Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift3 Structured version   Visualization version   GIF version

Theorem cvmlift3 35300
Description: A general version of cvmlift 35271. If 𝐾 is simply connected and weakly locally path-connected, then there is a unique lift of functions on 𝐾 which commutes with the covering map. (Contributed by Mario Carneiro, 9-Jul-2015.)
Hypotheses
Ref Expression
cvmlift3.b 𝐵 = 𝐶
cvmlift3.y 𝑌 = 𝐾
cvmlift3.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift3.k (𝜑𝐾 ∈ SConn)
cvmlift3.l (𝜑𝐾 ∈ 𝑛-Locally PConn)
cvmlift3.o (𝜑𝑂𝑌)
cvmlift3.g (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
cvmlift3.p (𝜑𝑃𝐵)
cvmlift3.e (𝜑 → (𝐹𝑃) = (𝐺𝑂))
Assertion
Ref Expression
cvmlift3 (𝜑 → ∃!𝑓 ∈ (𝐾 Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃))
Distinct variable groups:   𝑓,𝐽   𝑓,𝐹   𝐵,𝑓   𝑓,𝐺   𝐶,𝑓   𝜑,𝑓   𝑓,𝐾   𝑃,𝑓   𝑓,𝑂   𝑓,𝑌

Proof of Theorem cvmlift3
Dummy variables 𝑏 𝑐 𝑑 𝑘 𝑠 𝑧 𝑔 𝑎 𝑢 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmlift3.b . . 3 𝐵 = 𝐶
2 cvmlift3.y . . 3 𝑌 = 𝐾
3 cvmlift3.f . . 3 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
4 cvmlift3.k . . 3 (𝜑𝐾 ∈ SConn)
5 cvmlift3.l . . 3 (𝜑𝐾 ∈ 𝑛-Locally PConn)
6 cvmlift3.o . . 3 (𝜑𝑂𝑌)
7 cvmlift3.g . . 3 (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
8 cvmlift3.p . . 3 (𝜑𝑃𝐵)
9 cvmlift3.e . . 3 (𝜑 → (𝐹𝑃) = (𝐺𝑂))
10 eqeq2 2741 . . . . . . . 8 (𝑏 = 𝑧 → (((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑏 ↔ ((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑧))
11103anbi3d 1444 . . . . . . 7 (𝑏 = 𝑧 → (((𝑐‘0) = 𝑂 ∧ (𝑐‘1) = 𝑎 ∧ ((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑏) ↔ ((𝑐‘0) = 𝑂 ∧ (𝑐‘1) = 𝑎 ∧ ((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑧)))
1211rexbidv 3153 . . . . . 6 (𝑏 = 𝑧 → (∃𝑐 ∈ (II Cn 𝐾)((𝑐‘0) = 𝑂 ∧ (𝑐‘1) = 𝑎 ∧ ((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑏) ↔ ∃𝑐 ∈ (II Cn 𝐾)((𝑐‘0) = 𝑂 ∧ (𝑐‘1) = 𝑎 ∧ ((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑧)))
1312cbvriotavw 7320 . . . . 5 (𝑏𝐵𝑐 ∈ (II Cn 𝐾)((𝑐‘0) = 𝑂 ∧ (𝑐‘1) = 𝑎 ∧ ((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑏)) = (𝑧𝐵𝑐 ∈ (II Cn 𝐾)((𝑐‘0) = 𝑂 ∧ (𝑐‘1) = 𝑎 ∧ ((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑧))
14 fveq1 6825 . . . . . . . . . 10 (𝑐 = 𝑓 → (𝑐‘0) = (𝑓‘0))
1514eqeq1d 2731 . . . . . . . . 9 (𝑐 = 𝑓 → ((𝑐‘0) = 𝑂 ↔ (𝑓‘0) = 𝑂))
16 fveq1 6825 . . . . . . . . . 10 (𝑐 = 𝑓 → (𝑐‘1) = (𝑓‘1))
1716eqeq1d 2731 . . . . . . . . 9 (𝑐 = 𝑓 → ((𝑐‘1) = 𝑎 ↔ (𝑓‘1) = 𝑎))
18 coeq2 5805 . . . . . . . . . . . . . . 15 (𝑑 = 𝑔 → (𝐹𝑑) = (𝐹𝑔))
1918eqeq1d 2731 . . . . . . . . . . . . . 14 (𝑑 = 𝑔 → ((𝐹𝑑) = (𝐺𝑐) ↔ (𝐹𝑔) = (𝐺𝑐)))
20 fveq1 6825 . . . . . . . . . . . . . . 15 (𝑑 = 𝑔 → (𝑑‘0) = (𝑔‘0))
2120eqeq1d 2731 . . . . . . . . . . . . . 14 (𝑑 = 𝑔 → ((𝑑‘0) = 𝑃 ↔ (𝑔‘0) = 𝑃))
2219, 21anbi12d 632 . . . . . . . . . . . . 13 (𝑑 = 𝑔 → (((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃) ↔ ((𝐹𝑔) = (𝐺𝑐) ∧ (𝑔‘0) = 𝑃)))
2322cbvriotavw 7320 . . . . . . . . . . . 12 (𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃)) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑐) ∧ (𝑔‘0) = 𝑃))
24 coeq2 5805 . . . . . . . . . . . . . . 15 (𝑐 = 𝑓 → (𝐺𝑐) = (𝐺𝑓))
2524eqeq2d 2740 . . . . . . . . . . . . . 14 (𝑐 = 𝑓 → ((𝐹𝑔) = (𝐺𝑐) ↔ (𝐹𝑔) = (𝐺𝑓)))
2625anbi1d 631 . . . . . . . . . . . . 13 (𝑐 = 𝑓 → (((𝐹𝑔) = (𝐺𝑐) ∧ (𝑔‘0) = 𝑃) ↔ ((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)))
2726riotabidv 7312 . . . . . . . . . . . 12 (𝑐 = 𝑓 → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑐) ∧ (𝑔‘0) = 𝑃)) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)))
2823, 27eqtrid 2776 . . . . . . . . . . 11 (𝑐 = 𝑓 → (𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃)) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)))
2928fveq1d 6828 . . . . . . . . . 10 (𝑐 = 𝑓 → ((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1))
3029eqeq1d 2731 . . . . . . . . 9 (𝑐 = 𝑓 → (((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑧 ↔ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))
3115, 17, 303anbi123d 1438 . . . . . . . 8 (𝑐 = 𝑓 → (((𝑐‘0) = 𝑂 ∧ (𝑐‘1) = 𝑎 ∧ ((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑧) ↔ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑎 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
3231cbvrexvw 3208 . . . . . . 7 (∃𝑐 ∈ (II Cn 𝐾)((𝑐‘0) = 𝑂 ∧ (𝑐‘1) = 𝑎 ∧ ((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑧) ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑎 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))
33 eqeq2 2741 . . . . . . . . 9 (𝑎 = 𝑥 → ((𝑓‘1) = 𝑎 ↔ (𝑓‘1) = 𝑥))
34333anbi2d 1443 . . . . . . . 8 (𝑎 = 𝑥 → (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑎 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
3534rexbidv 3153 . . . . . . 7 (𝑎 = 𝑥 → (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑎 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
3632, 35bitrid 283 . . . . . 6 (𝑎 = 𝑥 → (∃𝑐 ∈ (II Cn 𝐾)((𝑐‘0) = 𝑂 ∧ (𝑐‘1) = 𝑎 ∧ ((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑧) ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
3736riotabidv 7312 . . . . 5 (𝑎 = 𝑥 → (𝑧𝐵𝑐 ∈ (II Cn 𝐾)((𝑐‘0) = 𝑂 ∧ (𝑐‘1) = 𝑎 ∧ ((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑧)) = (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
3813, 37eqtrid 2776 . . . 4 (𝑎 = 𝑥 → (𝑏𝐵𝑐 ∈ (II Cn 𝐾)((𝑐‘0) = 𝑂 ∧ (𝑐‘1) = 𝑎 ∧ ((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑏)) = (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
3938cbvmptv 5199 . . 3 (𝑎𝑌 ↦ (𝑏𝐵𝑐 ∈ (II Cn 𝐾)((𝑐‘0) = 𝑂 ∧ (𝑐‘1) = 𝑎 ∧ ((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑏))) = (𝑥𝑌 ↦ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
40 eqid 2729 . . . 4 (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))}) = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})
4140cvmscbv 35230 . . 3 (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))}) = (𝑎𝐽 ↦ {𝑏 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑏 = (𝐹𝑎) ∧ ∀𝑣𝑏 (∀𝑢 ∈ (𝑏 ∖ {𝑣})(𝑣𝑢) = ∅ ∧ (𝐹𝑣) ∈ ((𝐶t 𝑣)Homeo(𝐽t 𝑎))))})
421, 2, 3, 4, 5, 6, 7, 8, 9, 39, 41cvmlift3lem9 35299 . 2 (𝜑 → ∃𝑓 ∈ (𝐾 Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃))
43 sconnpconn 35199 . . . 4 (𝐾 ∈ SConn → 𝐾 ∈ PConn)
44 pconnconn 35203 . . . 4 (𝐾 ∈ PConn → 𝐾 ∈ Conn)
454, 43, 443syl 18 . . 3 (𝜑𝐾 ∈ Conn)
46 pconnconn 35203 . . . . . 6 (𝑥 ∈ PConn → 𝑥 ∈ Conn)
4746ssriv 3941 . . . . 5 PConn ⊆ Conn
48 nllyss 23383 . . . . 5 (PConn ⊆ Conn → 𝑛-Locally PConn ⊆ 𝑛-Locally Conn)
4947, 48ax-mp 5 . . . 4 𝑛-Locally PConn ⊆ 𝑛-Locally Conn
5049, 5sselid 3935 . . 3 (𝜑𝐾 ∈ 𝑛-Locally Conn)
511, 2, 3, 45, 50, 6, 7, 8, 9cvmliftmo 35256 . 2 (𝜑 → ∃*𝑓 ∈ (𝐾 Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃))
52 reu5 3347 . 2 (∃!𝑓 ∈ (𝐾 Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃) ↔ (∃𝑓 ∈ (𝐾 Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃) ∧ ∃*𝑓 ∈ (𝐾 Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃)))
5342, 51, 52sylanbrc 583 1 (𝜑 → ∃!𝑓 ∈ (𝐾 Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  ∃!wreu 3343  ∃*wrmo 3344  {crab 3396  cdif 3902  cin 3904  wss 3905  c0 4286  𝒫 cpw 4553  {csn 4579   cuni 4861  cmpt 5176  ccnv 5622  cres 5625  cima 5626  ccom 5627  cfv 6486  crio 7309  (class class class)co 7353  0cc0 11028  1c1 11029  t crest 17342   Cn ccn 23127  Conncconn 23314  𝑛-Locally cnlly 23368  Homeochmeo 23656  IIcii 24784  PConncpconn 35191  SConncsconn 35192   CovMap ccvm 35227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-ec 8634  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-sum 15612  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-cn 23130  df-cnp 23131  df-cmp 23290  df-conn 23315  df-lly 23369  df-nlly 23370  df-tx 23465  df-hmeo 23658  df-xms 24224  df-ms 24225  df-tms 24226  df-ii 24786  df-cncf 24787  df-htpy 24885  df-phtpy 24886  df-phtpc 24907  df-pco 24921  df-pconn 35193  df-sconn 35194  df-cvm 35228
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator