Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resconn Structured version   Visualization version   GIF version

Theorem resconn 32500
Description: A subset of is simply connected iff it is connected. (Contributed by Mario Carneiro, 9-Mar-2015.)
Hypothesis
Ref Expression
resconn.1 𝐽 = ((topGen‘ran (,)) ↾t 𝐴)
Assertion
Ref Expression
resconn (𝐴 ⊆ ℝ → (𝐽 ∈ SConn ↔ 𝐽 ∈ Conn))

Proof of Theorem resconn
Dummy variables 𝑡 𝑠 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sconnpconn 32481 . . 3 (𝐽 ∈ SConn → 𝐽 ∈ PConn)
2 pconnconn 32485 . . 3 (𝐽 ∈ PConn → 𝐽 ∈ Conn)
31, 2syl 17 . 2 (𝐽 ∈ SConn → 𝐽 ∈ Conn)
4 eqid 2821 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
5 eqid 2821 . . . . . . 7 (topGen‘ran (,)) = (topGen‘ran (,))
64, 5rerest 23387 . . . . . 6 (𝐴 ⊆ ℝ → ((TopOpen‘ℂfld) ↾t 𝐴) = ((topGen‘ran (,)) ↾t 𝐴))
7 resconn.1 . . . . . 6 𝐽 = ((topGen‘ran (,)) ↾t 𝐴)
86, 7syl6eqr 2874 . . . . 5 (𝐴 ⊆ ℝ → ((TopOpen‘ℂfld) ↾t 𝐴) = 𝐽)
98adantr 484 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) → ((TopOpen‘ℂfld) ↾t 𝐴) = 𝐽)
10 simpl 486 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) → 𝐴 ⊆ ℝ)
11 ax-resscn 10571 . . . . . 6 ℝ ⊆ ℂ
1210, 11sstrdi 3955 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) → 𝐴 ⊆ ℂ)
13 df-3an 1086 . . . . . 6 ((𝑥𝐴𝑦𝐴𝑡 ∈ (0[,]1)) ↔ ((𝑥𝐴𝑦𝐴) ∧ 𝑡 ∈ (0[,]1)))
14 oveq2 7138 . . . . . . . . . . . 12 (𝑧 = 𝑥 → (𝑡 · 𝑧) = (𝑡 · 𝑥))
15 oveq2 7138 . . . . . . . . . . . 12 (𝑤 = 𝑦 → ((1 − 𝑡) · 𝑤) = ((1 − 𝑡) · 𝑦))
1614, 15oveqan12d 7149 . . . . . . . . . . 11 ((𝑧 = 𝑥𝑤 = 𝑦) → ((𝑡 · 𝑧) + ((1 − 𝑡) · 𝑤)) = ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))
1716eleq1d 2896 . . . . . . . . . 10 ((𝑧 = 𝑥𝑤 = 𝑦) → (((𝑡 · 𝑧) + ((1 − 𝑡) · 𝑤)) ∈ 𝐴 ↔ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝐴))
1817ralbidv 3185 . . . . . . . . 9 ((𝑧 = 𝑥𝑤 = 𝑦) → (∀𝑡 ∈ (0[,]1)((𝑡 · 𝑧) + ((1 − 𝑡) · 𝑤)) ∈ 𝐴 ↔ ∀𝑡 ∈ (0[,]1)((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝐴))
19 oveq2 7138 . . . . . . . . . . . 12 (𝑧 = 𝑦 → (𝑡 · 𝑧) = (𝑡 · 𝑦))
20 oveq2 7138 . . . . . . . . . . . 12 (𝑤 = 𝑥 → ((1 − 𝑡) · 𝑤) = ((1 − 𝑡) · 𝑥))
2119, 20oveqan12d 7149 . . . . . . . . . . 11 ((𝑧 = 𝑦𝑤 = 𝑥) → ((𝑡 · 𝑧) + ((1 − 𝑡) · 𝑤)) = ((𝑡 · 𝑦) + ((1 − 𝑡) · 𝑥)))
2221eleq1d 2896 . . . . . . . . . 10 ((𝑧 = 𝑦𝑤 = 𝑥) → (((𝑡 · 𝑧) + ((1 − 𝑡) · 𝑤)) ∈ 𝐴 ↔ ((𝑡 · 𝑦) + ((1 − 𝑡) · 𝑥)) ∈ 𝐴))
2322ralbidv 3185 . . . . . . . . 9 ((𝑧 = 𝑦𝑤 = 𝑥) → (∀𝑡 ∈ (0[,]1)((𝑡 · 𝑧) + ((1 − 𝑡) · 𝑤)) ∈ 𝐴 ↔ ∀𝑡 ∈ (0[,]1)((𝑡 · 𝑦) + ((1 − 𝑡) · 𝑥)) ∈ 𝐴))
24 unitssre 12867 . . . . . . . . . . . . . . . . 17 (0[,]1) ⊆ ℝ
2524, 11sstri 3952 . . . . . . . . . . . . . . . 16 (0[,]1) ⊆ ℂ
26 simpr 488 . . . . . . . . . . . . . . . 16 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → 𝑠 ∈ (0[,]1))
2725, 26sseldi 3941 . . . . . . . . . . . . . . 15 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → 𝑠 ∈ ℂ)
2812adantr 484 . . . . . . . . . . . . . . . . 17 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → 𝐴 ⊆ ℂ)
29 simpr2 1192 . . . . . . . . . . . . . . . . 17 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → 𝑦𝐴)
3028, 29sseldd 3944 . . . . . . . . . . . . . . . 16 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → 𝑦 ∈ ℂ)
3130adantr 484 . . . . . . . . . . . . . . 15 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → 𝑦 ∈ ℂ)
3227, 31mulcld 10638 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → (𝑠 · 𝑦) ∈ ℂ)
33 ax-1cn 10572 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
34 subcl 10862 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ 𝑠 ∈ ℂ) → (1 − 𝑠) ∈ ℂ)
3533, 27, 34sylancr 590 . . . . . . . . . . . . . . 15 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → (1 − 𝑠) ∈ ℂ)
36 simpr1 1191 . . . . . . . . . . . . . . . . 17 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → 𝑥𝐴)
3728, 36sseldd 3944 . . . . . . . . . . . . . . . 16 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → 𝑥 ∈ ℂ)
3837adantr 484 . . . . . . . . . . . . . . 15 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → 𝑥 ∈ ℂ)
3935, 38mulcld 10638 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → ((1 − 𝑠) · 𝑥) ∈ ℂ)
4032, 39addcomd 10819 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → ((𝑠 · 𝑦) + ((1 − 𝑠) · 𝑥)) = (((1 − 𝑠) · 𝑥) + (𝑠 · 𝑦)))
41 nncan 10892 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ 𝑠 ∈ ℂ) → (1 − (1 − 𝑠)) = 𝑠)
4233, 27, 41sylancr 590 . . . . . . . . . . . . . . 15 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → (1 − (1 − 𝑠)) = 𝑠)
4342oveq1d 7145 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → ((1 − (1 − 𝑠)) · 𝑦) = (𝑠 · 𝑦))
4443oveq2d 7146 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → (((1 − 𝑠) · 𝑥) + ((1 − (1 − 𝑠)) · 𝑦)) = (((1 − 𝑠) · 𝑥) + (𝑠 · 𝑦)))
4540, 44eqtr4d 2859 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → ((𝑠 · 𝑦) + ((1 − 𝑠) · 𝑥)) = (((1 − 𝑠) · 𝑥) + ((1 − (1 − 𝑠)) · 𝑦)))
46 iirev 23512 . . . . . . . . . . . . . 14 (𝑠 ∈ (0[,]1) → (1 − 𝑠) ∈ (0[,]1))
4746adantl 485 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → (1 − 𝑠) ∈ (0[,]1))
487eleq1i 2902 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐽 ∈ Conn ↔ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn)
49 reconn 23411 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴 ⊆ ℝ → (((topGen‘ran (,)) ↾t 𝐴) ∈ Conn ↔ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴))
5048, 49syl5bb 286 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ⊆ ℝ → (𝐽 ∈ Conn ↔ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴))
5150biimpa 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) → ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴)
5251r19.21bi 3196 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ 𝑥𝐴) → ∀𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴)
5352r19.21bi 3196 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → (𝑥[,]𝑦) ⊆ 𝐴)
5453anasss 470 . . . . . . . . . . . . . . . . . 18 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥[,]𝑦) ⊆ 𝐴)
55543adantr3 1168 . . . . . . . . . . . . . . . . 17 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → (𝑥[,]𝑦) ⊆ 𝐴)
5655adantr 484 . . . . . . . . . . . . . . . 16 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → (𝑥[,]𝑦) ⊆ 𝐴)
57 simpr 488 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝑡 ∈ (0[,]1))
5824, 57sseldi 3941 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝑡 ∈ ℝ)
59 simplll 774 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝐴 ⊆ ℝ)
6036adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝑥𝐴)
6159, 60sseldd 3944 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝑥 ∈ ℝ)
6258, 61remulcld 10648 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → (𝑡 · 𝑥) ∈ ℝ)
63 1re 10618 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℝ
64 resubcl 10927 . . . . . . . . . . . . . . . . . . . 20 ((1 ∈ ℝ ∧ 𝑡 ∈ ℝ) → (1 − 𝑡) ∈ ℝ)
6563, 58, 64sylancr 590 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → (1 − 𝑡) ∈ ℝ)
6629adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝑦𝐴)
6759, 66sseldd 3944 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝑦 ∈ ℝ)
6865, 67remulcld 10648 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((1 − 𝑡) · 𝑦) ∈ ℝ)
6962, 68readdcld 10647 . . . . . . . . . . . . . . . . 17 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ ℝ)
7058recnd 10646 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝑡 ∈ ℂ)
71 pncan3 10871 . . . . . . . . . . . . . . . . . . . . 21 ((𝑡 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑡 + (1 − 𝑡)) = 1)
7270, 33, 71sylancl 589 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → (𝑡 + (1 − 𝑡)) = 1)
7372oveq1d 7145 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 + (1 − 𝑡)) · 𝑥) = (1 · 𝑥))
7465recnd 10646 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → (1 − 𝑡) ∈ ℂ)
7537adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝑥 ∈ ℂ)
7670, 74, 75adddird 10643 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 + (1 − 𝑡)) · 𝑥) = ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑥)))
7775mulid2d 10636 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → (1 · 𝑥) = 𝑥)
7873, 76, 773eqtr3d 2864 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑥)) = 𝑥)
7965, 61remulcld 10648 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((1 − 𝑡) · 𝑥) ∈ ℝ)
80 elicc01 12834 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 ∈ (0[,]1) ↔ (𝑡 ∈ ℝ ∧ 0 ≤ 𝑡𝑡 ≤ 1))
8157, 80sylib 221 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → (𝑡 ∈ ℝ ∧ 0 ≤ 𝑡𝑡 ≤ 1))
8281simp3d 1141 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝑡 ≤ 1)
83 subge0 11130 . . . . . . . . . . . . . . . . . . . . . 22 ((1 ∈ ℝ ∧ 𝑡 ∈ ℝ) → (0 ≤ (1 − 𝑡) ↔ 𝑡 ≤ 1))
8463, 58, 83sylancr 590 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → (0 ≤ (1 − 𝑡) ↔ 𝑡 ≤ 1))
8582, 84mpbird 260 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 0 ≤ (1 − 𝑡))
86 simplr3 1214 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝑥𝑦)
8761, 67, 65, 85, 86lemul2ad 11557 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((1 − 𝑡) · 𝑥) ≤ ((1 − 𝑡) · 𝑦))
8879, 68, 62, 87leadd2dd 11232 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑥)) ≤ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))
8978, 88eqbrtrrd 5063 . . . . . . . . . . . . . . . . 17 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝑥 ≤ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))
9058, 67remulcld 10648 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → (𝑡 · 𝑦) ∈ ℝ)
9181simp2d 1140 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 0 ≤ 𝑡)
9261, 67, 58, 91, 86lemul2ad 11557 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → (𝑡 · 𝑥) ≤ (𝑡 · 𝑦))
9362, 90, 68, 92leadd1dd 11231 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ≤ ((𝑡 · 𝑦) + ((1 − 𝑡) · 𝑦)))
9472oveq1d 7145 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 + (1 − 𝑡)) · 𝑦) = (1 · 𝑦))
9530adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝑦 ∈ ℂ)
9670, 74, 95adddird 10643 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 + (1 − 𝑡)) · 𝑦) = ((𝑡 · 𝑦) + ((1 − 𝑡) · 𝑦)))
9795mulid2d 10636 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → (1 · 𝑦) = 𝑦)
9894, 96, 973eqtr3d 2864 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · 𝑦) + ((1 − 𝑡) · 𝑦)) = 𝑦)
9993, 98breqtrd 5065 . . . . . . . . . . . . . . . . 17 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ≤ 𝑦)
100 elicc2 12780 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ (𝑥[,]𝑦) ↔ (((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ ℝ ∧ 𝑥 ≤ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∧ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ≤ 𝑦)))
10161, 67, 100syl2anc 587 . . . . . . . . . . . . . . . . 17 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → (((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ (𝑥[,]𝑦) ↔ (((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ ℝ ∧ 𝑥 ≤ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∧ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ≤ 𝑦)))
10269, 89, 99, 101mpbir3and 1339 . . . . . . . . . . . . . . . 16 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ (𝑥[,]𝑦))
10356, 102sseldd 3944 . . . . . . . . . . . . . . 15 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝐴)
104103ralrimiva 3170 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → ∀𝑡 ∈ (0[,]1)((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝐴)
105104adantr 484 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → ∀𝑡 ∈ (0[,]1)((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝐴)
106 oveq1 7137 . . . . . . . . . . . . . . . 16 (𝑡 = (1 − 𝑠) → (𝑡 · 𝑥) = ((1 − 𝑠) · 𝑥))
107 oveq2 7138 . . . . . . . . . . . . . . . . 17 (𝑡 = (1 − 𝑠) → (1 − 𝑡) = (1 − (1 − 𝑠)))
108107oveq1d 7145 . . . . . . . . . . . . . . . 16 (𝑡 = (1 − 𝑠) → ((1 − 𝑡) · 𝑦) = ((1 − (1 − 𝑠)) · 𝑦))
109106, 108oveq12d 7148 . . . . . . . . . . . . . . 15 (𝑡 = (1 − 𝑠) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) = (((1 − 𝑠) · 𝑥) + ((1 − (1 − 𝑠)) · 𝑦)))
110109eleq1d 2896 . . . . . . . . . . . . . 14 (𝑡 = (1 − 𝑠) → (((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝐴 ↔ (((1 − 𝑠) · 𝑥) + ((1 − (1 − 𝑠)) · 𝑦)) ∈ 𝐴))
111110rspcv 3595 . . . . . . . . . . . . 13 ((1 − 𝑠) ∈ (0[,]1) → (∀𝑡 ∈ (0[,]1)((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝐴 → (((1 − 𝑠) · 𝑥) + ((1 − (1 − 𝑠)) · 𝑦)) ∈ 𝐴))
11247, 105, 111sylc 65 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → (((1 − 𝑠) · 𝑥) + ((1 − (1 − 𝑠)) · 𝑦)) ∈ 𝐴)
11345, 112eqeltrd 2912 . . . . . . . . . . 11 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → ((𝑠 · 𝑦) + ((1 − 𝑠) · 𝑥)) ∈ 𝐴)
114113ralrimiva 3170 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → ∀𝑠 ∈ (0[,]1)((𝑠 · 𝑦) + ((1 − 𝑠) · 𝑥)) ∈ 𝐴)
115 oveq1 7137 . . . . . . . . . . . . 13 (𝑠 = 𝑡 → (𝑠 · 𝑦) = (𝑡 · 𝑦))
116 oveq2 7138 . . . . . . . . . . . . . 14 (𝑠 = 𝑡 → (1 − 𝑠) = (1 − 𝑡))
117116oveq1d 7145 . . . . . . . . . . . . 13 (𝑠 = 𝑡 → ((1 − 𝑠) · 𝑥) = ((1 − 𝑡) · 𝑥))
118115, 117oveq12d 7148 . . . . . . . . . . . 12 (𝑠 = 𝑡 → ((𝑠 · 𝑦) + ((1 − 𝑠) · 𝑥)) = ((𝑡 · 𝑦) + ((1 − 𝑡) · 𝑥)))
119118eleq1d 2896 . . . . . . . . . . 11 (𝑠 = 𝑡 → (((𝑠 · 𝑦) + ((1 − 𝑠) · 𝑥)) ∈ 𝐴 ↔ ((𝑡 · 𝑦) + ((1 − 𝑡) · 𝑥)) ∈ 𝐴))
120119cbvralvw 3426 . . . . . . . . . 10 (∀𝑠 ∈ (0[,]1)((𝑠 · 𝑦) + ((1 − 𝑠) · 𝑥)) ∈ 𝐴 ↔ ∀𝑡 ∈ (0[,]1)((𝑡 · 𝑦) + ((1 − 𝑡) · 𝑥)) ∈ 𝐴)
121114, 120sylib 221 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → ∀𝑡 ∈ (0[,]1)((𝑡 · 𝑦) + ((1 − 𝑡) · 𝑥)) ∈ 𝐴)
12218, 23, 10, 121, 104wloglei 11149 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴)) → ∀𝑡 ∈ (0[,]1)((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝐴)
123122r19.21bi 3196 . . . . . . 7 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝐴)
124123anasss 470 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ ((𝑥𝐴𝑦𝐴) ∧ 𝑡 ∈ (0[,]1))) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝐴)
12513, 124sylan2b 596 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑡 ∈ (0[,]1))) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝐴)
126 eqid 2821 . . . . 5 ((TopOpen‘ℂfld) ↾t 𝐴) = ((TopOpen‘ℂfld) ↾t 𝐴)
12712, 125, 4, 126cvxsconn 32497 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) → ((TopOpen‘ℂfld) ↾t 𝐴) ∈ SConn)
1289, 127eqeltrrd 2913 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) → 𝐽 ∈ SConn)
129128ex 416 . 2 (𝐴 ⊆ ℝ → (𝐽 ∈ Conn → 𝐽 ∈ SConn))
1303, 129impbid2 229 1 (𝐴 ⊆ ℝ → (𝐽 ∈ SConn ↔ 𝐽 ∈ Conn))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2115  wral 3126  wss 3910   class class class wbr 5039  ran crn 5529  cfv 6328  (class class class)co 7130  cc 10512  cr 10513  0cc0 10514  1c1 10515   + caddc 10517   · cmul 10519  cle 10653  cmin 10847  (,)cioo 12716  [,]cicc 12719  t crest 16672  TopOpenctopn 16673  topGenctg 16689  fldccnfld 20520  Conncconn 21994  PConncpconn 32473  SConncsconn 32474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591  ax-pre-sup 10592  ax-addf 10593  ax-mulf 10594
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-iun 4894  df-iin 4895  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-of 7384  df-om 7556  df-1st 7664  df-2nd 7665  df-supp 7806  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-1o 8077  df-2o 8078  df-oadd 8081  df-er 8264  df-map 8383  df-ixp 8437  df-en 8485  df-dom 8486  df-sdom 8487  df-fin 8488  df-fsupp 8810  df-fi 8851  df-sup 8882  df-inf 8883  df-oi 8950  df-card 9344  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-div 11275  df-nn 11616  df-2 11678  df-3 11679  df-4 11680  df-5 11681  df-6 11682  df-7 11683  df-8 11684  df-9 11685  df-n0 11876  df-z 11960  df-dec 12077  df-uz 12222  df-q 12327  df-rp 12368  df-xneg 12485  df-xadd 12486  df-xmul 12487  df-ioo 12720  df-ico 12722  df-icc 12723  df-fz 12876  df-fzo 13017  df-seq 13353  df-exp 13414  df-hash 13675  df-cj 14437  df-re 14438  df-im 14439  df-sqrt 14573  df-abs 14574  df-struct 16463  df-ndx 16464  df-slot 16465  df-base 16467  df-sets 16468  df-ress 16469  df-plusg 16556  df-mulr 16557  df-starv 16558  df-sca 16559  df-vsca 16560  df-ip 16561  df-tset 16562  df-ple 16563  df-ds 16565  df-unif 16566  df-hom 16567  df-cco 16568  df-rest 16674  df-topn 16675  df-0g 16693  df-gsum 16694  df-topgen 16695  df-pt 16696  df-prds 16699  df-xrs 16753  df-qtop 16758  df-imas 16759  df-xps 16761  df-mre 16835  df-mrc 16836  df-acs 16838  df-mgm 17830  df-sgrp 17879  df-mnd 17890  df-submnd 17935  df-mulg 18203  df-cntz 18425  df-cmn 18886  df-psmet 20512  df-xmet 20513  df-met 20514  df-bl 20515  df-mopn 20516  df-cnfld 20521  df-top 21477  df-topon 21494  df-topsp 21516  df-bases 21529  df-cld 21602  df-cn 21810  df-cnp 21811  df-conn 21995  df-tx 22145  df-hmeo 22338  df-xms 22905  df-ms 22906  df-tms 22907  df-ii 23460  df-htpy 23553  df-phtpy 23554  df-phtpc 23575  df-pconn 32475  df-sconn 32476
This theorem is referenced by:  ioosconn  32501  iccsconn  32502  iccllysconn  32504
  Copyright terms: Public domain W3C validator