Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift3lem2 Structured version   Visualization version   GIF version

Theorem cvmlift3lem2 32569
Description: Lemma for cvmlift2 32565. (Contributed by Mario Carneiro, 6-Jul-2015.)
Hypotheses
Ref Expression
cvmlift3.b 𝐵 = 𝐶
cvmlift3.y 𝑌 = 𝐾
cvmlift3.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift3.k (𝜑𝐾 ∈ SConn)
cvmlift3.l (𝜑𝐾 ∈ 𝑛-Locally PConn)
cvmlift3.o (𝜑𝑂𝑌)
cvmlift3.g (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
cvmlift3.p (𝜑𝑃𝐵)
cvmlift3.e (𝜑 → (𝐹𝑃) = (𝐺𝑂))
Assertion
Ref Expression
cvmlift3lem2 ((𝜑𝑋𝑌) → ∃!𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))
Distinct variable groups:   𝑧,𝑓,𝑔   𝑓,𝐽,𝑔   𝑓,𝐹,𝑔,𝑧   𝐵,𝑓,𝑔,𝑧   𝑓,𝑋,𝑔,𝑧   𝑓,𝐺,𝑔,𝑧   𝐶,𝑓,𝑔,𝑧   𝜑,𝑓   𝑓,𝐾,𝑔,𝑧   𝑃,𝑓,𝑔,𝑧   𝑓,𝑂,𝑔,𝑧   𝑓,𝑌,𝑔,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑔)   𝐽(𝑧)

Proof of Theorem cvmlift3lem2
Dummy variables 𝑤 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmlift3.k . . . . 5 (𝜑𝐾 ∈ SConn)
21adantr 483 . . . 4 ((𝜑𝑋𝑌) → 𝐾 ∈ SConn)
3 sconnpconn 32476 . . . 4 (𝐾 ∈ SConn → 𝐾 ∈ PConn)
42, 3syl 17 . . 3 ((𝜑𝑋𝑌) → 𝐾 ∈ PConn)
5 cvmlift3.o . . . 4 (𝜑𝑂𝑌)
65adantr 483 . . 3 ((𝜑𝑋𝑌) → 𝑂𝑌)
7 simpr 487 . . 3 ((𝜑𝑋𝑌) → 𝑋𝑌)
8 cvmlift3.y . . . 4 𝑌 = 𝐾
98pconncn 32473 . . 3 ((𝐾 ∈ PConn ∧ 𝑂𝑌𝑋𝑌) → ∃𝑎 ∈ (II Cn 𝐾)((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))
104, 6, 7, 9syl3anc 1367 . 2 ((𝜑𝑋𝑌) → ∃𝑎 ∈ (II Cn 𝐾)((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))
11 cvmlift3.b . . . . . . . . 9 𝐵 = 𝐶
12 eqid 2823 . . . . . . . . 9 (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃)) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))
13 cvmlift3.f . . . . . . . . . 10 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
1413ad2antrr 724 . . . . . . . . 9 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → 𝐹 ∈ (𝐶 CovMap 𝐽))
15 simprl 769 . . . . . . . . . 10 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → 𝑎 ∈ (II Cn 𝐾))
16 cvmlift3.g . . . . . . . . . . 11 (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
1716ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → 𝐺 ∈ (𝐾 Cn 𝐽))
18 cnco 21876 . . . . . . . . . 10 ((𝑎 ∈ (II Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐽)) → (𝐺𝑎) ∈ (II Cn 𝐽))
1915, 17, 18syl2anc 586 . . . . . . . . 9 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → (𝐺𝑎) ∈ (II Cn 𝐽))
20 cvmlift3.p . . . . . . . . . 10 (𝜑𝑃𝐵)
2120ad2antrr 724 . . . . . . . . 9 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → 𝑃𝐵)
22 simprrl 779 . . . . . . . . . . 11 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → (𝑎‘0) = 𝑂)
2322fveq2d 6676 . . . . . . . . . 10 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → (𝐺‘(𝑎‘0)) = (𝐺𝑂))
24 iiuni 23491 . . . . . . . . . . . . 13 (0[,]1) = II
2524, 8cnf 21856 . . . . . . . . . . . 12 (𝑎 ∈ (II Cn 𝐾) → 𝑎:(0[,]1)⟶𝑌)
2615, 25syl 17 . . . . . . . . . . 11 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → 𝑎:(0[,]1)⟶𝑌)
27 0elunit 12858 . . . . . . . . . . 11 0 ∈ (0[,]1)
28 fvco3 6762 . . . . . . . . . . 11 ((𝑎:(0[,]1)⟶𝑌 ∧ 0 ∈ (0[,]1)) → ((𝐺𝑎)‘0) = (𝐺‘(𝑎‘0)))
2926, 27, 28sylancl 588 . . . . . . . . . 10 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → ((𝐺𝑎)‘0) = (𝐺‘(𝑎‘0)))
30 cvmlift3.e . . . . . . . . . . 11 (𝜑 → (𝐹𝑃) = (𝐺𝑂))
3130ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → (𝐹𝑃) = (𝐺𝑂))
3223, 29, 313eqtr4rd 2869 . . . . . . . . 9 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → (𝐹𝑃) = ((𝐺𝑎)‘0))
3311, 12, 14, 19, 21, 32cvmliftiota 32550 . . . . . . . 8 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃)) ∈ (II Cn 𝐶) ∧ (𝐹 ∘ (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))) = (𝐺𝑎) ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘0) = 𝑃))
3433simp1d 1138 . . . . . . 7 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃)) ∈ (II Cn 𝐶))
3524, 11cnf 21856 . . . . . . 7 ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃)) ∈ (II Cn 𝐶) → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃)):(0[,]1)⟶𝐵)
3634, 35syl 17 . . . . . 6 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃)):(0[,]1)⟶𝐵)
37 1elunit 12859 . . . . . 6 1 ∈ (0[,]1)
38 ffvelrn 6851 . . . . . 6 (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃)):(0[,]1)⟶𝐵 ∧ 1 ∈ (0[,]1)) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) ∈ 𝐵)
3936, 37, 38sylancl 588 . . . . 5 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) ∈ 𝐵)
40 simprrr 780 . . . . . 6 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → (𝑎‘1) = 𝑋)
41 eqidd 2824 . . . . . 6 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1))
42 fveq1 6671 . . . . . . . . 9 (𝑓 = 𝑎 → (𝑓‘0) = (𝑎‘0))
4342eqeq1d 2825 . . . . . . . 8 (𝑓 = 𝑎 → ((𝑓‘0) = 𝑂 ↔ (𝑎‘0) = 𝑂))
44 fveq1 6671 . . . . . . . . 9 (𝑓 = 𝑎 → (𝑓‘1) = (𝑎‘1))
4544eqeq1d 2825 . . . . . . . 8 (𝑓 = 𝑎 → ((𝑓‘1) = 𝑋 ↔ (𝑎‘1) = 𝑋))
46 coeq2 5731 . . . . . . . . . . . . 13 (𝑓 = 𝑎 → (𝐺𝑓) = (𝐺𝑎))
4746eqeq2d 2834 . . . . . . . . . . . 12 (𝑓 = 𝑎 → ((𝐹𝑔) = (𝐺𝑓) ↔ (𝐹𝑔) = (𝐺𝑎)))
4847anbi1d 631 . . . . . . . . . . 11 (𝑓 = 𝑎 → (((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃) ↔ ((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃)))
4948riotabidv 7118 . . . . . . . . . 10 (𝑓 = 𝑎 → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃)))
5049fveq1d 6674 . . . . . . . . 9 (𝑓 = 𝑎 → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1))
5150eqeq1d 2825 . . . . . . . 8 (𝑓 = 𝑎 → (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) ↔ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1)))
5243, 45, 513anbi123d 1432 . . . . . . 7 (𝑓 = 𝑎 → (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1)) ↔ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1))))
5352rspcev 3625 . . . . . 6 ((𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1))) → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1)))
5415, 22, 40, 41, 53syl13anc 1368 . . . . 5 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1)))
5513ad4antr 730 . . . . . . . . 9 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → 𝐹 ∈ (𝐶 CovMap 𝐽))
561ad4antr 730 . . . . . . . . 9 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → 𝐾 ∈ SConn)
57 cvmlift3.l . . . . . . . . . 10 (𝜑𝐾 ∈ 𝑛-Locally PConn)
5857ad4antr 730 . . . . . . . . 9 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → 𝐾 ∈ 𝑛-Locally PConn)
595ad4antr 730 . . . . . . . . 9 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → 𝑂𝑌)
6016ad4antr 730 . . . . . . . . 9 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → 𝐺 ∈ (𝐾 Cn 𝐽))
6120ad4antr 730 . . . . . . . . 9 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → 𝑃𝐵)
6230ad4antr 730 . . . . . . . . 9 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → (𝐹𝑃) = (𝐺𝑂))
6315ad2antrr 724 . . . . . . . . 9 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → 𝑎 ∈ (II Cn 𝐾))
6422ad2antrr 724 . . . . . . . . 9 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → (𝑎‘0) = 𝑂)
65 simprl 769 . . . . . . . . 9 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → ∈ (II Cn 𝐾))
66 simprr1 1217 . . . . . . . . 9 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → (‘0) = 𝑂)
6740ad2antrr 724 . . . . . . . . . 10 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → (𝑎‘1) = 𝑋)
68 simprr2 1218 . . . . . . . . . 10 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → (‘1) = 𝑋)
6967, 68eqtr4d 2861 . . . . . . . . 9 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → (𝑎‘1) = (‘1))
7011, 8, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 69cvmlift3lem1 32568 . . . . . . . 8 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1))
71 simprr3 1219 . . . . . . . 8 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤)
7270, 71eqtrd 2858 . . . . . . 7 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤)
7372rexlimdvaa 3287 . . . . . 6 ((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) → (∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))
7473ralrimiva 3184 . . . . 5 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → ∀𝑤𝐵 (∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))
75 eqeq2 2835 . . . . . . . . 9 (𝑧 = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) → (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧 ↔ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1)))
76753anbi3d 1438 . . . . . . . 8 (𝑧 = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) → (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1))))
7776rexbidv 3299 . . . . . . 7 (𝑧 = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) → (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1))))
78 eqeq1 2827 . . . . . . . . 9 (𝑧 = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) → (𝑧 = 𝑤 ↔ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))
7978imbi2d 343 . . . . . . . 8 (𝑧 = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) → ((∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → 𝑧 = 𝑤) ↔ (∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤)))
8079ralbidv 3199 . . . . . . 7 (𝑧 = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) → (∀𝑤𝐵 (∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → 𝑧 = 𝑤) ↔ ∀𝑤𝐵 (∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤)))
8177, 80anbi12d 632 . . . . . 6 (𝑧 = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) → ((∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ∧ ∀𝑤𝐵 (∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → 𝑧 = 𝑤)) ↔ (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1)) ∧ ∀𝑤𝐵 (∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))))
8281rspcev 3625 . . . . 5 ((((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) ∈ 𝐵 ∧ (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1)) ∧ ∀𝑤𝐵 (∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → ∃𝑧𝐵 (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ∧ ∀𝑤𝐵 (∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → 𝑧 = 𝑤)))
8339, 54, 74, 82syl12anc 834 . . . 4 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → ∃𝑧𝐵 (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ∧ ∀𝑤𝐵 (∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → 𝑧 = 𝑤)))
84 fveq1 6671 . . . . . . . . 9 (𝑓 = → (𝑓‘0) = (‘0))
8584eqeq1d 2825 . . . . . . . 8 (𝑓 = → ((𝑓‘0) = 𝑂 ↔ (‘0) = 𝑂))
86 fveq1 6671 . . . . . . . . 9 (𝑓 = → (𝑓‘1) = (‘1))
8786eqeq1d 2825 . . . . . . . 8 (𝑓 = → ((𝑓‘1) = 𝑋 ↔ (‘1) = 𝑋))
88 coeq2 5731 . . . . . . . . . . . . 13 (𝑓 = → (𝐺𝑓) = (𝐺))
8988eqeq2d 2834 . . . . . . . . . . . 12 (𝑓 = → ((𝐹𝑔) = (𝐺𝑓) ↔ (𝐹𝑔) = (𝐺)))
9089anbi1d 631 . . . . . . . . . . 11 (𝑓 = → (((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃) ↔ ((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃)))
9190riotabidv 7118 . . . . . . . . . 10 (𝑓 = → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃)))
9291fveq1d 6674 . . . . . . . . 9 (𝑓 = → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1))
9392eqeq1d 2825 . . . . . . . 8 (𝑓 = → (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧 ↔ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))
9485, 87, 933anbi123d 1432 . . . . . . 7 (𝑓 = → (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
9594cbvrexvw 3452 . . . . . 6 (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))
96 eqeq2 2835 . . . . . . . 8 (𝑧 = 𝑤 → (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧 ↔ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))
97963anbi3d 1438 . . . . . . 7 (𝑧 = 𝑤 → (((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤)))
9897rexbidv 3299 . . . . . 6 (𝑧 = 𝑤 → (∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤)))
9995, 98syl5bb 285 . . . . 5 (𝑧 = 𝑤 → (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤)))
10099reu8 3726 . . . 4 (∃!𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ∃𝑧𝐵 (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ∧ ∀𝑤𝐵 (∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → 𝑧 = 𝑤)))
10183, 100sylibr 236 . . 3 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → ∃!𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))
102101rexlimdvaa 3287 . 2 ((𝜑𝑋𝑌) → (∃𝑎 ∈ (II Cn 𝐾)((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋) → ∃!𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
10310, 102mpd 15 1 ((𝜑𝑋𝑌) → ∃!𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3140  wrex 3141  ∃!wreu 3142   cuni 4840  ccom 5561  wf 6353  cfv 6357  crio 7115  (class class class)co 7158  0cc0 10539  1c1 10540  [,]cicc 12744   Cn ccn 21834  𝑛-Locally cnlly 22075  IIcii 23485  PConncpconn 32468  SConncsconn 32469   CovMap ccvm 32504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-ec 8293  df-map 8410  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-sum 15045  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-mulg 18227  df-cntz 18449  df-cmn 18910  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708  df-cn 21837  df-cnp 21838  df-cmp 21997  df-conn 22022  df-lly 22076  df-nlly 22077  df-tx 22172  df-hmeo 22365  df-xms 22932  df-ms 22933  df-tms 22934  df-ii 23487  df-htpy 23576  df-phtpy 23577  df-phtpc 23598  df-pco 23611  df-pconn 32470  df-sconn 32471  df-cvm 32505
This theorem is referenced by:  cvmlift3lem3  32570  cvmlift3lem4  32571
  Copyright terms: Public domain W3C validator