Step | Hyp | Ref
| Expression |
1 | | cvmlift3.b |
. . 3
⊢ 𝐵 = ∪
𝐶 |
2 | | cvmlift3.y |
. . 3
⊢ 𝑌 = ∪
𝐾 |
3 | | cvmlift3.f |
. . 3
⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
4 | | cvmlift3.k |
. . 3
⊢ (𝜑 → 𝐾 ∈ SConn) |
5 | | cvmlift3.l |
. . 3
⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally
PConn) |
6 | | cvmlift3.o |
. . 3
⊢ (𝜑 → 𝑂 ∈ 𝑌) |
7 | | cvmlift3.g |
. . 3
⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐽)) |
8 | | cvmlift3.p |
. . 3
⊢ (𝜑 → 𝑃 ∈ 𝐵) |
9 | | cvmlift3.e |
. . 3
⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘𝑂)) |
10 | | eqeq2 2750 |
. . . . . . . 8
⊢ (𝑏 = 𝑧 → (((℩𝑑 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑑) = (𝐺 ∘ 𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑏 ↔ ((℩𝑑 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑑) = (𝐺 ∘ 𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑧)) |
11 | 10 | 3anbi3d 1441 |
. . . . . . 7
⊢ (𝑏 = 𝑧 → (((𝑐‘0) = 𝑂 ∧ (𝑐‘1) = 𝑎 ∧ ((℩𝑑 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑑) = (𝐺 ∘ 𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑏) ↔ ((𝑐‘0) = 𝑂 ∧ (𝑐‘1) = 𝑎 ∧ ((℩𝑑 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑑) = (𝐺 ∘ 𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑧))) |
12 | 11 | rexbidv 3226 |
. . . . . 6
⊢ (𝑏 = 𝑧 → (∃𝑐 ∈ (II Cn 𝐾)((𝑐‘0) = 𝑂 ∧ (𝑐‘1) = 𝑎 ∧ ((℩𝑑 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑑) = (𝐺 ∘ 𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑏) ↔ ∃𝑐 ∈ (II Cn 𝐾)((𝑐‘0) = 𝑂 ∧ (𝑐‘1) = 𝑎 ∧ ((℩𝑑 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑑) = (𝐺 ∘ 𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑧))) |
13 | 12 | cbvriotavw 7242 |
. . . . 5
⊢
(℩𝑏
∈ 𝐵 ∃𝑐 ∈ (II Cn 𝐾)((𝑐‘0) = 𝑂 ∧ (𝑐‘1) = 𝑎 ∧ ((℩𝑑 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑑) = (𝐺 ∘ 𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑏)) = (℩𝑧 ∈ 𝐵 ∃𝑐 ∈ (II Cn 𝐾)((𝑐‘0) = 𝑂 ∧ (𝑐‘1) = 𝑎 ∧ ((℩𝑑 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑑) = (𝐺 ∘ 𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑧)) |
14 | | fveq1 6773 |
. . . . . . . . . 10
⊢ (𝑐 = 𝑓 → (𝑐‘0) = (𝑓‘0)) |
15 | 14 | eqeq1d 2740 |
. . . . . . . . 9
⊢ (𝑐 = 𝑓 → ((𝑐‘0) = 𝑂 ↔ (𝑓‘0) = 𝑂)) |
16 | | fveq1 6773 |
. . . . . . . . . 10
⊢ (𝑐 = 𝑓 → (𝑐‘1) = (𝑓‘1)) |
17 | 16 | eqeq1d 2740 |
. . . . . . . . 9
⊢ (𝑐 = 𝑓 → ((𝑐‘1) = 𝑎 ↔ (𝑓‘1) = 𝑎)) |
18 | | coeq2 5767 |
. . . . . . . . . . . . . . 15
⊢ (𝑑 = 𝑔 → (𝐹 ∘ 𝑑) = (𝐹 ∘ 𝑔)) |
19 | 18 | eqeq1d 2740 |
. . . . . . . . . . . . . 14
⊢ (𝑑 = 𝑔 → ((𝐹 ∘ 𝑑) = (𝐺 ∘ 𝑐) ↔ (𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑐))) |
20 | | fveq1 6773 |
. . . . . . . . . . . . . . 15
⊢ (𝑑 = 𝑔 → (𝑑‘0) = (𝑔‘0)) |
21 | 20 | eqeq1d 2740 |
. . . . . . . . . . . . . 14
⊢ (𝑑 = 𝑔 → ((𝑑‘0) = 𝑃 ↔ (𝑔‘0) = 𝑃)) |
22 | 19, 21 | anbi12d 631 |
. . . . . . . . . . . . 13
⊢ (𝑑 = 𝑔 → (((𝐹 ∘ 𝑑) = (𝐺 ∘ 𝑐) ∧ (𝑑‘0) = 𝑃) ↔ ((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑐) ∧ (𝑔‘0) = 𝑃))) |
23 | 22 | cbvriotavw 7242 |
. . . . . . . . . . . 12
⊢
(℩𝑑
∈ (II Cn 𝐶)((𝐹 ∘ 𝑑) = (𝐺 ∘ 𝑐) ∧ (𝑑‘0) = 𝑃)) = (℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑐) ∧ (𝑔‘0) = 𝑃)) |
24 | | coeq2 5767 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 = 𝑓 → (𝐺 ∘ 𝑐) = (𝐺 ∘ 𝑓)) |
25 | 24 | eqeq2d 2749 |
. . . . . . . . . . . . . 14
⊢ (𝑐 = 𝑓 → ((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑐) ↔ (𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓))) |
26 | 25 | anbi1d 630 |
. . . . . . . . . . . . 13
⊢ (𝑐 = 𝑓 → (((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑐) ∧ (𝑔‘0) = 𝑃) ↔ ((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))) |
27 | 26 | riotabidv 7234 |
. . . . . . . . . . . 12
⊢ (𝑐 = 𝑓 → (℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑐) ∧ (𝑔‘0) = 𝑃)) = (℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))) |
28 | 23, 27 | eqtrid 2790 |
. . . . . . . . . . 11
⊢ (𝑐 = 𝑓 → (℩𝑑 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑑) = (𝐺 ∘ 𝑐) ∧ (𝑑‘0) = 𝑃)) = (℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))) |
29 | 28 | fveq1d 6776 |
. . . . . . . . . 10
⊢ (𝑐 = 𝑓 → ((℩𝑑 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑑) = (𝐺 ∘ 𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1)) |
30 | 29 | eqeq1d 2740 |
. . . . . . . . 9
⊢ (𝑐 = 𝑓 → (((℩𝑑 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑑) = (𝐺 ∘ 𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑧 ↔ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)) |
31 | 15, 17, 30 | 3anbi123d 1435 |
. . . . . . . 8
⊢ (𝑐 = 𝑓 → (((𝑐‘0) = 𝑂 ∧ (𝑐‘1) = 𝑎 ∧ ((℩𝑑 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑑) = (𝐺 ∘ 𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑧) ↔ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑎 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))) |
32 | 31 | cbvrexvw 3384 |
. . . . . . 7
⊢
(∃𝑐 ∈ (II
Cn 𝐾)((𝑐‘0) = 𝑂 ∧ (𝑐‘1) = 𝑎 ∧ ((℩𝑑 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑑) = (𝐺 ∘ 𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑧) ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑎 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)) |
33 | | eqeq2 2750 |
. . . . . . . . 9
⊢ (𝑎 = 𝑥 → ((𝑓‘1) = 𝑎 ↔ (𝑓‘1) = 𝑥)) |
34 | 33 | 3anbi2d 1440 |
. . . . . . . 8
⊢ (𝑎 = 𝑥 → (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑎 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))) |
35 | 34 | rexbidv 3226 |
. . . . . . 7
⊢ (𝑎 = 𝑥 → (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑎 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))) |
36 | 32, 35 | syl5bb 283 |
. . . . . 6
⊢ (𝑎 = 𝑥 → (∃𝑐 ∈ (II Cn 𝐾)((𝑐‘0) = 𝑂 ∧ (𝑐‘1) = 𝑎 ∧ ((℩𝑑 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑑) = (𝐺 ∘ 𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑧) ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))) |
37 | 36 | riotabidv 7234 |
. . . . 5
⊢ (𝑎 = 𝑥 → (℩𝑧 ∈ 𝐵 ∃𝑐 ∈ (II Cn 𝐾)((𝑐‘0) = 𝑂 ∧ (𝑐‘1) = 𝑎 ∧ ((℩𝑑 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑑) = (𝐺 ∘ 𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑧)) = (℩𝑧 ∈ 𝐵 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))) |
38 | 13, 37 | eqtrid 2790 |
. . . 4
⊢ (𝑎 = 𝑥 → (℩𝑏 ∈ 𝐵 ∃𝑐 ∈ (II Cn 𝐾)((𝑐‘0) = 𝑂 ∧ (𝑐‘1) = 𝑎 ∧ ((℩𝑑 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑑) = (𝐺 ∘ 𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑏)) = (℩𝑧 ∈ 𝐵 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))) |
39 | 38 | cbvmptv 5187 |
. . 3
⊢ (𝑎 ∈ 𝑌 ↦ (℩𝑏 ∈ 𝐵 ∃𝑐 ∈ (II Cn 𝐾)((𝑐‘0) = 𝑂 ∧ (𝑐‘1) = 𝑎 ∧ ((℩𝑑 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑑) = (𝐺 ∘ 𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑏))) = (𝑥 ∈ 𝑌 ↦ (℩𝑧 ∈ 𝐵 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))) |
40 | | eqid 2738 |
. . . 4
⊢ (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑘) ∧ ∀𝑐 ∈ 𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘))))}) = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑘) ∧ ∀𝑐 ∈ 𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘))))}) |
41 | 40 | cvmscbv 33220 |
. . 3
⊢ (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑘) ∧ ∀𝑐 ∈ 𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘))))}) = (𝑎 ∈ 𝐽 ↦ {𝑏 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑏 =
(◡𝐹 “ 𝑎) ∧ ∀𝑣 ∈ 𝑏 (∀𝑢 ∈ (𝑏 ∖ {𝑣})(𝑣 ∩ 𝑢) = ∅ ∧ (𝐹 ↾ 𝑣) ∈ ((𝐶 ↾t 𝑣)Homeo(𝐽 ↾t 𝑎))))}) |
42 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 39,
41 | cvmlift3lem9 33289 |
. 2
⊢ (𝜑 → ∃𝑓 ∈ (𝐾 Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘𝑂) = 𝑃)) |
43 | | sconnpconn 33189 |
. . . 4
⊢ (𝐾 ∈ SConn → 𝐾 ∈ PConn) |
44 | | pconnconn 33193 |
. . . 4
⊢ (𝐾 ∈ PConn → 𝐾 ∈ Conn) |
45 | 4, 43, 44 | 3syl 18 |
. . 3
⊢ (𝜑 → 𝐾 ∈ Conn) |
46 | | pconnconn 33193 |
. . . . . 6
⊢ (𝑥 ∈ PConn → 𝑥 ∈ Conn) |
47 | 46 | ssriv 3925 |
. . . . 5
⊢ PConn
⊆ Conn |
48 | | nllyss 22631 |
. . . . 5
⊢ (PConn
⊆ Conn → 𝑛-Locally PConn ⊆ 𝑛-Locally
Conn) |
49 | 47, 48 | ax-mp 5 |
. . . 4
⊢
𝑛-Locally PConn ⊆ 𝑛-Locally Conn |
50 | 49, 5 | sselid 3919 |
. . 3
⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally
Conn) |
51 | 1, 2, 3, 45, 50, 6, 7, 8, 9 | cvmliftmo 33246 |
. 2
⊢ (𝜑 → ∃*𝑓 ∈ (𝐾 Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘𝑂) = 𝑃)) |
52 | | reu5 3361 |
. 2
⊢
(∃!𝑓 ∈
(𝐾 Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘𝑂) = 𝑃) ↔ (∃𝑓 ∈ (𝐾 Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘𝑂) = 𝑃) ∧ ∃*𝑓 ∈ (𝐾 Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘𝑂) = 𝑃))) |
53 | 42, 51, 52 | sylanbrc 583 |
1
⊢ (𝜑 → ∃!𝑓 ∈ (𝐾 Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘𝑂) = 𝑃)) |