Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift3lem2 Structured version   Visualization version   GIF version

Theorem cvmlift3lem2 32181
Description: Lemma for cvmlift2 32177. (Contributed by Mario Carneiro, 6-Jul-2015.)
Hypotheses
Ref Expression
cvmlift3.b 𝐵 = 𝐶
cvmlift3.y 𝑌 = 𝐾
cvmlift3.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift3.k (𝜑𝐾 ∈ SConn)
cvmlift3.l (𝜑𝐾 ∈ 𝑛-Locally PConn)
cvmlift3.o (𝜑𝑂𝑌)
cvmlift3.g (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
cvmlift3.p (𝜑𝑃𝐵)
cvmlift3.e (𝜑 → (𝐹𝑃) = (𝐺𝑂))
Assertion
Ref Expression
cvmlift3lem2 ((𝜑𝑋𝑌) → ∃!𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))
Distinct variable groups:   𝑧,𝑓,𝑔   𝑓,𝐽,𝑔   𝑓,𝐹,𝑔,𝑧   𝐵,𝑓,𝑔,𝑧   𝑓,𝑋,𝑔,𝑧   𝑓,𝐺,𝑔,𝑧   𝐶,𝑓,𝑔,𝑧   𝜑,𝑓   𝑓,𝐾,𝑔,𝑧   𝑃,𝑓,𝑔,𝑧   𝑓,𝑂,𝑔,𝑧   𝑓,𝑌,𝑔,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑔)   𝐽(𝑧)

Proof of Theorem cvmlift3lem2
Dummy variables 𝑤 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmlift3.k . . . . 5 (𝜑𝐾 ∈ SConn)
21adantr 481 . . . 4 ((𝜑𝑋𝑌) → 𝐾 ∈ SConn)
3 sconnpconn 32088 . . . 4 (𝐾 ∈ SConn → 𝐾 ∈ PConn)
42, 3syl 17 . . 3 ((𝜑𝑋𝑌) → 𝐾 ∈ PConn)
5 cvmlift3.o . . . 4 (𝜑𝑂𝑌)
65adantr 481 . . 3 ((𝜑𝑋𝑌) → 𝑂𝑌)
7 simpr 485 . . 3 ((𝜑𝑋𝑌) → 𝑋𝑌)
8 cvmlift3.y . . . 4 𝑌 = 𝐾
98pconncn 32085 . . 3 ((𝐾 ∈ PConn ∧ 𝑂𝑌𝑋𝑌) → ∃𝑎 ∈ (II Cn 𝐾)((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))
104, 6, 7, 9syl3anc 1364 . 2 ((𝜑𝑋𝑌) → ∃𝑎 ∈ (II Cn 𝐾)((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))
11 cvmlift3.b . . . . . . . . 9 𝐵 = 𝐶
12 eqid 2795 . . . . . . . . 9 (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃)) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))
13 cvmlift3.f . . . . . . . . . 10 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
1413ad2antrr 722 . . . . . . . . 9 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → 𝐹 ∈ (𝐶 CovMap 𝐽))
15 simprl 767 . . . . . . . . . 10 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → 𝑎 ∈ (II Cn 𝐾))
16 cvmlift3.g . . . . . . . . . . 11 (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
1716ad2antrr 722 . . . . . . . . . 10 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → 𝐺 ∈ (𝐾 Cn 𝐽))
18 cnco 21563 . . . . . . . . . 10 ((𝑎 ∈ (II Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐽)) → (𝐺𝑎) ∈ (II Cn 𝐽))
1915, 17, 18syl2anc 584 . . . . . . . . 9 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → (𝐺𝑎) ∈ (II Cn 𝐽))
20 cvmlift3.p . . . . . . . . . 10 (𝜑𝑃𝐵)
2120ad2antrr 722 . . . . . . . . 9 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → 𝑃𝐵)
22 simprrl 777 . . . . . . . . . . 11 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → (𝑎‘0) = 𝑂)
2322fveq2d 6547 . . . . . . . . . 10 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → (𝐺‘(𝑎‘0)) = (𝐺𝑂))
24 iiuni 23177 . . . . . . . . . . . . 13 (0[,]1) = II
2524, 8cnf 21543 . . . . . . . . . . . 12 (𝑎 ∈ (II Cn 𝐾) → 𝑎:(0[,]1)⟶𝑌)
2615, 25syl 17 . . . . . . . . . . 11 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → 𝑎:(0[,]1)⟶𝑌)
27 0elunit 12710 . . . . . . . . . . 11 0 ∈ (0[,]1)
28 fvco3 6632 . . . . . . . . . . 11 ((𝑎:(0[,]1)⟶𝑌 ∧ 0 ∈ (0[,]1)) → ((𝐺𝑎)‘0) = (𝐺‘(𝑎‘0)))
2926, 27, 28sylancl 586 . . . . . . . . . 10 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → ((𝐺𝑎)‘0) = (𝐺‘(𝑎‘0)))
30 cvmlift3.e . . . . . . . . . . 11 (𝜑 → (𝐹𝑃) = (𝐺𝑂))
3130ad2antrr 722 . . . . . . . . . 10 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → (𝐹𝑃) = (𝐺𝑂))
3223, 29, 313eqtr4rd 2842 . . . . . . . . 9 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → (𝐹𝑃) = ((𝐺𝑎)‘0))
3311, 12, 14, 19, 21, 32cvmliftiota 32162 . . . . . . . 8 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃)) ∈ (II Cn 𝐶) ∧ (𝐹 ∘ (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))) = (𝐺𝑎) ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘0) = 𝑃))
3433simp1d 1135 . . . . . . 7 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃)) ∈ (II Cn 𝐶))
3524, 11cnf 21543 . . . . . . 7 ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃)) ∈ (II Cn 𝐶) → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃)):(0[,]1)⟶𝐵)
3634, 35syl 17 . . . . . 6 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃)):(0[,]1)⟶𝐵)
37 1elunit 12711 . . . . . 6 1 ∈ (0[,]1)
38 ffvelrn 6719 . . . . . 6 (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃)):(0[,]1)⟶𝐵 ∧ 1 ∈ (0[,]1)) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) ∈ 𝐵)
3936, 37, 38sylancl 586 . . . . 5 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) ∈ 𝐵)
40 simprrr 778 . . . . . 6 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → (𝑎‘1) = 𝑋)
41 eqidd 2796 . . . . . 6 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1))
42 fveq1 6542 . . . . . . . . 9 (𝑓 = 𝑎 → (𝑓‘0) = (𝑎‘0))
4342eqeq1d 2797 . . . . . . . 8 (𝑓 = 𝑎 → ((𝑓‘0) = 𝑂 ↔ (𝑎‘0) = 𝑂))
44 fveq1 6542 . . . . . . . . 9 (𝑓 = 𝑎 → (𝑓‘1) = (𝑎‘1))
4544eqeq1d 2797 . . . . . . . 8 (𝑓 = 𝑎 → ((𝑓‘1) = 𝑋 ↔ (𝑎‘1) = 𝑋))
46 coeq2 5620 . . . . . . . . . . . . 13 (𝑓 = 𝑎 → (𝐺𝑓) = (𝐺𝑎))
4746eqeq2d 2805 . . . . . . . . . . . 12 (𝑓 = 𝑎 → ((𝐹𝑔) = (𝐺𝑓) ↔ (𝐹𝑔) = (𝐺𝑎)))
4847anbi1d 629 . . . . . . . . . . 11 (𝑓 = 𝑎 → (((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃) ↔ ((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃)))
4948riotabidv 6984 . . . . . . . . . 10 (𝑓 = 𝑎 → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃)))
5049fveq1d 6545 . . . . . . . . 9 (𝑓 = 𝑎 → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1))
5150eqeq1d 2797 . . . . . . . 8 (𝑓 = 𝑎 → (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) ↔ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1)))
5243, 45, 513anbi123d 1428 . . . . . . 7 (𝑓 = 𝑎 → (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1)) ↔ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1))))
5352rspcev 3559 . . . . . 6 ((𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1))) → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1)))
5415, 22, 40, 41, 53syl13anc 1365 . . . . 5 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1)))
5513ad4antr 728 . . . . . . . . 9 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → 𝐹 ∈ (𝐶 CovMap 𝐽))
561ad4antr 728 . . . . . . . . 9 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → 𝐾 ∈ SConn)
57 cvmlift3.l . . . . . . . . . 10 (𝜑𝐾 ∈ 𝑛-Locally PConn)
5857ad4antr 728 . . . . . . . . 9 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → 𝐾 ∈ 𝑛-Locally PConn)
595ad4antr 728 . . . . . . . . 9 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → 𝑂𝑌)
6016ad4antr 728 . . . . . . . . 9 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → 𝐺 ∈ (𝐾 Cn 𝐽))
6120ad4antr 728 . . . . . . . . 9 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → 𝑃𝐵)
6230ad4antr 728 . . . . . . . . 9 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → (𝐹𝑃) = (𝐺𝑂))
6315ad2antrr 722 . . . . . . . . 9 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → 𝑎 ∈ (II Cn 𝐾))
6422ad2antrr 722 . . . . . . . . 9 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → (𝑎‘0) = 𝑂)
65 simprl 767 . . . . . . . . 9 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → ∈ (II Cn 𝐾))
66 simprr1 1214 . . . . . . . . 9 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → (‘0) = 𝑂)
6740ad2antrr 722 . . . . . . . . . 10 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → (𝑎‘1) = 𝑋)
68 simprr2 1215 . . . . . . . . . 10 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → (‘1) = 𝑋)
6967, 68eqtr4d 2834 . . . . . . . . 9 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → (𝑎‘1) = (‘1))
7011, 8, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 69cvmlift3lem1 32180 . . . . . . . 8 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1))
71 simprr3 1216 . . . . . . . 8 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤)
7270, 71eqtrd 2831 . . . . . . 7 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤)
7372rexlimdvaa 3248 . . . . . 6 ((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) → (∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))
7473ralrimiva 3149 . . . . 5 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → ∀𝑤𝐵 (∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))
75 eqeq2 2806 . . . . . . . . 9 (𝑧 = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) → (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧 ↔ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1)))
76753anbi3d 1434 . . . . . . . 8 (𝑧 = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) → (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1))))
7776rexbidv 3260 . . . . . . 7 (𝑧 = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) → (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1))))
78 eqeq1 2799 . . . . . . . . 9 (𝑧 = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) → (𝑧 = 𝑤 ↔ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))
7978imbi2d 342 . . . . . . . 8 (𝑧 = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) → ((∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → 𝑧 = 𝑤) ↔ (∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤)))
8079ralbidv 3164 . . . . . . 7 (𝑧 = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) → (∀𝑤𝐵 (∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → 𝑧 = 𝑤) ↔ ∀𝑤𝐵 (∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤)))
8177, 80anbi12d 630 . . . . . 6 (𝑧 = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) → ((∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ∧ ∀𝑤𝐵 (∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → 𝑧 = 𝑤)) ↔ (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1)) ∧ ∀𝑤𝐵 (∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))))
8281rspcev 3559 . . . . 5 ((((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) ∈ 𝐵 ∧ (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1)) ∧ ∀𝑤𝐵 (∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → ∃𝑧𝐵 (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ∧ ∀𝑤𝐵 (∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → 𝑧 = 𝑤)))
8339, 54, 74, 82syl12anc 833 . . . 4 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → ∃𝑧𝐵 (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ∧ ∀𝑤𝐵 (∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → 𝑧 = 𝑤)))
84 fveq1 6542 . . . . . . . . 9 (𝑓 = → (𝑓‘0) = (‘0))
8584eqeq1d 2797 . . . . . . . 8 (𝑓 = → ((𝑓‘0) = 𝑂 ↔ (‘0) = 𝑂))
86 fveq1 6542 . . . . . . . . 9 (𝑓 = → (𝑓‘1) = (‘1))
8786eqeq1d 2797 . . . . . . . 8 (𝑓 = → ((𝑓‘1) = 𝑋 ↔ (‘1) = 𝑋))
88 coeq2 5620 . . . . . . . . . . . . 13 (𝑓 = → (𝐺𝑓) = (𝐺))
8988eqeq2d 2805 . . . . . . . . . . . 12 (𝑓 = → ((𝐹𝑔) = (𝐺𝑓) ↔ (𝐹𝑔) = (𝐺)))
9089anbi1d 629 . . . . . . . . . . 11 (𝑓 = → (((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃) ↔ ((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃)))
9190riotabidv 6984 . . . . . . . . . 10 (𝑓 = → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃)))
9291fveq1d 6545 . . . . . . . . 9 (𝑓 = → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1))
9392eqeq1d 2797 . . . . . . . 8 (𝑓 = → (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧 ↔ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))
9485, 87, 933anbi123d 1428 . . . . . . 7 (𝑓 = → (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
9594cbvrexv 3404 . . . . . 6 (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))
96 eqeq2 2806 . . . . . . . 8 (𝑧 = 𝑤 → (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧 ↔ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))
97963anbi3d 1434 . . . . . . 7 (𝑧 = 𝑤 → (((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤)))
9897rexbidv 3260 . . . . . 6 (𝑧 = 𝑤 → (∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤)))
9995, 98syl5bb 284 . . . . 5 (𝑧 = 𝑤 → (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤)))
10099reu8 3661 . . . 4 (∃!𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ∃𝑧𝐵 (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ∧ ∀𝑤𝐵 (∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → 𝑧 = 𝑤)))
10183, 100sylibr 235 . . 3 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → ∃!𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))
102101rexlimdvaa 3248 . 2 ((𝜑𝑋𝑌) → (∃𝑎 ∈ (II Cn 𝐾)((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋) → ∃!𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
10310, 102mpd 15 1 ((𝜑𝑋𝑌) → ∃!𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1080   = wceq 1522  wcel 2081  wral 3105  wrex 3106  ∃!wreu 3107   cuni 4749  ccom 5452  wf 6226  cfv 6230  crio 6981  (class class class)co 7021  0cc0 10388  1c1 10389  [,]cicc 12596   Cn ccn 21521  𝑛-Locally cnlly 21762  IIcii 23171  PConncpconn 32080  SConncsconn 32081   CovMap ccvm 32116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5086  ax-sep 5099  ax-nul 5106  ax-pow 5162  ax-pr 5226  ax-un 7324  ax-inf2 8955  ax-cnex 10444  ax-resscn 10445  ax-1cn 10446  ax-icn 10447  ax-addcl 10448  ax-addrcl 10449  ax-mulcl 10450  ax-mulrcl 10451  ax-mulcom 10452  ax-addass 10453  ax-mulass 10454  ax-distr 10455  ax-i2m1 10456  ax-1ne0 10457  ax-1rid 10458  ax-rnegex 10459  ax-rrecex 10460  ax-cnre 10461  ax-pre-lttri 10462  ax-pre-lttrn 10463  ax-pre-ltadd 10464  ax-pre-mulgt0 10465  ax-pre-sup 10466  ax-addf 10467  ax-mulf 10468
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3710  df-csb 3816  df-dif 3866  df-un 3868  df-in 3870  df-ss 3878  df-pss 3880  df-nul 4216  df-if 4386  df-pw 4459  df-sn 4477  df-pr 4479  df-tp 4481  df-op 4483  df-uni 4750  df-int 4787  df-iun 4831  df-iin 4832  df-br 4967  df-opab 5029  df-mpt 5046  df-tr 5069  df-id 5353  df-eprel 5358  df-po 5367  df-so 5368  df-fr 5407  df-se 5408  df-we 5409  df-xp 5454  df-rel 5455  df-cnv 5456  df-co 5457  df-dm 5458  df-rn 5459  df-res 5460  df-ima 5461  df-pred 6028  df-ord 6074  df-on 6075  df-lim 6076  df-suc 6077  df-iota 6194  df-fun 6232  df-fn 6233  df-f 6234  df-f1 6235  df-fo 6236  df-f1o 6237  df-fv 6238  df-isom 6239  df-riota 6982  df-ov 7024  df-oprab 7025  df-mpo 7026  df-of 7272  df-om 7442  df-1st 7550  df-2nd 7551  df-supp 7687  df-wrecs 7803  df-recs 7865  df-rdg 7903  df-1o 7958  df-2o 7959  df-oadd 7962  df-er 8144  df-ec 8146  df-map 8263  df-ixp 8316  df-en 8363  df-dom 8364  df-sdom 8365  df-fin 8366  df-fsupp 8685  df-fi 8726  df-sup 8757  df-inf 8758  df-oi 8825  df-card 9219  df-pnf 10528  df-mnf 10529  df-xr 10530  df-ltxr 10531  df-le 10532  df-sub 10724  df-neg 10725  df-div 11151  df-nn 11492  df-2 11553  df-3 11554  df-4 11555  df-5 11556  df-6 11557  df-7 11558  df-8 11559  df-9 11560  df-n0 11751  df-z 11835  df-dec 11953  df-uz 12099  df-q 12203  df-rp 12245  df-xneg 12362  df-xadd 12363  df-xmul 12364  df-ioo 12597  df-ico 12599  df-icc 12600  df-fz 12748  df-fzo 12889  df-fl 13017  df-seq 13225  df-exp 13285  df-hash 13546  df-cj 14297  df-re 14298  df-im 14299  df-sqrt 14433  df-abs 14434  df-clim 14684  df-sum 14882  df-struct 16319  df-ndx 16320  df-slot 16321  df-base 16323  df-sets 16324  df-ress 16325  df-plusg 16412  df-mulr 16413  df-starv 16414  df-sca 16415  df-vsca 16416  df-ip 16417  df-tset 16418  df-ple 16419  df-ds 16421  df-unif 16422  df-hom 16423  df-cco 16424  df-rest 16530  df-topn 16531  df-0g 16549  df-gsum 16550  df-topgen 16551  df-pt 16552  df-prds 16555  df-xrs 16609  df-qtop 16614  df-imas 16615  df-xps 16617  df-mre 16691  df-mrc 16692  df-acs 16694  df-mgm 17686  df-sgrp 17728  df-mnd 17739  df-submnd 17780  df-mulg 17987  df-cntz 18193  df-cmn 18640  df-psmet 20224  df-xmet 20225  df-met 20226  df-bl 20227  df-mopn 20228  df-cnfld 20233  df-top 21191  df-topon 21208  df-topsp 21230  df-bases 21243  df-cld 21316  df-ntr 21317  df-cls 21318  df-nei 21395  df-cn 21524  df-cnp 21525  df-cmp 21684  df-conn 21709  df-lly 21763  df-nlly 21764  df-tx 21859  df-hmeo 22052  df-xms 22618  df-ms 22619  df-tms 22620  df-ii 23173  df-htpy 23262  df-phtpy 23263  df-phtpc 23284  df-pco 23297  df-pconn 32082  df-sconn 32083  df-cvm 32117
This theorem is referenced by:  cvmlift3lem3  32182  cvmlift3lem4  32183
  Copyright terms: Public domain W3C validator