, 33, 71sylancl 585 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → (𝑡 + (1 − 𝑡)) = 1)
7372oveq1d 7463 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 + (1 − 𝑡)) · 𝑥) = (1 · 𝑥))
7465recnd 11318 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → (1 − 𝑡) ∈ ℂ)
7537adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝑥 ∈ ℂ)
7670, 74, 75adddird 11315 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 + (1 − 𝑡)) · 𝑥) = ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑥)))
7775mullidd 11308 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → (1 · 𝑥) = 𝑥)
7873, 76, 773eqtr3d 2788 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑥)) = 𝑥)
7965, 61remulcld 11320 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((1 − 𝑡) · 𝑥) ∈ ℝ)
80 elicc01 13526 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 ∈ (0[,]1) ↔ (𝑡 ∈ ℝ ∧ 0 ≤ 𝑡𝑡 ≤ 1))
8157, 80sylib 218 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → (𝑡 ∈ ℝ ∧ 0 ≤ 𝑡𝑡 ≤ 1))
8281simp3d 1144 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝑡 ≤ 1)
83 subge0 11803 . . . . . . . . . . . . . . . . . . . . . 22 ((1 ∈ ℝ ∧ 𝑡 ∈ ℝ) → (0 ≤ (1 − 𝑡) ↔ 𝑡 ≤ 1))
8463, 58, 83sylancr 586 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → (0 ≤ (1 − 𝑡) ↔ 𝑡 ≤ 1))
8582, 84mpbird 257 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 0 ≤ (1 − 𝑡))
86 simplr3 1217 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝑥𝑦)
8761, 67, 65, 85, 86lemul2ad 12235 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((1 − 𝑡) · 𝑥) ≤ ((1 − 𝑡) · 𝑦))
8879, 68, 62, 87leadd2dd 11905 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑥)) ≤ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))
8978, 88eqbrtrrd 5190 . . . . . . . . . . . . . . . . 17 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝑥 ≤ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))
9058, 67remulcld 11320 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → (𝑡 · 𝑦) ∈ ℝ)
9181simp2d 1143 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 0 ≤ 𝑡)
9261, 67, 58, 91, 86lemul2ad 12235 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → (𝑡 · 𝑥) ≤ (𝑡 · 𝑦))
9362, 90, 68, 92leadd1dd 11904 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ≤ ((𝑡 · 𝑦) + ((1 − 𝑡) · 𝑦)))
9472oveq1d 7463 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 + (1 − 𝑡)) · 𝑦) = (1 · 𝑦))
9530adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝑦 ∈ ℂ)
9670, 74, 95adddird 11315 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 + (1 − 𝑡)) · 𝑦) = ((𝑡 · 𝑦) + ((1 − 𝑡) · 𝑦)))
9795mullidd 11308 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → (1 · 𝑦) = 𝑦)
9894, 96, 973eqtr3d 2788 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · 𝑦) + ((1 − 𝑡) · 𝑦)) = 𝑦)
9993, 98breqtrd 5192 . . . . . . . . . . . . . . . . 17 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ≤ 𝑦)
100 elicc2 13472 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ (𝑥[,]𝑦) ↔ (((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ ℝ ∧ 𝑥 ≤ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∧ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ≤ 𝑦)))
10161, 67, 100syl2anc 583 . . . . . . . . . . . . . . . . 17 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → (((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ (𝑥[,]𝑦) ↔ (((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ ℝ ∧ 𝑥 ≤ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∧ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ≤ 𝑦)))
10269, 89, 99, 101mpbir3and 1342 . . . . . . . . . . . . . . . 16 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ (𝑥[,]𝑦))
10356, 102sseldd 4009 . . . . . . . . . . . . . . 15 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝐴)
104103ralrimiva 3152 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → ∀𝑡 ∈ (0[,]1)((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝐴)
105104adantr 480 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → ∀𝑡 ∈ (0[,]1)((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝐴)
106 oveq1 7455 . . . . . . . . . . . . . . . 16 (𝑡 = (1 − 𝑠) → (𝑡 · 𝑥) = ((1 − 𝑠) · 𝑥))
107 oveq2 7456 . . . . . . . . . . . . . . . . 17 (𝑡 = (1 − 𝑠) → (1 − 𝑡) = (1 − (1 − 𝑠)))
108107oveq1d 7463 . . . . . . . . . . . . . . . 16 (𝑡 = (1 − 𝑠) → ((1 − 𝑡) · 𝑦) = ((1 − (1 − 𝑠)) · 𝑦))
109106, 108oveq12d 7466 . . . . . . . . . . . . . . 15 (𝑡 = (1 − 𝑠) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) = (((1 − 𝑠) · 𝑥) + ((1 − (1 − 𝑠)) · 𝑦)))
110109eleq1d 2829 . . . . . . . . . . . . . 14 (𝑡 = (1 − 𝑠) → (((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝐴 ↔ (((1 − 𝑠) · 𝑥) + ((1 − (1 − 𝑠)) · 𝑦)) ∈ 𝐴))
111110rspcv 3631 . . . . . . . . . . . . 13 ((1 − 𝑠) ∈ (0[,]1) → (∀𝑡 ∈ (0[,]1)((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝐴 → (((1 − 𝑠) · 𝑥) + ((1 − (1 − 𝑠)) · 𝑦)) ∈ 𝐴))
11247, 105, 111sylc 65 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → (((1 − 𝑠) · 𝑥) + ((1 − (1 − 𝑠)) · 𝑦)) ∈ 𝐴)
11345, 112eqeltrd 2844 . . . . . . . . . . 11 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → ((𝑠 · 𝑦) + ((1 − 𝑠) · 𝑥)) ∈ 𝐴)
114113ralrimiva 3152 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → ∀𝑠 ∈ (0[,]1)((𝑠 · 𝑦) + ((1 − 𝑠) · 𝑥)) ∈ 𝐴)
115 oveq1 7455 . . . . . . . . . . . . 13 (𝑠 = 𝑡 → (𝑠 · 𝑦) = (𝑡 · 𝑦))
116 oveq2 7456 . . . . . . . . . . . . . 14 (𝑠 = 𝑡 → (1 − 𝑠) = (1 − 𝑡))
117116oveq1d 7463 . . . . . . . . . . . . 13 (𝑠 = 𝑡 → ((1 − 𝑠) · 𝑥) = ((1 − 𝑡) · 𝑥))
118115, 117oveq12d 7466 . . . . . . . . . . . 12 (𝑠 = 𝑡 → ((𝑠 · 𝑦) + ((1 − 𝑠) · 𝑥)) = ((𝑡 · 𝑦) + ((1 − 𝑡) · 𝑥)))
119118eleq1d 2829 . . . . . . . . . . 11 (𝑠 = 𝑡 → (((𝑠 · 𝑦) + ((1 − 𝑠) · 𝑥)) ∈ 𝐴 ↔ ((𝑡 · 𝑦) + ((1 − 𝑡) · 𝑥)) ∈ 𝐴))
120119cbvralvw 3243 . . . . . . . . . 10 (∀𝑠 ∈ (0[,]1)((𝑠 · 𝑦) + ((1 − 𝑠) · 𝑥)) ∈ 𝐴 ↔ ∀𝑡 ∈ (0[,]1)((𝑡 · 𝑦) + ((1 − 𝑡) · 𝑥)) ∈ 𝐴)
121114, 120sylib 218 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → ∀𝑡 ∈ (0[,]1)((𝑡 · 𝑦) + ((1 − 𝑡) · 𝑥)) ∈ 𝐴)
12218, 23, 10, 121, 104wloglei 11822 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴)) → ∀𝑡 ∈ (0[,]1)((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝐴)
123122r19.21bi 3257 . . . . . . 7 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝐴)
124123anasss 466 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ ((𝑥𝐴𝑦𝐴) ∧ 𝑡 ∈ (0[,]1))) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝐴)
12513, 124sylan2b 593 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑡 ∈ (0[,]1))) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝐴)
126 eqid 2740 . . . . 5 ((TopOpen‘ℂfld) ↾t 𝐴) = ((TopOpen‘ℂfld) ↾t 𝐴)
12712, 125, 4, 126cvxsconn 35211 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) → ((TopOpen‘ℂfld) ↾t 𝐴) ∈ SConn)
1289, 127eqeltrrd 2845 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) → 𝐽 ∈ SConn)
129128ex 412 . 2 (𝐴 ⊆ ℝ → (𝐽 ∈ Conn → 𝐽 ∈ SConn))
1303, 129impbid2 226 1 (𝐴 ⊆ ℝ → (𝐽 ∈ SConn ↔ 𝐽 ∈ Conn))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wss 3976   class class class wbr 5166  ran crn 5701  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  cle 11325  cmin 11520  (,)cioo 13407  [,]cicc 13410  t crest 17480  TopOpenctopn 17481  topGenctg 17497  fldccnfld 21387  Conncconn 23440  PConncpconn 35187  SConncsconn 35188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-cn 23256  df-cnp 23257  df-conn 23441  df-tx 23591  df-hmeo 23784  df-xms 24351  df-ms 24352  df-tms 24353  df-ii 24922  df-cncf 24923  df-htpy 25021  df-phtpy 25022  df-phtpc 25043  df-pconn 35189  df-sconn 35190
This theorem is referenced by:  ioosconn  35215  iccsconn  35216  iccllysconn  35218
  Copyright terms: Public domain W3C validator