Step | Hyp | Ref
| Expression |
1 | | cvmlift3.k |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ SConn) |
2 | 1 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ 𝑌) → 𝐾 ∈ SConn) |
3 | | sconnpconn 33089 |
. . . 4
⊢ (𝐾 ∈ SConn → 𝐾 ∈ PConn) |
4 | 2, 3 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ 𝑌) → 𝐾 ∈ PConn) |
5 | | cvmlift3.o |
. . . 4
⊢ (𝜑 → 𝑂 ∈ 𝑌) |
6 | 5 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ 𝑌) → 𝑂 ∈ 𝑌) |
7 | | simpr 484 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ 𝑌) → 𝑋 ∈ 𝑌) |
8 | | cvmlift3.y |
. . . 4
⊢ 𝑌 = ∪
𝐾 |
9 | 8 | pconncn 33086 |
. . 3
⊢ ((𝐾 ∈ PConn ∧ 𝑂 ∈ 𝑌 ∧ 𝑋 ∈ 𝑌) → ∃𝑎 ∈ (II Cn 𝐾)((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋)) |
10 | 4, 6, 7, 9 | syl3anc 1369 |
. 2
⊢ ((𝜑 ∧ 𝑋 ∈ 𝑌) → ∃𝑎 ∈ (II Cn 𝐾)((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋)) |
11 | | cvmlift3.b |
. . . . . . . . 9
⊢ 𝐵 = ∪
𝐶 |
12 | | eqid 2738 |
. . . . . . . . 9
⊢
(℩𝑔
∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃)) = (℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃)) |
13 | | cvmlift3.f |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
14 | 13 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
15 | | simprl 767 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → 𝑎 ∈ (II Cn 𝐾)) |
16 | | cvmlift3.g |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐽)) |
17 | 16 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → 𝐺 ∈ (𝐾 Cn 𝐽)) |
18 | | cnco 22325 |
. . . . . . . . . 10
⊢ ((𝑎 ∈ (II Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐽)) → (𝐺 ∘ 𝑎) ∈ (II Cn 𝐽)) |
19 | 15, 17, 18 | syl2anc 583 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → (𝐺 ∘ 𝑎) ∈ (II Cn 𝐽)) |
20 | | cvmlift3.p |
. . . . . . . . . 10
⊢ (𝜑 → 𝑃 ∈ 𝐵) |
21 | 20 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → 𝑃 ∈ 𝐵) |
22 | | simprrl 777 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → (𝑎‘0) = 𝑂) |
23 | 22 | fveq2d 6760 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → (𝐺‘(𝑎‘0)) = (𝐺‘𝑂)) |
24 | | iiuni 23950 |
. . . . . . . . . . . . 13
⊢ (0[,]1) =
∪ II |
25 | 24, 8 | cnf 22305 |
. . . . . . . . . . . 12
⊢ (𝑎 ∈ (II Cn 𝐾) → 𝑎:(0[,]1)⟶𝑌) |
26 | 15, 25 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → 𝑎:(0[,]1)⟶𝑌) |
27 | | 0elunit 13130 |
. . . . . . . . . . 11
⊢ 0 ∈
(0[,]1) |
28 | | fvco3 6849 |
. . . . . . . . . . 11
⊢ ((𝑎:(0[,]1)⟶𝑌 ∧ 0 ∈ (0[,]1)) →
((𝐺 ∘ 𝑎)‘0) = (𝐺‘(𝑎‘0))) |
29 | 26, 27, 28 | sylancl 585 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → ((𝐺 ∘ 𝑎)‘0) = (𝐺‘(𝑎‘0))) |
30 | | cvmlift3.e |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘𝑂)) |
31 | 30 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → (𝐹‘𝑃) = (𝐺‘𝑂)) |
32 | 23, 29, 31 | 3eqtr4rd 2789 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → (𝐹‘𝑃) = ((𝐺 ∘ 𝑎)‘0)) |
33 | 11, 12, 14, 19, 21, 32 | cvmliftiota 33163 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃)) ∈ (II Cn 𝐶) ∧ (𝐹 ∘ (℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))) = (𝐺 ∘ 𝑎) ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘0) = 𝑃)) |
34 | 33 | simp1d 1140 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → (℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃)) ∈ (II Cn 𝐶)) |
35 | 24, 11 | cnf 22305 |
. . . . . . 7
⊢
((℩𝑔
∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃)) ∈ (II Cn 𝐶) → (℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃)):(0[,]1)⟶𝐵) |
36 | 34, 35 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → (℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃)):(0[,]1)⟶𝐵) |
37 | | 1elunit 13131 |
. . . . . 6
⊢ 1 ∈
(0[,]1) |
38 | | ffvelrn 6941 |
. . . . . 6
⊢
(((℩𝑔
∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃)):(0[,]1)⟶𝐵 ∧ 1 ∈ (0[,]1)) →
((℩𝑔 ∈
(II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1) ∈ 𝐵) |
39 | 36, 37, 38 | sylancl 585 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1) ∈ 𝐵) |
40 | | simprrr 778 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → (𝑎‘1) = 𝑋) |
41 | | eqidd 2739 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1)) |
42 | | fveq1 6755 |
. . . . . . . . 9
⊢ (𝑓 = 𝑎 → (𝑓‘0) = (𝑎‘0)) |
43 | 42 | eqeq1d 2740 |
. . . . . . . 8
⊢ (𝑓 = 𝑎 → ((𝑓‘0) = 𝑂 ↔ (𝑎‘0) = 𝑂)) |
44 | | fveq1 6755 |
. . . . . . . . 9
⊢ (𝑓 = 𝑎 → (𝑓‘1) = (𝑎‘1)) |
45 | 44 | eqeq1d 2740 |
. . . . . . . 8
⊢ (𝑓 = 𝑎 → ((𝑓‘1) = 𝑋 ↔ (𝑎‘1) = 𝑋)) |
46 | | coeq2 5756 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑎 → (𝐺 ∘ 𝑓) = (𝐺 ∘ 𝑎)) |
47 | 46 | eqeq2d 2749 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑎 → ((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ↔ (𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎))) |
48 | 47 | anbi1d 629 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑎 → (((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃) ↔ ((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))) |
49 | 48 | riotabidv 7214 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑎 → (℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃)) = (℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))) |
50 | 49 | fveq1d 6758 |
. . . . . . . . 9
⊢ (𝑓 = 𝑎 → ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1)) |
51 | 50 | eqeq1d 2740 |
. . . . . . . 8
⊢ (𝑓 = 𝑎 → (((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1) ↔ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1))) |
52 | 43, 45, 51 | 3anbi123d 1434 |
. . . . . . 7
⊢ (𝑓 = 𝑎 → (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1)) ↔ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1)))) |
53 | 52 | rspcev 3552 |
. . . . . 6
⊢ ((𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1))) → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1))) |
54 | 15, 22, 40, 41, 53 | syl13anc 1370 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1))) |
55 | 13 | ad4antr 728 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤 ∈ 𝐵) ∧ (ℎ ∈ (II Cn 𝐾) ∧ ((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
56 | 1 | ad4antr 728 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤 ∈ 𝐵) ∧ (ℎ ∈ (II Cn 𝐾) ∧ ((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → 𝐾 ∈ SConn) |
57 | | cvmlift3.l |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally
PConn) |
58 | 57 | ad4antr 728 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤 ∈ 𝐵) ∧ (ℎ ∈ (II Cn 𝐾) ∧ ((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → 𝐾 ∈ 𝑛-Locally
PConn) |
59 | 5 | ad4antr 728 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤 ∈ 𝐵) ∧ (ℎ ∈ (II Cn 𝐾) ∧ ((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → 𝑂 ∈ 𝑌) |
60 | 16 | ad4antr 728 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤 ∈ 𝐵) ∧ (ℎ ∈ (II Cn 𝐾) ∧ ((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → 𝐺 ∈ (𝐾 Cn 𝐽)) |
61 | 20 | ad4antr 728 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤 ∈ 𝐵) ∧ (ℎ ∈ (II Cn 𝐾) ∧ ((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → 𝑃 ∈ 𝐵) |
62 | 30 | ad4antr 728 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤 ∈ 𝐵) ∧ (ℎ ∈ (II Cn 𝐾) ∧ ((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → (𝐹‘𝑃) = (𝐺‘𝑂)) |
63 | 15 | ad2antrr 722 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤 ∈ 𝐵) ∧ (ℎ ∈ (II Cn 𝐾) ∧ ((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → 𝑎 ∈ (II Cn 𝐾)) |
64 | 22 | ad2antrr 722 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤 ∈ 𝐵) ∧ (ℎ ∈ (II Cn 𝐾) ∧ ((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → (𝑎‘0) = 𝑂) |
65 | | simprl 767 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤 ∈ 𝐵) ∧ (ℎ ∈ (II Cn 𝐾) ∧ ((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → ℎ ∈ (II Cn 𝐾)) |
66 | | simprr1 1219 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤 ∈ 𝐵) ∧ (ℎ ∈ (II Cn 𝐾) ∧ ((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → (ℎ‘0) = 𝑂) |
67 | 40 | ad2antrr 722 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤 ∈ 𝐵) ∧ (ℎ ∈ (II Cn 𝐾) ∧ ((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → (𝑎‘1) = 𝑋) |
68 | | simprr2 1220 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤 ∈ 𝐵) ∧ (ℎ ∈ (II Cn 𝐾) ∧ ((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → (ℎ‘1) = 𝑋) |
69 | 67, 68 | eqtr4d 2781 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤 ∈ 𝐵) ∧ (ℎ ∈ (II Cn 𝐾) ∧ ((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → (𝑎‘1) = (ℎ‘1)) |
70 | 11, 8, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 69 | cvmlift3lem1 33181 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤 ∈ 𝐵) ∧ (ℎ ∈ (II Cn 𝐾) ∧ ((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1)) |
71 | | simprr3 1221 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤 ∈ 𝐵) ∧ (ℎ ∈ (II Cn 𝐾) ∧ ((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) |
72 | 70, 71 | eqtrd 2778 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤 ∈ 𝐵) ∧ (ℎ ∈ (II Cn 𝐾) ∧ ((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) |
73 | 72 | rexlimdvaa 3213 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) ∧ 𝑤 ∈ 𝐵) → (∃ℎ ∈ (II Cn 𝐾)((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤)) |
74 | 73 | ralrimiva 3107 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → ∀𝑤 ∈ 𝐵 (∃ℎ ∈ (II Cn 𝐾)((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤)) |
75 | | eqeq2 2750 |
. . . . . . . . 9
⊢ (𝑧 = ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1) → (((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧 ↔ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1))) |
76 | 75 | 3anbi3d 1440 |
. . . . . . . 8
⊢ (𝑧 = ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1) → (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1)))) |
77 | 76 | rexbidv 3225 |
. . . . . . 7
⊢ (𝑧 = ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1) → (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1)))) |
78 | | eqeq1 2742 |
. . . . . . . . 9
⊢ (𝑧 = ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1) → (𝑧 = 𝑤 ↔ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤)) |
79 | 78 | imbi2d 340 |
. . . . . . . 8
⊢ (𝑧 = ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1) → ((∃ℎ ∈ (II Cn 𝐾)((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → 𝑧 = 𝑤) ↔ (∃ℎ ∈ (II Cn 𝐾)((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) |
80 | 79 | ralbidv 3120 |
. . . . . . 7
⊢ (𝑧 = ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1) → (∀𝑤 ∈ 𝐵 (∃ℎ ∈ (II Cn 𝐾)((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → 𝑧 = 𝑤) ↔ ∀𝑤 ∈ 𝐵 (∃ℎ ∈ (II Cn 𝐾)((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) |
81 | 77, 80 | anbi12d 630 |
. . . . . 6
⊢ (𝑧 = ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1) → ((∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ∧ ∀𝑤 ∈ 𝐵 (∃ℎ ∈ (II Cn 𝐾)((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → 𝑧 = 𝑤)) ↔ (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1)) ∧ ∀𝑤 ∈ 𝐵 (∃ℎ ∈ (II Cn 𝐾)((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤)))) |
82 | 81 | rspcev 3552 |
. . . . 5
⊢
((((℩𝑔
∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1) ∈ 𝐵 ∧ (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1)) ∧ ∀𝑤 ∈ 𝐵 (∃ℎ ∈ (II Cn 𝐾)((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑎) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) → ∃𝑧 ∈ 𝐵 (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ∧ ∀𝑤 ∈ 𝐵 (∃ℎ ∈ (II Cn 𝐾)((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → 𝑧 = 𝑤))) |
83 | 39, 54, 74, 82 | syl12anc 833 |
. . . 4
⊢ (((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → ∃𝑧 ∈ 𝐵 (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ∧ ∀𝑤 ∈ 𝐵 (∃ℎ ∈ (II Cn 𝐾)((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → 𝑧 = 𝑤))) |
84 | | fveq1 6755 |
. . . . . . . . 9
⊢ (𝑓 = ℎ → (𝑓‘0) = (ℎ‘0)) |
85 | 84 | eqeq1d 2740 |
. . . . . . . 8
⊢ (𝑓 = ℎ → ((𝑓‘0) = 𝑂 ↔ (ℎ‘0) = 𝑂)) |
86 | | fveq1 6755 |
. . . . . . . . 9
⊢ (𝑓 = ℎ → (𝑓‘1) = (ℎ‘1)) |
87 | 86 | eqeq1d 2740 |
. . . . . . . 8
⊢ (𝑓 = ℎ → ((𝑓‘1) = 𝑋 ↔ (ℎ‘1) = 𝑋)) |
88 | | coeq2 5756 |
. . . . . . . . . . . . 13
⊢ (𝑓 = ℎ → (𝐺 ∘ 𝑓) = (𝐺 ∘ ℎ)) |
89 | 88 | eqeq2d 2749 |
. . . . . . . . . . . 12
⊢ (𝑓 = ℎ → ((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ↔ (𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ))) |
90 | 89 | anbi1d 629 |
. . . . . . . . . . 11
⊢ (𝑓 = ℎ → (((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃) ↔ ((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))) |
91 | 90 | riotabidv 7214 |
. . . . . . . . . 10
⊢ (𝑓 = ℎ → (℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃)) = (℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))) |
92 | 91 | fveq1d 6758 |
. . . . . . . . 9
⊢ (𝑓 = ℎ → ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1)) |
93 | 92 | eqeq1d 2740 |
. . . . . . . 8
⊢ (𝑓 = ℎ → (((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧 ↔ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)) |
94 | 85, 87, 93 | 3anbi123d 1434 |
. . . . . . 7
⊢ (𝑓 = ℎ → (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))) |
95 | 94 | cbvrexvw 3373 |
. . . . . 6
⊢
(∃𝑓 ∈ (II
Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ∃ℎ ∈ (II Cn 𝐾)((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)) |
96 | | eqeq2 2750 |
. . . . . . . 8
⊢ (𝑧 = 𝑤 → (((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧 ↔ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤)) |
97 | 96 | 3anbi3d 1440 |
. . . . . . 7
⊢ (𝑧 = 𝑤 → (((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) |
98 | 97 | rexbidv 3225 |
. . . . . 6
⊢ (𝑧 = 𝑤 → (∃ℎ ∈ (II Cn 𝐾)((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ∃ℎ ∈ (II Cn 𝐾)((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) |
99 | 95, 98 | syl5bb 282 |
. . . . 5
⊢ (𝑧 = 𝑤 → (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ∃ℎ ∈ (II Cn 𝐾)((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤))) |
100 | 99 | reu8 3663 |
. . . 4
⊢
(∃!𝑧 ∈
𝐵 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ∃𝑧 ∈ 𝐵 (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ∧ ∀𝑤 ∈ 𝐵 (∃ℎ ∈ (II Cn 𝐾)((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑤) → 𝑧 = 𝑤))) |
101 | 83, 100 | sylibr 233 |
. . 3
⊢ (((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑎 ∈ (II Cn 𝐾) ∧ ((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋))) → ∃!𝑧 ∈ 𝐵 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)) |
102 | 101 | rexlimdvaa 3213 |
. 2
⊢ ((𝜑 ∧ 𝑋 ∈ 𝑌) → (∃𝑎 ∈ (II Cn 𝐾)((𝑎‘0) = 𝑂 ∧ (𝑎‘1) = 𝑋) → ∃!𝑧 ∈ 𝐵 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))) |
103 | 10, 102 | mpd 15 |
1
⊢ ((𝜑 ∧ 𝑋 ∈ 𝑌) → ∃!𝑧 ∈ 𝐵 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)) |