Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift3 Structured version   Visualization version   GIF version

Theorem cvmlift3 33190
Description: A general version of cvmlift 33161. If 𝐾 is simply connected and weakly locally path-connected, then there is a unique lift of functions on 𝐾 which commutes with the covering map. (Contributed by Mario Carneiro, 9-Jul-2015.)
Hypotheses
Ref Expression
cvmlift3.b 𝐵 = 𝐶
cvmlift3.y 𝑌 = 𝐾
cvmlift3.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift3.k (𝜑𝐾 ∈ SConn)
cvmlift3.l (𝜑𝐾 ∈ 𝑛-Locally PConn)
cvmlift3.o (𝜑𝑂𝑌)
cvmlift3.g (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
cvmlift3.p (𝜑𝑃𝐵)
cvmlift3.e (𝜑 → (𝐹𝑃) = (𝐺𝑂))
Assertion
Ref Expression
cvmlift3 (𝜑 → ∃!𝑓 ∈ (𝐾 Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃))
Distinct variable groups:   𝑓,𝐽   𝑓,𝐹   𝐵,𝑓   𝑓,𝐺   𝐶,𝑓   𝜑,𝑓   𝑓,𝐾   𝑃,𝑓   𝑓,𝑂   𝑓,𝑌

Proof of Theorem cvmlift3
Dummy variables 𝑏 𝑐 𝑑 𝑘 𝑠 𝑧 𝑔 𝑎 𝑢 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmlift3.b . . 3 𝐵 = 𝐶
2 cvmlift3.y . . 3 𝑌 = 𝐾
3 cvmlift3.f . . 3 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
4 cvmlift3.k . . 3 (𝜑𝐾 ∈ SConn)
5 cvmlift3.l . . 3 (𝜑𝐾 ∈ 𝑛-Locally PConn)
6 cvmlift3.o . . 3 (𝜑𝑂𝑌)
7 cvmlift3.g . . 3 (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
8 cvmlift3.p . . 3 (𝜑𝑃𝐵)
9 cvmlift3.e . . 3 (𝜑 → (𝐹𝑃) = (𝐺𝑂))
10 eqeq2 2750 . . . . . . . 8 (𝑏 = 𝑧 → (((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑏 ↔ ((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑧))
11103anbi3d 1440 . . . . . . 7 (𝑏 = 𝑧 → (((𝑐‘0) = 𝑂 ∧ (𝑐‘1) = 𝑎 ∧ ((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑏) ↔ ((𝑐‘0) = 𝑂 ∧ (𝑐‘1) = 𝑎 ∧ ((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑧)))
1211rexbidv 3225 . . . . . 6 (𝑏 = 𝑧 → (∃𝑐 ∈ (II Cn 𝐾)((𝑐‘0) = 𝑂 ∧ (𝑐‘1) = 𝑎 ∧ ((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑏) ↔ ∃𝑐 ∈ (II Cn 𝐾)((𝑐‘0) = 𝑂 ∧ (𝑐‘1) = 𝑎 ∧ ((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑧)))
1312cbvriotavw 7222 . . . . 5 (𝑏𝐵𝑐 ∈ (II Cn 𝐾)((𝑐‘0) = 𝑂 ∧ (𝑐‘1) = 𝑎 ∧ ((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑏)) = (𝑧𝐵𝑐 ∈ (II Cn 𝐾)((𝑐‘0) = 𝑂 ∧ (𝑐‘1) = 𝑎 ∧ ((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑧))
14 fveq1 6755 . . . . . . . . . 10 (𝑐 = 𝑓 → (𝑐‘0) = (𝑓‘0))
1514eqeq1d 2740 . . . . . . . . 9 (𝑐 = 𝑓 → ((𝑐‘0) = 𝑂 ↔ (𝑓‘0) = 𝑂))
16 fveq1 6755 . . . . . . . . . 10 (𝑐 = 𝑓 → (𝑐‘1) = (𝑓‘1))
1716eqeq1d 2740 . . . . . . . . 9 (𝑐 = 𝑓 → ((𝑐‘1) = 𝑎 ↔ (𝑓‘1) = 𝑎))
18 coeq2 5756 . . . . . . . . . . . . . . 15 (𝑑 = 𝑔 → (𝐹𝑑) = (𝐹𝑔))
1918eqeq1d 2740 . . . . . . . . . . . . . 14 (𝑑 = 𝑔 → ((𝐹𝑑) = (𝐺𝑐) ↔ (𝐹𝑔) = (𝐺𝑐)))
20 fveq1 6755 . . . . . . . . . . . . . . 15 (𝑑 = 𝑔 → (𝑑‘0) = (𝑔‘0))
2120eqeq1d 2740 . . . . . . . . . . . . . 14 (𝑑 = 𝑔 → ((𝑑‘0) = 𝑃 ↔ (𝑔‘0) = 𝑃))
2219, 21anbi12d 630 . . . . . . . . . . . . 13 (𝑑 = 𝑔 → (((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃) ↔ ((𝐹𝑔) = (𝐺𝑐) ∧ (𝑔‘0) = 𝑃)))
2322cbvriotavw 7222 . . . . . . . . . . . 12 (𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃)) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑐) ∧ (𝑔‘0) = 𝑃))
24 coeq2 5756 . . . . . . . . . . . . . . 15 (𝑐 = 𝑓 → (𝐺𝑐) = (𝐺𝑓))
2524eqeq2d 2749 . . . . . . . . . . . . . 14 (𝑐 = 𝑓 → ((𝐹𝑔) = (𝐺𝑐) ↔ (𝐹𝑔) = (𝐺𝑓)))
2625anbi1d 629 . . . . . . . . . . . . 13 (𝑐 = 𝑓 → (((𝐹𝑔) = (𝐺𝑐) ∧ (𝑔‘0) = 𝑃) ↔ ((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)))
2726riotabidv 7214 . . . . . . . . . . . 12 (𝑐 = 𝑓 → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑐) ∧ (𝑔‘0) = 𝑃)) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)))
2823, 27syl5eq 2791 . . . . . . . . . . 11 (𝑐 = 𝑓 → (𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃)) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)))
2928fveq1d 6758 . . . . . . . . . 10 (𝑐 = 𝑓 → ((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1))
3029eqeq1d 2740 . . . . . . . . 9 (𝑐 = 𝑓 → (((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑧 ↔ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))
3115, 17, 303anbi123d 1434 . . . . . . . 8 (𝑐 = 𝑓 → (((𝑐‘0) = 𝑂 ∧ (𝑐‘1) = 𝑎 ∧ ((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑧) ↔ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑎 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
3231cbvrexvw 3373 . . . . . . 7 (∃𝑐 ∈ (II Cn 𝐾)((𝑐‘0) = 𝑂 ∧ (𝑐‘1) = 𝑎 ∧ ((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑧) ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑎 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))
33 eqeq2 2750 . . . . . . . . 9 (𝑎 = 𝑥 → ((𝑓‘1) = 𝑎 ↔ (𝑓‘1) = 𝑥))
34333anbi2d 1439 . . . . . . . 8 (𝑎 = 𝑥 → (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑎 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
3534rexbidv 3225 . . . . . . 7 (𝑎 = 𝑥 → (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑎 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
3632, 35syl5bb 282 . . . . . 6 (𝑎 = 𝑥 → (∃𝑐 ∈ (II Cn 𝐾)((𝑐‘0) = 𝑂 ∧ (𝑐‘1) = 𝑎 ∧ ((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑧) ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
3736riotabidv 7214 . . . . 5 (𝑎 = 𝑥 → (𝑧𝐵𝑐 ∈ (II Cn 𝐾)((𝑐‘0) = 𝑂 ∧ (𝑐‘1) = 𝑎 ∧ ((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑧)) = (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
3813, 37syl5eq 2791 . . . 4 (𝑎 = 𝑥 → (𝑏𝐵𝑐 ∈ (II Cn 𝐾)((𝑐‘0) = 𝑂 ∧ (𝑐‘1) = 𝑎 ∧ ((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑏)) = (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
3938cbvmptv 5183 . . 3 (𝑎𝑌 ↦ (𝑏𝐵𝑐 ∈ (II Cn 𝐾)((𝑐‘0) = 𝑂 ∧ (𝑐‘1) = 𝑎 ∧ ((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑏))) = (𝑥𝑌 ↦ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
40 eqid 2738 . . . 4 (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))}) = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})
4140cvmscbv 33120 . . 3 (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))}) = (𝑎𝐽 ↦ {𝑏 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑏 = (𝐹𝑎) ∧ ∀𝑣𝑏 (∀𝑢 ∈ (𝑏 ∖ {𝑣})(𝑣𝑢) = ∅ ∧ (𝐹𝑣) ∈ ((𝐶t 𝑣)Homeo(𝐽t 𝑎))))})
421, 2, 3, 4, 5, 6, 7, 8, 9, 39, 41cvmlift3lem9 33189 . 2 (𝜑 → ∃𝑓 ∈ (𝐾 Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃))
43 sconnpconn 33089 . . . 4 (𝐾 ∈ SConn → 𝐾 ∈ PConn)
44 pconnconn 33093 . . . 4 (𝐾 ∈ PConn → 𝐾 ∈ Conn)
454, 43, 443syl 18 . . 3 (𝜑𝐾 ∈ Conn)
46 pconnconn 33093 . . . . . 6 (𝑥 ∈ PConn → 𝑥 ∈ Conn)
4746ssriv 3921 . . . . 5 PConn ⊆ Conn
48 nllyss 22539 . . . . 5 (PConn ⊆ Conn → 𝑛-Locally PConn ⊆ 𝑛-Locally Conn)
4947, 48ax-mp 5 . . . 4 𝑛-Locally PConn ⊆ 𝑛-Locally Conn
5049, 5sselid 3915 . . 3 (𝜑𝐾 ∈ 𝑛-Locally Conn)
511, 2, 3, 45, 50, 6, 7, 8, 9cvmliftmo 33146 . 2 (𝜑 → ∃*𝑓 ∈ (𝐾 Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃))
52 reu5 3351 . 2 (∃!𝑓 ∈ (𝐾 Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃) ↔ (∃𝑓 ∈ (𝐾 Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃) ∧ ∃*𝑓 ∈ (𝐾 Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃)))
5342, 51, 52sylanbrc 582 1 (𝜑 → ∃!𝑓 ∈ (𝐾 Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  ∃!wreu 3065  ∃*wrmo 3066  {crab 3067  cdif 3880  cin 3882  wss 3883  c0 4253  𝒫 cpw 4530  {csn 4558   cuni 4836  cmpt 5153  ccnv 5579  cres 5582  cima 5583  ccom 5584  cfv 6418  crio 7211  (class class class)co 7255  0cc0 10802  1c1 10803  t crest 17048   Cn ccn 22283  Conncconn 22470  𝑛-Locally cnlly 22524  Homeochmeo 22812  IIcii 23944  PConncpconn 33081  SConncsconn 33082   CovMap ccvm 33117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-ec 8458  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-cn 22286  df-cnp 22287  df-cmp 22446  df-conn 22471  df-lly 22525  df-nlly 22526  df-tx 22621  df-hmeo 22814  df-xms 23381  df-ms 23382  df-tms 23383  df-ii 23946  df-htpy 24039  df-phtpy 24040  df-phtpc 24061  df-pco 24074  df-pconn 33083  df-sconn 33084  df-cvm 33118
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator