Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift3lem2 Structured version   Visualization version   GIF version

Theorem cvmlift3lem2 32811
Description: Lemma for cvmlift2 32807. (Contributed by Mario Carneiro, 6-Jul-2015.)
Hypotheses
Ref Expression
cvmlift3.b 𝐵 = 𝐶
cvmlift3.y 𝑌 = 𝐾
cvmlift3.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift3.k (𝜑𝐾 ∈ SConn)
cvmlift3.l (𝜑𝐾 ∈ 𝑛-Locally PConn)
cvmlift3.o (𝜑𝑂𝑌)
cvmlift3.g (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
cvmlift3.p (𝜑𝑃𝐵)
cvmlift3.e (𝜑 → (𝐹𝑃) = (𝐺𝑂))
Assertion
Ref Expression
cvmlift3lem2 ((𝜑𝑋𝑌) → ∃!𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))
Distinct variable groups:   𝑧,𝑓,𝑔   𝑓,𝐽,𝑔   𝑓,𝐹,𝑔,𝑧   𝐵,𝑓,𝑔,𝑧   𝑓,𝑋,𝑔,𝑧   𝑓,𝐺,𝑔,𝑧   𝐶,𝑓,𝑔,𝑧   𝜑,𝑓   𝑓,𝐾,𝑔,𝑧   𝑃,𝑓,𝑔,𝑧   𝑓,𝑂,𝑔,𝑧   𝑓,𝑌,𝑔,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑔)   𝐽(𝑧)

Proof of Theorem cvmlift3lem2
Dummy variables 𝑤 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmlift3.k . . . . 5 (𝜑𝐾 ∈ SConn)
21adantr 484 . . . 4 ((𝜑𝑋𝑌) → 𝐾 ∈ SConn)
3 sconnpconn 32718 . . . 4 (𝐾 ∈ SConn → 𝐾 ∈ PConn)
42, 3syl 17 . . 3 ((𝜑𝑋𝑌) → 𝐾 ∈ PConn)
5 cvmlift3.o . . . 4 (𝜑𝑂𝑌)
65adantr 484 . . 3 ((𝜑𝑋𝑌) → 𝑂𝑌)
7 simpr 488 . . 3 ((𝜑𝑋𝑌) → 𝑋𝑌)
8 cvmlift3.y . . . 4 𝑌 = 𝐾
98pconncn 32715 . . 3 ((𝐾 ∈ PConn ∧ 𝑂𝑌𝑋𝑌) → ∃𝑎 ∈ (II Cn 𝐾)((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))
104, 6, 7, 9syl3anc 1368 . 2 ((𝜑𝑋𝑌) → ∃𝑎 ∈ (II Cn 𝐾)((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))
11 cvmlift3.b . . . . . . . . 9 𝐵 = 𝐶
12 eqid 2758 . . . . . . . . 9 (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃)) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))
13 cvmlift3.f . . . . . . . . . 10 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
1413ad2antrr 725 . . . . . . . . 9 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → 𝐹 ∈ (𝐶 CovMap 𝐽))
15 simprl 770 . . . . . . . . . 10 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → 𝑎 ∈ (II Cn 𝐾))
16 cvmlift3.g . . . . . . . . . . 11 (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
1716ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → 𝐺 ∈ (𝐾 Cn 𝐽))
18 cnco 21980 . . . . . . . . . 10 ((𝑎 ∈ (II Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐽)) → (𝐺𝑎) ∈ (II Cn 𝐽))
1915, 17, 18syl2anc 587 . . . . . . . . 9 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → (𝐺𝑎) ∈ (II Cn 𝐽))
20 cvmlift3.p . . . . . . . . . 10 (𝜑𝑃𝐵)
2120ad2antrr 725 . . . . . . . . 9 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → 𝑃𝐵)
22 simprrl 780 . . . . . . . . . . 11 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → (𝑎‘0) = 𝑂)
2322fveq2d 6667 . . . . . . . . . 10 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → (𝐺‘(𝑎‘0)) = (𝐺𝑂))
24 iiuni 23596 . . . . . . . . . . . . 13 (0[,]1) = II
2524, 8cnf 21960 . . . . . . . . . . . 12 (𝑎 ∈ (II Cn 𝐾) → 𝑎:(0[,]1)⟶𝑌)
2615, 25syl 17 . . . . . . . . . . 11 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → 𝑎:(0[,]1)⟶𝑌)
27 0elunit 12914 . . . . . . . . . . 11 0 ∈ (0[,]1)
28 fvco3 6756 . . . . . . . . . . 11 ((𝑎:(0[,]1)⟶𝑌 ∧ 0 ∈ (0[,]1)) → ((𝐺𝑎)‘0) = (𝐺‘(𝑎‘0)))
2926, 27, 28sylancl 589 . . . . . . . . . 10 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → ((𝐺𝑎)‘0) = (𝐺‘(𝑎‘0)))
30 cvmlift3.e . . . . . . . . . . 11 (𝜑 → (𝐹𝑃) = (𝐺𝑂))
3130ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → (𝐹𝑃) = (𝐺𝑂))
3223, 29, 313eqtr4rd 2804 . . . . . . . . 9 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → (𝐹𝑃) = ((𝐺𝑎)‘0))
3311, 12, 14, 19, 21, 32cvmliftiota 32792 . . . . . . . 8 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃)) ∈ (II Cn 𝐶) ∧ (𝐹 ∘ (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))) = (𝐺𝑎) ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘0) = 𝑃))
3433simp1d 1139 . . . . . . 7 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃)) ∈ (II Cn 𝐶))
3524, 11cnf 21960 . . . . . . 7 ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃)) ∈ (II Cn 𝐶) → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃)):(0[,]1)⟶𝐵)
3634, 35syl 17 . . . . . 6 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃)):(0[,]1)⟶𝐵)
37 1elunit 12915 . . . . . 6 1 ∈ (0[,]1)
38 ffvelrn 6846 . . . . . 6 (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃)):(0[,]1)⟶𝐵 ∧ 1 ∈ (0[,]1)) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) ∈ 𝐵)
3936, 37, 38sylancl 589 . . . . 5 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) ∈ 𝐵)
40 simprrr 781 . . . . . 6 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → (𝑎‘1) = 𝑋)
41 eqidd 2759 . . . . . 6 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1))
42 fveq1 6662 . . . . . . . . 9 (𝑓 = 𝑎 → (𝑓‘0) = (𝑎‘0))
4342eqeq1d 2760 . . . . . . . 8 (𝑓 = 𝑎 → ((𝑓‘0) = 𝑂 ↔ (𝑎‘0) = 𝑂))
44 fveq1 6662 . . . . . . . . 9 (𝑓 = 𝑎 → (𝑓‘1) = (𝑎‘1))
4544eqeq1d 2760 . . . . . . . 8 (𝑓 = 𝑎 → ((𝑓‘1) = 𝑋 ↔ (𝑎‘1) = 𝑋))
46 coeq2 5704 . . . . . . . . . . . . 13 (𝑓 = 𝑎 → (𝐺𝑓) = (𝐺𝑎))
4746eqeq2d 2769 . . . . . . . . . . . 12 (𝑓 = 𝑎 → ((𝐹𝑔) = (𝐺𝑓) ↔ (𝐹𝑔) = (𝐺𝑎)))
4847anbi1d 632 . . . . . . . . . . 11 (𝑓 = 𝑎 → (((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃) ↔ ((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃)))
4948riotabidv 7116 . . . . . . . . . 10 (𝑓 = 𝑎 → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃)))
5049fveq1d 6665 . . . . . . . . 9 (𝑓 = 𝑎 → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1))
5150eqeq1d 2760 . . . . . . . 8 (𝑓 = 𝑎 → (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) ↔ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1)))
5243, 45, 513anbi123d 1433 . . . . . . 7 (𝑓 = 𝑎 → (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1)) ↔ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1))))
5352rspcev 3543 . . . . . 6 ((𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1))) → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1)))
5415, 22, 40, 41, 53syl13anc 1369 . . . . 5 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1)))
5513ad4antr 731 . . . . . . . . 9 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → 𝐹 ∈ (𝐶 CovMap 𝐽))
561ad4antr 731 . . . . . . . . 9 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → 𝐾 ∈ SConn)
57 cvmlift3.l . . . . . . . . . 10 (𝜑𝐾 ∈ 𝑛-Locally PConn)
5857ad4antr 731 . . . . . . . . 9 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → 𝐾 ∈ 𝑛-Locally PConn)
595ad4antr 731 . . . . . . . . 9 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → 𝑂𝑌)
6016ad4antr 731 . . . . . . . . 9 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → 𝐺 ∈ (𝐾 Cn 𝐽))
6120ad4antr 731 . . . . . . . . 9 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → 𝑃𝐵)
6230ad4antr 731 . . . . . . . . 9 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → (𝐹𝑃) = (𝐺𝑂))
6315ad2antrr 725 . . . . . . . . 9 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → 𝑎 ∈ (II Cn 𝐾))
6422ad2antrr 725 . . . . . . . . 9 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → (𝑎‘0) = 𝑂)
65 simprl 770 . . . . . . . . 9 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → ∈ (II Cn 𝐾))
66 simprr1 1218 . . . . . . . . 9 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → (‘0) = 𝑂)
6740ad2antrr 725 . . . . . . . . . 10 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → (𝑎‘1) = 𝑋)
68 simprr2 1219 . . . . . . . . . 10 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → (‘1) = 𝑋)
6967, 68eqtr4d 2796 . . . . . . . . 9 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → (𝑎‘1) = (‘1))
7011, 8, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 69cvmlift3lem1 32810 . . . . . . . 8 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1))
71 simprr3 1220 . . . . . . . 8 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤)
7270, 71eqtrd 2793 . . . . . . 7 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤)
7372rexlimdvaa 3209 . . . . . 6 ((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) → (∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))
7473ralrimiva 3113 . . . . 5 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → ∀𝑤𝐵 (∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))
75 eqeq2 2770 . . . . . . . . 9 (𝑧 = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) → (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧 ↔ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1)))
76753anbi3d 1439 . . . . . . . 8 (𝑧 = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) → (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1))))
7776rexbidv 3221 . . . . . . 7 (𝑧 = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) → (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1))))
78 eqeq1 2762 . . . . . . . . 9 (𝑧 = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) → (𝑧 = 𝑤 ↔ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))
7978imbi2d 344 . . . . . . . 8 (𝑧 = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) → ((∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → 𝑧 = 𝑤) ↔ (∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤)))
8079ralbidv 3126 . . . . . . 7 (𝑧 = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) → (∀𝑤𝐵 (∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → 𝑧 = 𝑤) ↔ ∀𝑤𝐵 (∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤)))
8177, 80anbi12d 633 . . . . . 6 (𝑧 = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) → ((∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ∧ ∀𝑤𝐵 (∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → 𝑧 = 𝑤)) ↔ (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1)) ∧ ∀𝑤𝐵 (∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))))
8281rspcev 3543 . . . . 5 ((((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) ∈ 𝐵 ∧ (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1)) ∧ ∀𝑤𝐵 (∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → ∃𝑧𝐵 (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ∧ ∀𝑤𝐵 (∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → 𝑧 = 𝑤)))
8339, 54, 74, 82syl12anc 835 . . . 4 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → ∃𝑧𝐵 (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ∧ ∀𝑤𝐵 (∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → 𝑧 = 𝑤)))
84 fveq1 6662 . . . . . . . . 9 (𝑓 = → (𝑓‘0) = (‘0))
8584eqeq1d 2760 . . . . . . . 8 (𝑓 = → ((𝑓‘0) = 𝑂 ↔ (‘0) = 𝑂))
86 fveq1 6662 . . . . . . . . 9 (𝑓 = → (𝑓‘1) = (‘1))
8786eqeq1d 2760 . . . . . . . 8 (𝑓 = → ((𝑓‘1) = 𝑋 ↔ (‘1) = 𝑋))
88 coeq2 5704 . . . . . . . . . . . . 13 (𝑓 = → (𝐺𝑓) = (𝐺))
8988eqeq2d 2769 . . . . . . . . . . . 12 (𝑓 = → ((𝐹𝑔) = (𝐺𝑓) ↔ (𝐹𝑔) = (𝐺)))
9089anbi1d 632 . . . . . . . . . . 11 (𝑓 = → (((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃) ↔ ((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃)))
9190riotabidv 7116 . . . . . . . . . 10 (𝑓 = → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃)))
9291fveq1d 6665 . . . . . . . . 9 (𝑓 = → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1))
9392eqeq1d 2760 . . . . . . . 8 (𝑓 = → (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧 ↔ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))
9485, 87, 933anbi123d 1433 . . . . . . 7 (𝑓 = → (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
9594cbvrexvw 3362 . . . . . 6 (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))
96 eqeq2 2770 . . . . . . . 8 (𝑧 = 𝑤 → (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧 ↔ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))
97963anbi3d 1439 . . . . . . 7 (𝑧 = 𝑤 → (((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤)))
9897rexbidv 3221 . . . . . 6 (𝑧 = 𝑤 → (∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤)))
9995, 98syl5bb 286 . . . . 5 (𝑧 = 𝑤 → (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤)))
10099reu8 3649 . . . 4 (∃!𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ∃𝑧𝐵 (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ∧ ∀𝑤𝐵 (∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → 𝑧 = 𝑤)))
10183, 100sylibr 237 . . 3 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → ∃!𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))
102101rexlimdvaa 3209 . 2 ((𝜑𝑋𝑌) → (∃𝑎 ∈ (II Cn 𝐾)((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋) → ∃!𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
10310, 102mpd 15 1 ((𝜑𝑋𝑌) → ∃!𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3070  wrex 3071  ∃!wreu 3072   cuni 4801  ccom 5532  wf 6336  cfv 6340  crio 7113  (class class class)co 7156  0cc0 10588  1c1 10589  [,]cicc 12795   Cn ccn 21938  𝑛-Locally cnlly 22179  IIcii 23590  PConncpconn 32710  SConncsconn 32711   CovMap ccvm 32746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-inf2 9150  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665  ax-pre-sup 10666  ax-addf 10667  ax-mulf 10668
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-iin 4889  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-isom 6349  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7411  df-om 7586  df-1st 7699  df-2nd 7700  df-supp 7842  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-1o 8118  df-2o 8119  df-er 8305  df-ec 8307  df-map 8424  df-ixp 8493  df-en 8541  df-dom 8542  df-sdom 8543  df-fin 8544  df-fsupp 8880  df-fi 8921  df-sup 8952  df-inf 8953  df-oi 9020  df-card 9414  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-div 11349  df-nn 11688  df-2 11750  df-3 11751  df-4 11752  df-5 11753  df-6 11754  df-7 11755  df-8 11756  df-9 11757  df-n0 11948  df-z 12034  df-dec 12151  df-uz 12296  df-q 12402  df-rp 12444  df-xneg 12561  df-xadd 12562  df-xmul 12563  df-ioo 12796  df-ico 12798  df-icc 12799  df-fz 12953  df-fzo 13096  df-fl 13224  df-seq 13432  df-exp 13493  df-hash 13754  df-cj 14519  df-re 14520  df-im 14521  df-sqrt 14655  df-abs 14656  df-clim 14906  df-sum 15104  df-struct 16557  df-ndx 16558  df-slot 16559  df-base 16561  df-sets 16562  df-ress 16563  df-plusg 16650  df-mulr 16651  df-starv 16652  df-sca 16653  df-vsca 16654  df-ip 16655  df-tset 16656  df-ple 16657  df-ds 16659  df-unif 16660  df-hom 16661  df-cco 16662  df-rest 16768  df-topn 16769  df-0g 16787  df-gsum 16788  df-topgen 16789  df-pt 16790  df-prds 16793  df-xrs 16847  df-qtop 16852  df-imas 16853  df-xps 16855  df-mre 16929  df-mrc 16930  df-acs 16932  df-mgm 17932  df-sgrp 17981  df-mnd 17992  df-submnd 18037  df-mulg 18306  df-cntz 18528  df-cmn 18989  df-psmet 20172  df-xmet 20173  df-met 20174  df-bl 20175  df-mopn 20176  df-cnfld 20181  df-top 21608  df-topon 21625  df-topsp 21647  df-bases 21660  df-cld 21733  df-ntr 21734  df-cls 21735  df-nei 21812  df-cn 21941  df-cnp 21942  df-cmp 22101  df-conn 22126  df-lly 22180  df-nlly 22181  df-tx 22276  df-hmeo 22469  df-xms 23036  df-ms 23037  df-tms 23038  df-ii 23592  df-htpy 23685  df-phtpy 23686  df-phtpc 23707  df-pco 23720  df-pconn 32712  df-sconn 32713  df-cvm 32747
This theorem is referenced by:  cvmlift3lem3  32812  cvmlift3lem4  32813
  Copyright terms: Public domain W3C validator