Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift3lem2 Structured version   Visualization version   GIF version

Theorem cvmlift3lem2 35305
Description: Lemma for cvmlift2 35301. (Contributed by Mario Carneiro, 6-Jul-2015.)
Hypotheses
Ref Expression
cvmlift3.b 𝐵 = 𝐶
cvmlift3.y 𝑌 = 𝐾
cvmlift3.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift3.k (𝜑𝐾 ∈ SConn)
cvmlift3.l (𝜑𝐾 ∈ 𝑛-Locally PConn)
cvmlift3.o (𝜑𝑂𝑌)
cvmlift3.g (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
cvmlift3.p (𝜑𝑃𝐵)
cvmlift3.e (𝜑 → (𝐹𝑃) = (𝐺𝑂))
Assertion
Ref Expression
cvmlift3lem2 ((𝜑𝑋𝑌) → ∃!𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))
Distinct variable groups:   𝑧,𝑓,𝑔   𝑓,𝐽,𝑔   𝑓,𝐹,𝑔,𝑧   𝐵,𝑓,𝑔,𝑧   𝑓,𝑋,𝑔,𝑧   𝑓,𝐺,𝑔,𝑧   𝐶,𝑓,𝑔,𝑧   𝜑,𝑓   𝑓,𝐾,𝑔,𝑧   𝑃,𝑓,𝑔,𝑧   𝑓,𝑂,𝑔,𝑧   𝑓,𝑌,𝑔,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑔)   𝐽(𝑧)

Proof of Theorem cvmlift3lem2
Dummy variables 𝑤 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmlift3.k . . . . 5 (𝜑𝐾 ∈ SConn)
21adantr 480 . . . 4 ((𝜑𝑋𝑌) → 𝐾 ∈ SConn)
3 sconnpconn 35212 . . . 4 (𝐾 ∈ SConn → 𝐾 ∈ PConn)
42, 3syl 17 . . 3 ((𝜑𝑋𝑌) → 𝐾 ∈ PConn)
5 cvmlift3.o . . . 4 (𝜑𝑂𝑌)
65adantr 480 . . 3 ((𝜑𝑋𝑌) → 𝑂𝑌)
7 simpr 484 . . 3 ((𝜑𝑋𝑌) → 𝑋𝑌)
8 cvmlift3.y . . . 4 𝑌 = 𝐾
98pconncn 35209 . . 3 ((𝐾 ∈ PConn ∧ 𝑂𝑌𝑋𝑌) → ∃𝑎 ∈ (II Cn 𝐾)((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))
104, 6, 7, 9syl3anc 1370 . 2 ((𝜑𝑋𝑌) → ∃𝑎 ∈ (II Cn 𝐾)((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))
11 cvmlift3.b . . . . . . . . 9 𝐵 = 𝐶
12 eqid 2735 . . . . . . . . 9 (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃)) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))
13 cvmlift3.f . . . . . . . . . 10 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
1413ad2antrr 726 . . . . . . . . 9 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → 𝐹 ∈ (𝐶 CovMap 𝐽))
15 simprl 771 . . . . . . . . . 10 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → 𝑎 ∈ (II Cn 𝐾))
16 cvmlift3.g . . . . . . . . . . 11 (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
1716ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → 𝐺 ∈ (𝐾 Cn 𝐽))
18 cnco 23290 . . . . . . . . . 10 ((𝑎 ∈ (II Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐽)) → (𝐺𝑎) ∈ (II Cn 𝐽))
1915, 17, 18syl2anc 584 . . . . . . . . 9 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → (𝐺𝑎) ∈ (II Cn 𝐽))
20 cvmlift3.p . . . . . . . . . 10 (𝜑𝑃𝐵)
2120ad2antrr 726 . . . . . . . . 9 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → 𝑃𝐵)
22 simprrl 781 . . . . . . . . . . 11 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → (𝑎‘0) = 𝑂)
2322fveq2d 6911 . . . . . . . . . 10 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → (𝐺‘(𝑎‘0)) = (𝐺𝑂))
24 iiuni 24921 . . . . . . . . . . . . 13 (0[,]1) = II
2524, 8cnf 23270 . . . . . . . . . . . 12 (𝑎 ∈ (II Cn 𝐾) → 𝑎:(0[,]1)⟶𝑌)
2615, 25syl 17 . . . . . . . . . . 11 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → 𝑎:(0[,]1)⟶𝑌)
27 0elunit 13506 . . . . . . . . . . 11 0 ∈ (0[,]1)
28 fvco3 7008 . . . . . . . . . . 11 ((𝑎:(0[,]1)⟶𝑌 ∧ 0 ∈ (0[,]1)) → ((𝐺𝑎)‘0) = (𝐺‘(𝑎‘0)))
2926, 27, 28sylancl 586 . . . . . . . . . 10 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → ((𝐺𝑎)‘0) = (𝐺‘(𝑎‘0)))
30 cvmlift3.e . . . . . . . . . . 11 (𝜑 → (𝐹𝑃) = (𝐺𝑂))
3130ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → (𝐹𝑃) = (𝐺𝑂))
3223, 29, 313eqtr4rd 2786 . . . . . . . . 9 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → (𝐹𝑃) = ((𝐺𝑎)‘0))
3311, 12, 14, 19, 21, 32cvmliftiota 35286 . . . . . . . 8 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃)) ∈ (II Cn 𝐶) ∧ (𝐹 ∘ (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))) = (𝐺𝑎) ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘0) = 𝑃))
3433simp1d 1141 . . . . . . 7 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃)) ∈ (II Cn 𝐶))
3524, 11cnf 23270 . . . . . . 7 ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃)) ∈ (II Cn 𝐶) → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃)):(0[,]1)⟶𝐵)
3634, 35syl 17 . . . . . 6 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃)):(0[,]1)⟶𝐵)
37 1elunit 13507 . . . . . 6 1 ∈ (0[,]1)
38 ffvelcdm 7101 . . . . . 6 (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃)):(0[,]1)⟶𝐵 ∧ 1 ∈ (0[,]1)) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) ∈ 𝐵)
3936, 37, 38sylancl 586 . . . . 5 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) ∈ 𝐵)
40 simprrr 782 . . . . . 6 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → (𝑎‘1) = 𝑋)
41 eqidd 2736 . . . . . 6 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1))
42 fveq1 6906 . . . . . . . . 9 (𝑓 = 𝑎 → (𝑓‘0) = (𝑎‘0))
4342eqeq1d 2737 . . . . . . . 8 (𝑓 = 𝑎 → ((𝑓‘0) = 𝑂 ↔ (𝑎‘0) = 𝑂))
44 fveq1 6906 . . . . . . . . 9 (𝑓 = 𝑎 → (𝑓‘1) = (𝑎‘1))
4544eqeq1d 2737 . . . . . . . 8 (𝑓 = 𝑎 → ((𝑓‘1) = 𝑋 ↔ (𝑎‘1) = 𝑋))
46 coeq2 5872 . . . . . . . . . . . . 13 (𝑓 = 𝑎 → (𝐺𝑓) = (𝐺𝑎))
4746eqeq2d 2746 . . . . . . . . . . . 12 (𝑓 = 𝑎 → ((𝐹𝑔) = (𝐺𝑓) ↔ (𝐹𝑔) = (𝐺𝑎)))
4847anbi1d 631 . . . . . . . . . . 11 (𝑓 = 𝑎 → (((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃) ↔ ((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃)))
4948riotabidv 7390 . . . . . . . . . 10 (𝑓 = 𝑎 → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃)))
5049fveq1d 6909 . . . . . . . . 9 (𝑓 = 𝑎 → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1))
5150eqeq1d 2737 . . . . . . . 8 (𝑓 = 𝑎 → (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) ↔ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1)))
5243, 45, 513anbi123d 1435 . . . . . . 7 (𝑓 = 𝑎 → (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1)) ↔ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1))))
5352rspcev 3622 . . . . . 6 ((𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1))) → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1)))
5415, 22, 40, 41, 53syl13anc 1371 . . . . 5 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1)))
5513ad4antr 732 . . . . . . . . 9 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → 𝐹 ∈ (𝐶 CovMap 𝐽))
561ad4antr 732 . . . . . . . . 9 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → 𝐾 ∈ SConn)
57 cvmlift3.l . . . . . . . . . 10 (𝜑𝐾 ∈ 𝑛-Locally PConn)
5857ad4antr 732 . . . . . . . . 9 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → 𝐾 ∈ 𝑛-Locally PConn)
595ad4antr 732 . . . . . . . . 9 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → 𝑂𝑌)
6016ad4antr 732 . . . . . . . . 9 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → 𝐺 ∈ (𝐾 Cn 𝐽))
6120ad4antr 732 . . . . . . . . 9 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → 𝑃𝐵)
6230ad4antr 732 . . . . . . . . 9 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → (𝐹𝑃) = (𝐺𝑂))
6315ad2antrr 726 . . . . . . . . 9 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → 𝑎 ∈ (II Cn 𝐾))
6422ad2antrr 726 . . . . . . . . 9 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → (𝑎‘0) = 𝑂)
65 simprl 771 . . . . . . . . 9 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → ∈ (II Cn 𝐾))
66 simprr1 1220 . . . . . . . . 9 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → (‘0) = 𝑂)
6740ad2antrr 726 . . . . . . . . . 10 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → (𝑎‘1) = 𝑋)
68 simprr2 1221 . . . . . . . . . 10 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → (‘1) = 𝑋)
6967, 68eqtr4d 2778 . . . . . . . . 9 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → (𝑎‘1) = (‘1))
7011, 8, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 69cvmlift3lem1 35304 . . . . . . . 8 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1))
71 simprr3 1222 . . . . . . . 8 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤)
7270, 71eqtrd 2775 . . . . . . 7 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤)
7372rexlimdvaa 3154 . . . . . 6 ((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) → (∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))
7473ralrimiva 3144 . . . . 5 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → ∀𝑤𝐵 (∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))
75 eqeq2 2747 . . . . . . . . 9 (𝑧 = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) → (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧 ↔ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1)))
76753anbi3d 1441 . . . . . . . 8 (𝑧 = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) → (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1))))
7776rexbidv 3177 . . . . . . 7 (𝑧 = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) → (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1))))
78 eqeq1 2739 . . . . . . . . 9 (𝑧 = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) → (𝑧 = 𝑤 ↔ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))
7978imbi2d 340 . . . . . . . 8 (𝑧 = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) → ((∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → 𝑧 = 𝑤) ↔ (∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤)))
8079ralbidv 3176 . . . . . . 7 (𝑧 = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) → (∀𝑤𝐵 (∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → 𝑧 = 𝑤) ↔ ∀𝑤𝐵 (∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤)))
8177, 80anbi12d 632 . . . . . 6 (𝑧 = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) → ((∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ∧ ∀𝑤𝐵 (∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → 𝑧 = 𝑤)) ↔ (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1)) ∧ ∀𝑤𝐵 (∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))))
8281rspcev 3622 . . . . 5 ((((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) ∈ 𝐵 ∧ (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1)) ∧ ∀𝑤𝐵 (∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → ∃𝑧𝐵 (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ∧ ∀𝑤𝐵 (∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → 𝑧 = 𝑤)))
8339, 54, 74, 82syl12anc 837 . . . 4 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → ∃𝑧𝐵 (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ∧ ∀𝑤𝐵 (∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → 𝑧 = 𝑤)))
84 fveq1 6906 . . . . . . . . 9 (𝑓 = → (𝑓‘0) = (‘0))
8584eqeq1d 2737 . . . . . . . 8 (𝑓 = → ((𝑓‘0) = 𝑂 ↔ (‘0) = 𝑂))
86 fveq1 6906 . . . . . . . . 9 (𝑓 = → (𝑓‘1) = (‘1))
8786eqeq1d 2737 . . . . . . . 8 (𝑓 = → ((𝑓‘1) = 𝑋 ↔ (‘1) = 𝑋))
88 coeq2 5872 . . . . . . . . . . . . 13 (𝑓 = → (𝐺𝑓) = (𝐺))
8988eqeq2d 2746 . . . . . . . . . . . 12 (𝑓 = → ((𝐹𝑔) = (𝐺𝑓) ↔ (𝐹𝑔) = (𝐺)))
9089anbi1d 631 . . . . . . . . . . 11 (𝑓 = → (((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃) ↔ ((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃)))
9190riotabidv 7390 . . . . . . . . . 10 (𝑓 = → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃)))
9291fveq1d 6909 . . . . . . . . 9 (𝑓 = → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1))
9392eqeq1d 2737 . . . . . . . 8 (𝑓 = → (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧 ↔ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))
9485, 87, 933anbi123d 1435 . . . . . . 7 (𝑓 = → (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
9594cbvrexvw 3236 . . . . . 6 (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))
96 eqeq2 2747 . . . . . . . 8 (𝑧 = 𝑤 → (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧 ↔ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))
97963anbi3d 1441 . . . . . . 7 (𝑧 = 𝑤 → (((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤)))
9897rexbidv 3177 . . . . . 6 (𝑧 = 𝑤 → (∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤)))
9995, 98bitrid 283 . . . . 5 (𝑧 = 𝑤 → (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤)))
10099reu8 3742 . . . 4 (∃!𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ∃𝑧𝐵 (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ∧ ∀𝑤𝐵 (∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → 𝑧 = 𝑤)))
10183, 100sylibr 234 . . 3 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → ∃!𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))
102101rexlimdvaa 3154 . 2 ((𝜑𝑋𝑌) → (∃𝑎 ∈ (II Cn 𝐾)((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋) → ∃!𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
10310, 102mpd 15 1 ((𝜑𝑋𝑌) → ∃!𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  wrex 3068  ∃!wreu 3376   cuni 4912  ccom 5693  wf 6559  cfv 6563  crio 7387  (class class class)co 7431  0cc0 11153  1c1 11154  [,]cicc 13387   Cn ccn 23248  𝑛-Locally cnlly 23489  IIcii 24915  PConncpconn 35204  SConncsconn 35205   CovMap ccvm 35240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-ec 8746  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-cn 23251  df-cnp 23252  df-cmp 23411  df-conn 23436  df-lly 23490  df-nlly 23491  df-tx 23586  df-hmeo 23779  df-xms 24346  df-ms 24347  df-tms 24348  df-ii 24917  df-cncf 24918  df-htpy 25016  df-phtpy 25017  df-phtpc 25038  df-pco 25052  df-pconn 35206  df-sconn 35207  df-cvm 35241
This theorem is referenced by:  cvmlift3lem3  35306  cvmlift3lem4  35307
  Copyright terms: Public domain W3C validator