Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift3lem2 Structured version   Visualization version   GIF version

Theorem cvmlift3lem2 35375
Description: Lemma for cvmlift2 35371. (Contributed by Mario Carneiro, 6-Jul-2015.)
Hypotheses
Ref Expression
cvmlift3.b 𝐵 = 𝐶
cvmlift3.y 𝑌 = 𝐾
cvmlift3.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift3.k (𝜑𝐾 ∈ SConn)
cvmlift3.l (𝜑𝐾 ∈ 𝑛-Locally PConn)
cvmlift3.o (𝜑𝑂𝑌)
cvmlift3.g (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
cvmlift3.p (𝜑𝑃𝐵)
cvmlift3.e (𝜑 → (𝐹𝑃) = (𝐺𝑂))
Assertion
Ref Expression
cvmlift3lem2 ((𝜑𝑋𝑌) → ∃!𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))
Distinct variable groups:   𝑧,𝑓,𝑔   𝑓,𝐽,𝑔   𝑓,𝐹,𝑔,𝑧   𝐵,𝑓,𝑔,𝑧   𝑓,𝑋,𝑔,𝑧   𝑓,𝐺,𝑔,𝑧   𝐶,𝑓,𝑔,𝑧   𝜑,𝑓   𝑓,𝐾,𝑔,𝑧   𝑃,𝑓,𝑔,𝑧   𝑓,𝑂,𝑔,𝑧   𝑓,𝑌,𝑔,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑔)   𝐽(𝑧)

Proof of Theorem cvmlift3lem2
Dummy variables 𝑤 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmlift3.k . . . . 5 (𝜑𝐾 ∈ SConn)
21adantr 480 . . . 4 ((𝜑𝑋𝑌) → 𝐾 ∈ SConn)
3 sconnpconn 35282 . . . 4 (𝐾 ∈ SConn → 𝐾 ∈ PConn)
42, 3syl 17 . . 3 ((𝜑𝑋𝑌) → 𝐾 ∈ PConn)
5 cvmlift3.o . . . 4 (𝜑𝑂𝑌)
65adantr 480 . . 3 ((𝜑𝑋𝑌) → 𝑂𝑌)
7 simpr 484 . . 3 ((𝜑𝑋𝑌) → 𝑋𝑌)
8 cvmlift3.y . . . 4 𝑌 = 𝐾
98pconncn 35279 . . 3 ((𝐾 ∈ PConn ∧ 𝑂𝑌𝑋𝑌) → ∃𝑎 ∈ (II Cn 𝐾)((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))
104, 6, 7, 9syl3anc 1373 . 2 ((𝜑𝑋𝑌) → ∃𝑎 ∈ (II Cn 𝐾)((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))
11 cvmlift3.b . . . . . . . . 9 𝐵 = 𝐶
12 eqid 2733 . . . . . . . . 9 (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃)) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))
13 cvmlift3.f . . . . . . . . . 10 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
1413ad2antrr 726 . . . . . . . . 9 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → 𝐹 ∈ (𝐶 CovMap 𝐽))
15 simprl 770 . . . . . . . . . 10 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → 𝑎 ∈ (II Cn 𝐾))
16 cvmlift3.g . . . . . . . . . . 11 (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
1716ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → 𝐺 ∈ (𝐾 Cn 𝐽))
18 cnco 23191 . . . . . . . . . 10 ((𝑎 ∈ (II Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐽)) → (𝐺𝑎) ∈ (II Cn 𝐽))
1915, 17, 18syl2anc 584 . . . . . . . . 9 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → (𝐺𝑎) ∈ (II Cn 𝐽))
20 cvmlift3.p . . . . . . . . . 10 (𝜑𝑃𝐵)
2120ad2antrr 726 . . . . . . . . 9 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → 𝑃𝐵)
22 simprrl 780 . . . . . . . . . . 11 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → (𝑎‘0) = 𝑂)
2322fveq2d 6835 . . . . . . . . . 10 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → (𝐺‘(𝑎‘0)) = (𝐺𝑂))
24 iiuni 24811 . . . . . . . . . . . . 13 (0[,]1) = II
2524, 8cnf 23171 . . . . . . . . . . . 12 (𝑎 ∈ (II Cn 𝐾) → 𝑎:(0[,]1)⟶𝑌)
2615, 25syl 17 . . . . . . . . . . 11 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → 𝑎:(0[,]1)⟶𝑌)
27 0elunit 13379 . . . . . . . . . . 11 0 ∈ (0[,]1)
28 fvco3 6930 . . . . . . . . . . 11 ((𝑎:(0[,]1)⟶𝑌 ∧ 0 ∈ (0[,]1)) → ((𝐺𝑎)‘0) = (𝐺‘(𝑎‘0)))
2926, 27, 28sylancl 586 . . . . . . . . . 10 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → ((𝐺𝑎)‘0) = (𝐺‘(𝑎‘0)))
30 cvmlift3.e . . . . . . . . . . 11 (𝜑 → (𝐹𝑃) = (𝐺𝑂))
3130ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → (𝐹𝑃) = (𝐺𝑂))
3223, 29, 313eqtr4rd 2779 . . . . . . . . 9 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → (𝐹𝑃) = ((𝐺𝑎)‘0))
3311, 12, 14, 19, 21, 32cvmliftiota 35356 . . . . . . . 8 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃)) ∈ (II Cn 𝐶) ∧ (𝐹 ∘ (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))) = (𝐺𝑎) ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘0) = 𝑃))
3433simp1d 1142 . . . . . . 7 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃)) ∈ (II Cn 𝐶))
3524, 11cnf 23171 . . . . . . 7 ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃)) ∈ (II Cn 𝐶) → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃)):(0[,]1)⟶𝐵)
3634, 35syl 17 . . . . . 6 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃)):(0[,]1)⟶𝐵)
37 1elunit 13380 . . . . . 6 1 ∈ (0[,]1)
38 ffvelcdm 7023 . . . . . 6 (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃)):(0[,]1)⟶𝐵 ∧ 1 ∈ (0[,]1)) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) ∈ 𝐵)
3936, 37, 38sylancl 586 . . . . 5 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) ∈ 𝐵)
40 simprrr 781 . . . . . 6 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → (𝑎‘1) = 𝑋)
41 eqidd 2734 . . . . . 6 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1))
42 fveq1 6830 . . . . . . . . 9 (𝑓 = 𝑎 → (𝑓‘0) = (𝑎‘0))
4342eqeq1d 2735 . . . . . . . 8 (𝑓 = 𝑎 → ((𝑓‘0) = 𝑂 ↔ (𝑎‘0) = 𝑂))
44 fveq1 6830 . . . . . . . . 9 (𝑓 = 𝑎 → (𝑓‘1) = (𝑎‘1))
4544eqeq1d 2735 . . . . . . . 8 (𝑓 = 𝑎 → ((𝑓‘1) = 𝑋 ↔ (𝑎‘1) = 𝑋))
46 coeq2 5805 . . . . . . . . . . . . 13 (𝑓 = 𝑎 → (𝐺𝑓) = (𝐺𝑎))
4746eqeq2d 2744 . . . . . . . . . . . 12 (𝑓 = 𝑎 → ((𝐹𝑔) = (𝐺𝑓) ↔ (𝐹𝑔) = (𝐺𝑎)))
4847anbi1d 631 . . . . . . . . . . 11 (𝑓 = 𝑎 → (((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃) ↔ ((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃)))
4948riotabidv 7314 . . . . . . . . . 10 (𝑓 = 𝑎 → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃)))
5049fveq1d 6833 . . . . . . . . 9 (𝑓 = 𝑎 → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1))
5150eqeq1d 2735 . . . . . . . 8 (𝑓 = 𝑎 → (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) ↔ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1)))
5243, 45, 513anbi123d 1438 . . . . . . 7 (𝑓 = 𝑎 → (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1)) ↔ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1))))
5352rspcev 3574 . . . . . 6 ((𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1))) → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1)))
5415, 22, 40, 41, 53syl13anc 1374 . . . . 5 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1)))
5513ad4antr 732 . . . . . . . . 9 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → 𝐹 ∈ (𝐶 CovMap 𝐽))
561ad4antr 732 . . . . . . . . 9 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → 𝐾 ∈ SConn)
57 cvmlift3.l . . . . . . . . . 10 (𝜑𝐾 ∈ 𝑛-Locally PConn)
5857ad4antr 732 . . . . . . . . 9 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → 𝐾 ∈ 𝑛-Locally PConn)
595ad4antr 732 . . . . . . . . 9 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → 𝑂𝑌)
6016ad4antr 732 . . . . . . . . 9 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → 𝐺 ∈ (𝐾 Cn 𝐽))
6120ad4antr 732 . . . . . . . . 9 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → 𝑃𝐵)
6230ad4antr 732 . . . . . . . . 9 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → (𝐹𝑃) = (𝐺𝑂))
6315ad2antrr 726 . . . . . . . . 9 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → 𝑎 ∈ (II Cn 𝐾))
6422ad2antrr 726 . . . . . . . . 9 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → (𝑎‘0) = 𝑂)
65 simprl 770 . . . . . . . . 9 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → ∈ (II Cn 𝐾))
66 simprr1 1222 . . . . . . . . 9 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → (‘0) = 𝑂)
6740ad2antrr 726 . . . . . . . . . 10 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → (𝑎‘1) = 𝑋)
68 simprr2 1223 . . . . . . . . . 10 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → (‘1) = 𝑋)
6967, 68eqtr4d 2771 . . . . . . . . 9 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → (𝑎‘1) = (‘1))
7011, 8, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 69cvmlift3lem1 35374 . . . . . . . 8 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1))
71 simprr3 1224 . . . . . . . 8 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤)
7270, 71eqtrd 2768 . . . . . . 7 (((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) ∧ ( ∈ (II Cn 𝐾) ∧ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤)
7372rexlimdvaa 3136 . . . . . 6 ((((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤𝐵) → (∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))
7473ralrimiva 3126 . . . . 5 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → ∀𝑤𝐵 (∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))
75 eqeq2 2745 . . . . . . . . 9 (𝑧 = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) → (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧 ↔ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1)))
76753anbi3d 1444 . . . . . . . 8 (𝑧 = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) → (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1))))
7776rexbidv 3158 . . . . . . 7 (𝑧 = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) → (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1))))
78 eqeq1 2737 . . . . . . . . 9 (𝑧 = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) → (𝑧 = 𝑤 ↔ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))
7978imbi2d 340 . . . . . . . 8 (𝑧 = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) → ((∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → 𝑧 = 𝑤) ↔ (∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤)))
8079ralbidv 3157 . . . . . . 7 (𝑧 = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) → (∀𝑤𝐵 (∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → 𝑧 = 𝑤) ↔ ∀𝑤𝐵 (∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤)))
8177, 80anbi12d 632 . . . . . 6 (𝑧 = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) → ((∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ∧ ∀𝑤𝐵 (∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → 𝑧 = 𝑤)) ↔ (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1)) ∧ ∀𝑤𝐵 (∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))))
8281rspcev 3574 . . . . 5 ((((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) ∈ 𝐵 ∧ (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1)) ∧ ∀𝑤𝐵 (∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → ∃𝑧𝐵 (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ∧ ∀𝑤𝐵 (∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → 𝑧 = 𝑤)))
8339, 54, 74, 82syl12anc 836 . . . 4 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → ∃𝑧𝐵 (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ∧ ∀𝑤𝐵 (∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → 𝑧 = 𝑤)))
84 fveq1 6830 . . . . . . . . 9 (𝑓 = → (𝑓‘0) = (‘0))
8584eqeq1d 2735 . . . . . . . 8 (𝑓 = → ((𝑓‘0) = 𝑂 ↔ (‘0) = 𝑂))
86 fveq1 6830 . . . . . . . . 9 (𝑓 = → (𝑓‘1) = (‘1))
8786eqeq1d 2735 . . . . . . . 8 (𝑓 = → ((𝑓‘1) = 𝑋 ↔ (‘1) = 𝑋))
88 coeq2 5805 . . . . . . . . . . . . 13 (𝑓 = → (𝐺𝑓) = (𝐺))
8988eqeq2d 2744 . . . . . . . . . . . 12 (𝑓 = → ((𝐹𝑔) = (𝐺𝑓) ↔ (𝐹𝑔) = (𝐺)))
9089anbi1d 631 . . . . . . . . . . 11 (𝑓 = → (((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃) ↔ ((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃)))
9190riotabidv 7314 . . . . . . . . . 10 (𝑓 = → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃)))
9291fveq1d 6833 . . . . . . . . 9 (𝑓 = → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1))
9392eqeq1d 2735 . . . . . . . 8 (𝑓 = → (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧 ↔ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))
9485, 87, 933anbi123d 1438 . . . . . . 7 (𝑓 = → (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
9594cbvrexvw 3213 . . . . . 6 (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))
96 eqeq2 2745 . . . . . . . 8 (𝑧 = 𝑤 → (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧 ↔ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))
97963anbi3d 1444 . . . . . . 7 (𝑧 = 𝑤 → (((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤)))
9897rexbidv 3158 . . . . . 6 (𝑧 = 𝑤 → (∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤)))
9995, 98bitrid 283 . . . . 5 (𝑧 = 𝑤 → (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤)))
10099reu8 3689 . . . 4 (∃!𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ∃𝑧𝐵 (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ∧ ∀𝑤𝐵 (∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → 𝑧 = 𝑤)))
10183, 100sylibr 234 . . 3 (((𝜑𝑋𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → ∃!𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))
102101rexlimdvaa 3136 . 2 ((𝜑𝑋𝑌) → (∃𝑎 ∈ (II Cn 𝐾)((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋) → ∃!𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
10310, 102mpd 15 1 ((𝜑𝑋𝑌) → ∃!𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3049  wrex 3058  ∃!wreu 3346   cuni 4860  ccom 5625  wf 6485  cfv 6489  crio 7311  (class class class)co 7355  0cc0 11016  1c1 11017  [,]cicc 13258   Cn ccn 23149  𝑛-Locally cnlly 23390  IIcii 24805  PConncpconn 35274  SConncsconn 35275   CovMap ccvm 35310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9541  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093  ax-pre-sup 11094  ax-addf 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-ec 8633  df-map 8761  df-ixp 8831  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-fsupp 9256  df-fi 9305  df-sup 9336  df-inf 9337  df-oi 9406  df-card 9842  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-div 11785  df-nn 12136  df-2 12198  df-3 12199  df-4 12200  df-5 12201  df-6 12202  df-7 12203  df-8 12204  df-9 12205  df-n0 12392  df-z 12479  df-dec 12599  df-uz 12743  df-q 12857  df-rp 12901  df-xneg 13021  df-xadd 13022  df-xmul 13023  df-ioo 13259  df-ico 13261  df-icc 13262  df-fz 13418  df-fzo 13565  df-fl 13706  df-seq 13919  df-exp 13979  df-hash 14248  df-cj 15016  df-re 15017  df-im 15018  df-sqrt 15152  df-abs 15153  df-clim 15405  df-sum 15604  df-struct 17068  df-sets 17085  df-slot 17103  df-ndx 17115  df-base 17131  df-ress 17152  df-plusg 17184  df-mulr 17185  df-starv 17186  df-sca 17187  df-vsca 17188  df-ip 17189  df-tset 17190  df-ple 17191  df-ds 17193  df-unif 17194  df-hom 17195  df-cco 17196  df-rest 17336  df-topn 17337  df-0g 17355  df-gsum 17356  df-topgen 17357  df-pt 17358  df-prds 17361  df-xrs 17416  df-qtop 17421  df-imas 17422  df-xps 17424  df-mre 17498  df-mrc 17499  df-acs 17501  df-mgm 18558  df-sgrp 18637  df-mnd 18653  df-submnd 18702  df-mulg 18991  df-cntz 19239  df-cmn 19704  df-psmet 21293  df-xmet 21294  df-met 21295  df-bl 21296  df-mopn 21297  df-cnfld 21302  df-top 22819  df-topon 22836  df-topsp 22858  df-bases 22871  df-cld 22944  df-ntr 22945  df-cls 22946  df-nei 23023  df-cn 23152  df-cnp 23153  df-cmp 23312  df-conn 23337  df-lly 23391  df-nlly 23392  df-tx 23487  df-hmeo 23680  df-xms 24245  df-ms 24246  df-tms 24247  df-ii 24807  df-cncf 24808  df-htpy 24906  df-phtpy 24907  df-phtpc 24928  df-pco 24942  df-pconn 35276  df-sconn 35277  df-cvm 35311
This theorem is referenced by:  cvmlift3lem3  35376  cvmlift3lem4  35377
  Copyright terms: Public domain W3C validator