| Step | Hyp | Ref
| Expression |
| 1 | | cvmlift3.k |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ SConn) |
| 2 | 1 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ 𝑌) → 𝐾 ∈ SConn) |
| 3 | | sconnpconn 35232 |
. . . 4
⊢ (𝐾 ∈ SConn → 𝐾 ∈ PConn) |
| 4 | 2, 3 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ 𝑌) → 𝐾 ∈ PConn) |
| 5 | | cvmlift3.o |
. . . 4
⊢ (𝜑 → 𝑂 ∈ 𝑌) |
| 6 | 5 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ 𝑌) → 𝑂 ∈ 𝑌) |
| 7 | | simpr 484 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ 𝑌) → 𝑋 ∈ 𝑌) |
| 8 | | cvmlift3.y |
. . . 4
⊢ 𝑌 = ∪
𝐾 |
| 9 | 8 | pconncn 35229 |
. . 3
⊢ ((𝐾 ∈ PConn ∧ 𝑂 ∈ 𝑌 ∧ 𝑋 ∈ 𝑌) → ∃𝑎 ∈ (II Cn 𝐾)((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋)) |
| 10 | 4, 6, 7, 9 | syl3anc 1373 |
. 2
⊢ ((𝜑 ∧ 𝑋 ∈ 𝑌) → ∃𝑎 ∈ (II Cn 𝐾)((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋)) |
| 11 | | cvmlift3.b |
. . . . . . . . 9
⊢ 𝐵 = ∪
𝐶 |
| 12 | | eqid 2737 |
. . . . . . . . 9
⊢
(℩𝑔
∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃)) = (℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃)) |
| 13 | | cvmlift3.f |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
| 14 | 13 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
| 15 | | simprl 771 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → 𝑎 ∈ (II Cn 𝐾)) |
| 16 | | cvmlift3.g |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐽)) |
| 17 | 16 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → 𝐺 ∈ (𝐾 Cn 𝐽)) |
| 18 | | cnco 23274 |
. . . . . . . . . 10
⊢ ((𝑎 ∈ (II Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐽)) → (𝐺 ∘ 𝑎) ∈ (II Cn 𝐽)) |
| 19 | 15, 17, 18 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → (𝐺 ∘ 𝑎) ∈ (II Cn 𝐽)) |
| 20 | | cvmlift3.p |
. . . . . . . . . 10
⊢ (𝜑 → 𝑃 ∈ 𝐵) |
| 21 | 20 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → 𝑃 ∈ 𝐵) |
| 22 | | simprrl 781 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → (𝑎‘0) = 𝑂) |
| 23 | 22 | fveq2d 6910 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → (𝐺‘(𝑎‘0)) = (𝐺‘𝑂)) |
| 24 | | iiuni 24907 |
. . . . . . . . . . . . 13
⊢ (0[,]1) =
∪ II |
| 25 | 24, 8 | cnf 23254 |
. . . . . . . . . . . 12
⊢ (𝑎 ∈ (II Cn 𝐾) → 𝑎:(0[,]1)⟶𝑌) |
| 26 | 15, 25 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → 𝑎:(0[,]1)⟶𝑌) |
| 27 | | 0elunit 13509 |
. . . . . . . . . . 11
⊢ 0 ∈
(0[,]1) |
| 28 | | fvco3 7008 |
. . . . . . . . . . 11
⊢ ((𝑎:(0[,]1)⟶𝑌 ∧ 0 ∈ (0[,]1)) →
((𝐺 ∘ 𝑎)‘0) = (𝐺‘(𝑎‘0))) |
| 29 | 26, 27, 28 | sylancl 586 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → ((𝐺 ∘ 𝑎)‘0) = (𝐺‘(𝑎‘0))) |
| 30 | | cvmlift3.e |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘𝑂)) |
| 31 | 30 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → (𝐹‘𝑃) = (𝐺‘𝑂)) |
| 32 | 23, 29, 31 | 3eqtr4rd 2788 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → (𝐹‘𝑃) = ((𝐺 ∘ 𝑎)‘0)) |
| 33 | 11, 12, 14, 19, 21, 32 | cvmliftiota 35306 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃)) ∈ (II Cn 𝐶) ∧ (𝐹 ∘ (℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))) = (𝐺 ∘ 𝑎) ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘0) = 𝑃)) |
| 34 | 33 | simp1d 1143 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → (℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃)) ∈ (II Cn 𝐶)) |
| 35 | 24, 11 | cnf 23254 |
. . . . . . 7
⊢
((℩𝑔
∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃)) ∈ (II Cn 𝐶) → (℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃)):(0[,]1)⟶𝐵) |
| 36 | 34, 35 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → (℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃)):(0[,]1)⟶𝐵) |
| 37 | | 1elunit 13510 |
. . . . . 6
⊢ 1 ∈
(0[,]1) |
| 38 | | ffvelcdm 7101 |
. . . . . 6
⊢
(((℩𝑔
∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃)):(0[,]1)⟶𝐵 ∧ 1 ∈ (0[,]1)) →
((℩𝑔 ∈
(II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1) ∈ 𝐵) |
| 39 | 36, 37, 38 | sylancl 586 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1) ∈ 𝐵) |
| 40 | | simprrr 782 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → (𝑎‘1) = 𝑋) |
| 41 | | eqidd 2738 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1)) |
| 42 | | fveq1 6905 |
. . . . . . . . 9
⊢ (𝑓 = 𝑎 → (𝑓‘0) = (𝑎‘0)) |
| 43 | 42 | eqeq1d 2739 |
. . . . . . . 8
⊢ (𝑓 = 𝑎 → ((𝑓‘0) = 𝑂 ↔ (𝑎‘0) = 𝑂)) |
| 44 | | fveq1 6905 |
. . . . . . . . 9
⊢ (𝑓 = 𝑎 → (𝑓‘1) = (𝑎‘1)) |
| 45 | 44 | eqeq1d 2739 |
. . . . . . . 8
⊢ (𝑓 = 𝑎 → ((𝑓‘1) = 𝑋 ↔ (𝑎‘1) = 𝑋)) |
| 46 | | coeq2 5869 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑎 → (𝐺 ∘ 𝑓) = (𝐺 ∘ 𝑎)) |
| 47 | 46 | eqeq2d 2748 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑎 → ((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ↔ (𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎))) |
| 48 | 47 | anbi1d 631 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑎 → (((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃) ↔ ((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))) |
| 49 | 48 | riotabidv 7390 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑎 → (℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃)) = (℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))) |
| 50 | 49 | fveq1d 6908 |
. . . . . . . . 9
⊢ (𝑓 = 𝑎 → ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1)) |
| 51 | 50 | eqeq1d 2739 |
. . . . . . . 8
⊢ (𝑓 = 𝑎 → (((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1) ↔ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1))) |
| 52 | 43, 45, 51 | 3anbi123d 1438 |
. . . . . . 7
⊢ (𝑓 = 𝑎 → (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1)) ↔ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1)))) |
| 53 | 52 | rspcev 3622 |
. . . . . 6
⊢ ((𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1))) → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1))) |
| 54 | 15, 22, 40, 41, 53 | syl13anc 1374 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1))) |
| 55 | 13 | ad4antr 732 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤 ∈ 𝐵) ∧ (ℎ ∈ (II Cn 𝐾) ∧ ((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
| 56 | 1 | ad4antr 732 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤 ∈ 𝐵) ∧ (ℎ ∈ (II Cn 𝐾) ∧ ((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → 𝐾 ∈ SConn) |
| 57 | | cvmlift3.l |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally
PConn) |
| 58 | 57 | ad4antr 732 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤 ∈ 𝐵) ∧ (ℎ ∈ (II Cn 𝐾) ∧ ((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → 𝐾 ∈ 𝑛-Locally
PConn) |
| 59 | 5 | ad4antr 732 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤 ∈ 𝐵) ∧ (ℎ ∈ (II Cn 𝐾) ∧ ((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → 𝑂 ∈ 𝑌) |
| 60 | 16 | ad4antr 732 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤 ∈ 𝐵) ∧ (ℎ ∈ (II Cn 𝐾) ∧ ((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → 𝐺 ∈ (𝐾 Cn 𝐽)) |
| 61 | 20 | ad4antr 732 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤 ∈ 𝐵) ∧ (ℎ ∈ (II Cn 𝐾) ∧ ((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → 𝑃 ∈ 𝐵) |
| 62 | 30 | ad4antr 732 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤 ∈ 𝐵) ∧ (ℎ ∈ (II Cn 𝐾) ∧ ((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → (𝐹‘𝑃) = (𝐺‘𝑂)) |
| 63 | 15 | ad2antrr 726 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤 ∈ 𝐵) ∧ (ℎ ∈ (II Cn 𝐾) ∧ ((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → 𝑎 ∈ (II Cn 𝐾)) |
| 64 | 22 | ad2antrr 726 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤 ∈ 𝐵) ∧ (ℎ ∈ (II Cn 𝐾) ∧ ((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → (𝑎‘0) = 𝑂) |
| 65 | | simprl 771 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤 ∈ 𝐵) ∧ (ℎ ∈ (II Cn 𝐾) ∧ ((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → ℎ ∈ (II Cn 𝐾)) |
| 66 | | simprr1 1222 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤 ∈ 𝐵) ∧ (ℎ ∈ (II Cn 𝐾) ∧ ((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → (ℎ‘0) = 𝑂) |
| 67 | 40 | ad2antrr 726 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤 ∈ 𝐵) ∧ (ℎ ∈ (II Cn 𝐾) ∧ ((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → (𝑎‘1) = 𝑋) |
| 68 | | simprr2 1223 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤 ∈ 𝐵) ∧ (ℎ ∈ (II Cn 𝐾) ∧ ((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → (ℎ‘1) = 𝑋) |
| 69 | 67, 68 | eqtr4d 2780 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤 ∈ 𝐵) ∧ (ℎ ∈ (II Cn 𝐾) ∧ ((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → (𝑎‘1) = (ℎ‘1)) |
| 70 | 11, 8, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 69 | cvmlift3lem1 35324 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤 ∈ 𝐵) ∧ (ℎ ∈ (II Cn 𝐾) ∧ ((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1)) |
| 71 | | simprr3 1224 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤 ∈ 𝐵) ∧ (ℎ ∈ (II Cn 𝐾) ∧ ((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) |
| 72 | 70, 71 | eqtrd 2777 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤 ∈ 𝐵) ∧ (ℎ ∈ (II Cn 𝐾) ∧ ((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) |
| 73 | 72 | rexlimdvaa 3156 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤 ∈ 𝐵) → (∃ℎ ∈ (II Cn 𝐾)((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤)) |
| 74 | 73 | ralrimiva 3146 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → ∀𝑤 ∈ 𝐵 (∃ℎ ∈ (II Cn 𝐾)((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤)) |
| 75 | | eqeq2 2749 |
. . . . . . . . 9
⊢ (𝑧 = ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1) → (((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧 ↔ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1))) |
| 76 | 75 | 3anbi3d 1444 |
. . . . . . . 8
⊢ (𝑧 = ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1) → (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1)))) |
| 77 | 76 | rexbidv 3179 |
. . . . . . 7
⊢ (𝑧 = ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1) → (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1)))) |
| 78 | | eqeq1 2741 |
. . . . . . . . 9
⊢ (𝑧 = ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1) → (𝑧 = 𝑤 ↔ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤)) |
| 79 | 78 | imbi2d 340 |
. . . . . . . 8
⊢ (𝑧 = ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1) → ((∃ℎ ∈ (II Cn 𝐾)((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → 𝑧 = 𝑤) ↔ (∃ℎ ∈ (II Cn 𝐾)((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) |
| 80 | 79 | ralbidv 3178 |
. . . . . . 7
⊢ (𝑧 = ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1) → (∀𝑤 ∈ 𝐵 (∃ℎ ∈ (II Cn 𝐾)((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → 𝑧 = 𝑤) ↔ ∀𝑤 ∈ 𝐵 (∃ℎ ∈ (II Cn 𝐾)((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) |
| 81 | 77, 80 | anbi12d 632 |
. . . . . 6
⊢ (𝑧 = ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1) → ((∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ∧ ∀𝑤 ∈ 𝐵 (∃ℎ ∈ (II Cn 𝐾)((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → 𝑧 = 𝑤)) ↔ (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1)) ∧ ∀𝑤 ∈ 𝐵 (∃ℎ ∈ (II Cn 𝐾)((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤)))) |
| 82 | 81 | rspcev 3622 |
. . . . 5
⊢
((((℩𝑔
∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1) ∈ 𝐵 ∧ (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1)) ∧ ∀𝑤 ∈ 𝐵 (∃ℎ ∈ (II Cn 𝐾)((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → ∃𝑧 ∈ 𝐵 (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ∧ ∀𝑤 ∈ 𝐵 (∃ℎ ∈ (II Cn 𝐾)((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → 𝑧 = 𝑤))) |
| 83 | 39, 54, 74, 82 | syl12anc 837 |
. . . 4
⊢ (((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → ∃𝑧 ∈ 𝐵 (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ∧ ∀𝑤 ∈ 𝐵 (∃ℎ ∈ (II Cn 𝐾)((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → 𝑧 = 𝑤))) |
| 84 | | fveq1 6905 |
. . . . . . . . 9
⊢ (𝑓 = ℎ → (𝑓‘0) = (ℎ‘0)) |
| 85 | 84 | eqeq1d 2739 |
. . . . . . . 8
⊢ (𝑓 = ℎ → ((𝑓‘0) = 𝑂 ↔ (ℎ‘0) = 𝑂)) |
| 86 | | fveq1 6905 |
. . . . . . . . 9
⊢ (𝑓 = ℎ → (𝑓‘1) = (ℎ‘1)) |
| 87 | 86 | eqeq1d 2739 |
. . . . . . . 8
⊢ (𝑓 = ℎ → ((𝑓‘1) = 𝑋 ↔ (ℎ‘1) = 𝑋)) |
| 88 | | coeq2 5869 |
. . . . . . . . . . . . 13
⊢ (𝑓 = ℎ → (𝐺 ∘ 𝑓) = (𝐺 ∘ ℎ)) |
| 89 | 88 | eqeq2d 2748 |
. . . . . . . . . . . 12
⊢ (𝑓 = ℎ → ((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ↔ (𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ))) |
| 90 | 89 | anbi1d 631 |
. . . . . . . . . . 11
⊢ (𝑓 = ℎ → (((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃) ↔ ((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))) |
| 91 | 90 | riotabidv 7390 |
. . . . . . . . . 10
⊢ (𝑓 = ℎ → (℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃)) = (℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))) |
| 92 | 91 | fveq1d 6908 |
. . . . . . . . 9
⊢ (𝑓 = ℎ → ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1)) |
| 93 | 92 | eqeq1d 2739 |
. . . . . . . 8
⊢ (𝑓 = ℎ → (((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧 ↔ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)) |
| 94 | 85, 87, 93 | 3anbi123d 1438 |
. . . . . . 7
⊢ (𝑓 = ℎ → (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))) |
| 95 | 94 | cbvrexvw 3238 |
. . . . . 6
⊢
(∃𝑓 ∈ (II
Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ∃ℎ ∈ (II Cn 𝐾)((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)) |
| 96 | | eqeq2 2749 |
. . . . . . . 8
⊢ (𝑧 = 𝑤 → (((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧 ↔ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤)) |
| 97 | 96 | 3anbi3d 1444 |
. . . . . . 7
⊢ (𝑧 = 𝑤 → (((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) |
| 98 | 97 | rexbidv 3179 |
. . . . . 6
⊢ (𝑧 = 𝑤 → (∃ℎ ∈ (II Cn 𝐾)((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ∃ℎ ∈ (II Cn 𝐾)((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) |
| 99 | 95, 98 | bitrid 283 |
. . . . 5
⊢ (𝑧 = 𝑤 → (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ∃ℎ ∈ (II Cn 𝐾)((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) |
| 100 | 99 | reu8 3739 |
. . . 4
⊢
(∃!𝑧 ∈
𝐵 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ∃𝑧 ∈ 𝐵 (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ∧ ∀𝑤 ∈ 𝐵 (∃ℎ ∈ (II Cn 𝐾)((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → 𝑧 = 𝑤))) |
| 101 | 83, 100 | sylibr 234 |
. . 3
⊢ (((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → ∃!𝑧 ∈ 𝐵 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)) |
| 102 | 101 | rexlimdvaa 3156 |
. 2
⊢ ((𝜑 ∧ 𝑋 ∈ 𝑌) → (∃𝑎 ∈ (II Cn 𝐾)((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋) → ∃!𝑧 ∈ 𝐵 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))) |
| 103 | 10, 102 | mpd 15 |
1
⊢ ((𝜑 ∧ 𝑋 ∈ 𝑌) → ∃!𝑧 ∈ 𝐵 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)) |