Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift3 Structured version   Visualization version   GIF version

Theorem cvmlift3 35313
Description: A general version of cvmlift 35284. If 𝐾 is simply connected and weakly locally path-connected, then there is a unique lift of functions on 𝐾 which commutes with the covering map. (Contributed by Mario Carneiro, 9-Jul-2015.)
Hypotheses
Ref Expression
cvmlift3.b 𝐵 = 𝐶
cvmlift3.y 𝑌 = 𝐾
cvmlift3.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift3.k (𝜑𝐾 ∈ SConn)
cvmlift3.l (𝜑𝐾 ∈ 𝑛-Locally PConn)
cvmlift3.o (𝜑𝑂𝑌)
cvmlift3.g (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
cvmlift3.p (𝜑𝑃𝐵)
cvmlift3.e (𝜑 → (𝐹𝑃) = (𝐺𝑂))
Assertion
Ref Expression
cvmlift3 (𝜑 → ∃!𝑓 ∈ (𝐾 Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃))
Distinct variable groups:   𝑓,𝐽   𝑓,𝐹   𝐵,𝑓   𝑓,𝐺   𝐶,𝑓   𝜑,𝑓   𝑓,𝐾   𝑃,𝑓   𝑓,𝑂   𝑓,𝑌

Proof of Theorem cvmlift3
Dummy variables 𝑏 𝑐 𝑑 𝑘 𝑠 𝑧 𝑔 𝑎 𝑢 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmlift3.b . . 3 𝐵 = 𝐶
2 cvmlift3.y . . 3 𝑌 = 𝐾
3 cvmlift3.f . . 3 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
4 cvmlift3.k . . 3 (𝜑𝐾 ∈ SConn)
5 cvmlift3.l . . 3 (𝜑𝐾 ∈ 𝑛-Locally PConn)
6 cvmlift3.o . . 3 (𝜑𝑂𝑌)
7 cvmlift3.g . . 3 (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
8 cvmlift3.p . . 3 (𝜑𝑃𝐵)
9 cvmlift3.e . . 3 (𝜑 → (𝐹𝑃) = (𝐺𝑂))
10 eqeq2 2747 . . . . . . . 8 (𝑏 = 𝑧 → (((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑏 ↔ ((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑧))
11103anbi3d 1441 . . . . . . 7 (𝑏 = 𝑧 → (((𝑐‘0) = 𝑂 ∧ (𝑐‘1) = 𝑎 ∧ ((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑏) ↔ ((𝑐‘0) = 𝑂 ∧ (𝑐‘1) = 𝑎 ∧ ((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑧)))
1211rexbidv 3177 . . . . . 6 (𝑏 = 𝑧 → (∃𝑐 ∈ (II Cn 𝐾)((𝑐‘0) = 𝑂 ∧ (𝑐‘1) = 𝑎 ∧ ((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑏) ↔ ∃𝑐 ∈ (II Cn 𝐾)((𝑐‘0) = 𝑂 ∧ (𝑐‘1) = 𝑎 ∧ ((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑧)))
1312cbvriotavw 7398 . . . . 5 (𝑏𝐵𝑐 ∈ (II Cn 𝐾)((𝑐‘0) = 𝑂 ∧ (𝑐‘1) = 𝑎 ∧ ((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑏)) = (𝑧𝐵𝑐 ∈ (II Cn 𝐾)((𝑐‘0) = 𝑂 ∧ (𝑐‘1) = 𝑎 ∧ ((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑧))
14 fveq1 6906 . . . . . . . . . 10 (𝑐 = 𝑓 → (𝑐‘0) = (𝑓‘0))
1514eqeq1d 2737 . . . . . . . . 9 (𝑐 = 𝑓 → ((𝑐‘0) = 𝑂 ↔ (𝑓‘0) = 𝑂))
16 fveq1 6906 . . . . . . . . . 10 (𝑐 = 𝑓 → (𝑐‘1) = (𝑓‘1))
1716eqeq1d 2737 . . . . . . . . 9 (𝑐 = 𝑓 → ((𝑐‘1) = 𝑎 ↔ (𝑓‘1) = 𝑎))
18 coeq2 5872 . . . . . . . . . . . . . . 15 (𝑑 = 𝑔 → (𝐹𝑑) = (𝐹𝑔))
1918eqeq1d 2737 . . . . . . . . . . . . . 14 (𝑑 = 𝑔 → ((𝐹𝑑) = (𝐺𝑐) ↔ (𝐹𝑔) = (𝐺𝑐)))
20 fveq1 6906 . . . . . . . . . . . . . . 15 (𝑑 = 𝑔 → (𝑑‘0) = (𝑔‘0))
2120eqeq1d 2737 . . . . . . . . . . . . . 14 (𝑑 = 𝑔 → ((𝑑‘0) = 𝑃 ↔ (𝑔‘0) = 𝑃))
2219, 21anbi12d 632 . . . . . . . . . . . . 13 (𝑑 = 𝑔 → (((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃) ↔ ((𝐹𝑔) = (𝐺𝑐) ∧ (𝑔‘0) = 𝑃)))
2322cbvriotavw 7398 . . . . . . . . . . . 12 (𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃)) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑐) ∧ (𝑔‘0) = 𝑃))
24 coeq2 5872 . . . . . . . . . . . . . . 15 (𝑐 = 𝑓 → (𝐺𝑐) = (𝐺𝑓))
2524eqeq2d 2746 . . . . . . . . . . . . . 14 (𝑐 = 𝑓 → ((𝐹𝑔) = (𝐺𝑐) ↔ (𝐹𝑔) = (𝐺𝑓)))
2625anbi1d 631 . . . . . . . . . . . . 13 (𝑐 = 𝑓 → (((𝐹𝑔) = (𝐺𝑐) ∧ (𝑔‘0) = 𝑃) ↔ ((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)))
2726riotabidv 7390 . . . . . . . . . . . 12 (𝑐 = 𝑓 → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑐) ∧ (𝑔‘0) = 𝑃)) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)))
2823, 27eqtrid 2787 . . . . . . . . . . 11 (𝑐 = 𝑓 → (𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃)) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)))
2928fveq1d 6909 . . . . . . . . . 10 (𝑐 = 𝑓 → ((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1))
3029eqeq1d 2737 . . . . . . . . 9 (𝑐 = 𝑓 → (((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑧 ↔ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))
3115, 17, 303anbi123d 1435 . . . . . . . 8 (𝑐 = 𝑓 → (((𝑐‘0) = 𝑂 ∧ (𝑐‘1) = 𝑎 ∧ ((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑧) ↔ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑎 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
3231cbvrexvw 3236 . . . . . . 7 (∃𝑐 ∈ (II Cn 𝐾)((𝑐‘0) = 𝑂 ∧ (𝑐‘1) = 𝑎 ∧ ((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑧) ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑎 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))
33 eqeq2 2747 . . . . . . . . 9 (𝑎 = 𝑥 → ((𝑓‘1) = 𝑎 ↔ (𝑓‘1) = 𝑥))
34333anbi2d 1440 . . . . . . . 8 (𝑎 = 𝑥 → (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑎 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
3534rexbidv 3177 . . . . . . 7 (𝑎 = 𝑥 → (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑎 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
3632, 35bitrid 283 . . . . . 6 (𝑎 = 𝑥 → (∃𝑐 ∈ (II Cn 𝐾)((𝑐‘0) = 𝑂 ∧ (𝑐‘1) = 𝑎 ∧ ((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑧) ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
3736riotabidv 7390 . . . . 5 (𝑎 = 𝑥 → (𝑧𝐵𝑐 ∈ (II Cn 𝐾)((𝑐‘0) = 𝑂 ∧ (𝑐‘1) = 𝑎 ∧ ((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑧)) = (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
3813, 37eqtrid 2787 . . . 4 (𝑎 = 𝑥 → (𝑏𝐵𝑐 ∈ (II Cn 𝐾)((𝑐‘0) = 𝑂 ∧ (𝑐‘1) = 𝑎 ∧ ((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑏)) = (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
3938cbvmptv 5261 . . 3 (𝑎𝑌 ↦ (𝑏𝐵𝑐 ∈ (II Cn 𝐾)((𝑐‘0) = 𝑂 ∧ (𝑐‘1) = 𝑎 ∧ ((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑏))) = (𝑥𝑌 ↦ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
40 eqid 2735 . . . 4 (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))}) = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})
4140cvmscbv 35243 . . 3 (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))}) = (𝑎𝐽 ↦ {𝑏 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑏 = (𝐹𝑎) ∧ ∀𝑣𝑏 (∀𝑢 ∈ (𝑏 ∖ {𝑣})(𝑣𝑢) = ∅ ∧ (𝐹𝑣) ∈ ((𝐶t 𝑣)Homeo(𝐽t 𝑎))))})
421, 2, 3, 4, 5, 6, 7, 8, 9, 39, 41cvmlift3lem9 35312 . 2 (𝜑 → ∃𝑓 ∈ (𝐾 Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃))
43 sconnpconn 35212 . . . 4 (𝐾 ∈ SConn → 𝐾 ∈ PConn)
44 pconnconn 35216 . . . 4 (𝐾 ∈ PConn → 𝐾 ∈ Conn)
454, 43, 443syl 18 . . 3 (𝜑𝐾 ∈ Conn)
46 pconnconn 35216 . . . . . 6 (𝑥 ∈ PConn → 𝑥 ∈ Conn)
4746ssriv 3999 . . . . 5 PConn ⊆ Conn
48 nllyss 23504 . . . . 5 (PConn ⊆ Conn → 𝑛-Locally PConn ⊆ 𝑛-Locally Conn)
4947, 48ax-mp 5 . . . 4 𝑛-Locally PConn ⊆ 𝑛-Locally Conn
5049, 5sselid 3993 . . 3 (𝜑𝐾 ∈ 𝑛-Locally Conn)
511, 2, 3, 45, 50, 6, 7, 8, 9cvmliftmo 35269 . 2 (𝜑 → ∃*𝑓 ∈ (𝐾 Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃))
52 reu5 3380 . 2 (∃!𝑓 ∈ (𝐾 Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃) ↔ (∃𝑓 ∈ (𝐾 Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃) ∧ ∃*𝑓 ∈ (𝐾 Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃)))
5342, 51, 52sylanbrc 583 1 (𝜑 → ∃!𝑓 ∈ (𝐾 Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  wrex 3068  ∃!wreu 3376  ∃*wrmo 3377  {crab 3433  cdif 3960  cin 3962  wss 3963  c0 4339  𝒫 cpw 4605  {csn 4631   cuni 4912  cmpt 5231  ccnv 5688  cres 5691  cima 5692  ccom 5693  cfv 6563  crio 7387  (class class class)co 7431  0cc0 11153  1c1 11154  t crest 17467   Cn ccn 23248  Conncconn 23435  𝑛-Locally cnlly 23489  Homeochmeo 23777  IIcii 24915  PConncpconn 35204  SConncsconn 35205   CovMap ccvm 35240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-ec 8746  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-cn 23251  df-cnp 23252  df-cmp 23411  df-conn 23436  df-lly 23490  df-nlly 23491  df-tx 23586  df-hmeo 23779  df-xms 24346  df-ms 24347  df-tms 24348  df-ii 24917  df-cncf 24918  df-htpy 25016  df-phtpy 25017  df-phtpc 25038  df-pco 25052  df-pconn 35206  df-sconn 35207  df-cvm 35241
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator