Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setrec1lem3 Structured version   Visualization version   GIF version

Theorem setrec1lem3 49263
Description: Lemma for setrec1 49265. If each element 𝑎 of 𝐴 is covered by a set 𝑥 recursively generated by 𝐹, then there is a single such set covering all of 𝐴. The set is constructed explicitly using setrec1lem2 49262. It turns out that 𝑥 = 𝐴 also works, i.e., given the hypotheses it is possible to prove that 𝐴𝑌. I don't know if proving this fact directly using setrec1lem1 49261 would be any easier than the current proof using setrec1lem2 49262, and it would only slightly simplify the proof of setrec1 49265. Other than the use of bnd2d 49255, this is a purely technical theorem for rearranging notation from that of setrec1lem2 49262 to that of setrec1 49265. (Contributed by Emmett Weisz, 20-Jan-2021.) (New usage is discouraged.)
Hypotheses
Ref Expression
setrec1lem3.1 𝑌 = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
setrec1lem3.2 (𝜑𝐴 ∈ V)
setrec1lem3.3 (𝜑 → ∀𝑎𝐴𝑥(𝑎𝑥𝑥𝑌))
Assertion
Ref Expression
setrec1lem3 (𝜑 → ∃𝑥(𝐴𝑥𝑥𝑌))
Distinct variable groups:   𝑦,𝑤,𝑧   𝑥,𝑎,𝐴   𝑌,𝑎,𝑥   𝑥,𝑦,𝐹
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑎)   𝐴(𝑦,𝑧,𝑤)   𝐹(𝑧,𝑤,𝑎)   𝑌(𝑦,𝑧,𝑤)

Proof of Theorem setrec1lem3
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 setrec1lem3.2 . . . 4 (𝜑𝐴 ∈ V)
2 setrec1lem3.3 . . . . . 6 (𝜑 → ∀𝑎𝐴𝑥(𝑎𝑥𝑥𝑌))
3 exancom 1860 . . . . . . 7 (∃𝑥(𝑎𝑥𝑥𝑌) ↔ ∃𝑥(𝑥𝑌𝑎𝑥))
43ralbii 3092 . . . . . 6 (∀𝑎𝐴𝑥(𝑎𝑥𝑥𝑌) ↔ ∀𝑎𝐴𝑥(𝑥𝑌𝑎𝑥))
52, 4sylib 218 . . . . 5 (𝜑 → ∀𝑎𝐴𝑥(𝑥𝑌𝑎𝑥))
6 df-rex 3070 . . . . . 6 (∃𝑥𝑌 𝑎𝑥 ↔ ∃𝑥(𝑥𝑌𝑎𝑥))
76ralbii 3092 . . . . 5 (∀𝑎𝐴𝑥𝑌 𝑎𝑥 ↔ ∀𝑎𝐴𝑥(𝑥𝑌𝑎𝑥))
85, 7sylibr 234 . . . 4 (𝜑 → ∀𝑎𝐴𝑥𝑌 𝑎𝑥)
91, 8bnd2d 49255 . . 3 (𝜑 → ∃𝑣(𝑣𝑌 ∧ ∀𝑎𝐴𝑥𝑣 𝑎𝑥))
10 exancom 1860 . . . . . . . 8 (∃𝑥(𝑥𝑣𝑎𝑥) ↔ ∃𝑥(𝑎𝑥𝑥𝑣))
11 df-rex 3070 . . . . . . . 8 (∃𝑥𝑣 𝑎𝑥 ↔ ∃𝑥(𝑥𝑣𝑎𝑥))
12 eluni 4909 . . . . . . . 8 (𝑎 𝑣 ↔ ∃𝑥(𝑎𝑥𝑥𝑣))
1310, 11, 123bitr4i 303 . . . . . . 7 (∃𝑥𝑣 𝑎𝑥𝑎 𝑣)
1413ralbii 3092 . . . . . 6 (∀𝑎𝐴𝑥𝑣 𝑎𝑥 ↔ ∀𝑎𝐴 𝑎 𝑣)
15 dfss3 3971 . . . . . 6 (𝐴 𝑣 ↔ ∀𝑎𝐴 𝑎 𝑣)
1614, 15bitr4i 278 . . . . 5 (∀𝑎𝐴𝑥𝑣 𝑎𝑥𝐴 𝑣)
1716anbi2i 623 . . . 4 ((𝑣𝑌 ∧ ∀𝑎𝐴𝑥𝑣 𝑎𝑥) ↔ (𝑣𝑌𝐴 𝑣))
1817exbii 1847 . . 3 (∃𝑣(𝑣𝑌 ∧ ∀𝑎𝐴𝑥𝑣 𝑎𝑥) ↔ ∃𝑣(𝑣𝑌𝐴 𝑣))
199, 18sylib 218 . 2 (𝜑 → ∃𝑣(𝑣𝑌𝐴 𝑣))
20 setrec1lem3.1 . . . . . . 7 𝑌 = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
21 vex 3483 . . . . . . . 8 𝑣 ∈ V
2221a1i 11 . . . . . . 7 (𝑣𝑌𝑣 ∈ V)
23 id 22 . . . . . . 7 (𝑣𝑌𝑣𝑌)
2420, 22, 23setrec1lem2 49262 . . . . . 6 (𝑣𝑌 𝑣𝑌)
2524anim1i 615 . . . . 5 ((𝑣𝑌𝐴 𝑣) → ( 𝑣𝑌𝐴 𝑣))
2625ancomd 461 . . . 4 ((𝑣𝑌𝐴 𝑣) → (𝐴 𝑣 𝑣𝑌))
2721uniex 7762 . . . . 5 𝑣 ∈ V
28 sseq2 4009 . . . . . 6 (𝑥 = 𝑣 → (𝐴𝑥𝐴 𝑣))
29 eleq1 2828 . . . . . 6 (𝑥 = 𝑣 → (𝑥𝑌 𝑣𝑌))
3028, 29anbi12d 632 . . . . 5 (𝑥 = 𝑣 → ((𝐴𝑥𝑥𝑌) ↔ (𝐴 𝑣 𝑣𝑌)))
3127, 30spcev 3605 . . . 4 ((𝐴 𝑣 𝑣𝑌) → ∃𝑥(𝐴𝑥𝑥𝑌))
3226, 31syl 17 . . 3 ((𝑣𝑌𝐴 𝑣) → ∃𝑥(𝐴𝑥𝑥𝑌))
3332exlimiv 1929 . 2 (∃𝑣(𝑣𝑌𝐴 𝑣) → ∃𝑥(𝐴𝑥𝑥𝑌))
3419, 33syl 17 1 (𝜑 → ∃𝑥(𝐴𝑥𝑥𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1537   = wceq 1539  wex 1778  wcel 2107  {cab 2713  wral 3060  wrex 3069  Vcvv 3479  wss 3950   cuni 4906  cfv 6560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-reg 9633  ax-inf2 9682
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-om 7889  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-r1 9805  df-rank 9806
This theorem is referenced by:  setrec1  49265
  Copyright terms: Public domain W3C validator