| Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > setrec1lem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for setrec1 49729. If each element 𝑎 of 𝐴 is covered by a set 𝑥 recursively generated by 𝐹, then there is a single such set covering all of 𝐴. The set is constructed explicitly using setrec1lem2 49726. It turns out that 𝑥 = 𝐴 also works, i.e., given the hypotheses it is possible to prove that 𝐴 ∈ 𝑌. I don't know if proving this fact directly using setrec1lem1 49725 would be any easier than the current proof using setrec1lem2 49726, and it would only slightly simplify the proof of setrec1 49729. Other than the use of bnd2d 49719, this is a purely technical theorem for rearranging notation from that of setrec1lem2 49726 to that of setrec1 49729. (Contributed by Emmett Weisz, 20-Jan-2021.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| setrec1lem3.1 | ⊢ 𝑌 = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} |
| setrec1lem3.2 | ⊢ (𝜑 → 𝐴 ∈ V) |
| setrec1lem3.3 | ⊢ (𝜑 → ∀𝑎 ∈ 𝐴 ∃𝑥(𝑎 ∈ 𝑥 ∧ 𝑥 ∈ 𝑌)) |
| Ref | Expression |
|---|---|
| setrec1lem3 | ⊢ (𝜑 → ∃𝑥(𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setrec1lem3.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ V) | |
| 2 | setrec1lem3.3 | . . . . . 6 ⊢ (𝜑 → ∀𝑎 ∈ 𝐴 ∃𝑥(𝑎 ∈ 𝑥 ∧ 𝑥 ∈ 𝑌)) | |
| 3 | exancom 1862 | . . . . . . 7 ⊢ (∃𝑥(𝑎 ∈ 𝑥 ∧ 𝑥 ∈ 𝑌) ↔ ∃𝑥(𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝑥)) | |
| 4 | 3 | ralbii 3078 | . . . . . 6 ⊢ (∀𝑎 ∈ 𝐴 ∃𝑥(𝑎 ∈ 𝑥 ∧ 𝑥 ∈ 𝑌) ↔ ∀𝑎 ∈ 𝐴 ∃𝑥(𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝑥)) |
| 5 | 2, 4 | sylib 218 | . . . . 5 ⊢ (𝜑 → ∀𝑎 ∈ 𝐴 ∃𝑥(𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝑥)) |
| 6 | df-rex 3057 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝑌 𝑎 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝑥)) | |
| 7 | 6 | ralbii 3078 | . . . . 5 ⊢ (∀𝑎 ∈ 𝐴 ∃𝑥 ∈ 𝑌 𝑎 ∈ 𝑥 ↔ ∀𝑎 ∈ 𝐴 ∃𝑥(𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝑥)) |
| 8 | 5, 7 | sylibr 234 | . . . 4 ⊢ (𝜑 → ∀𝑎 ∈ 𝐴 ∃𝑥 ∈ 𝑌 𝑎 ∈ 𝑥) |
| 9 | 1, 8 | bnd2d 49719 | . . 3 ⊢ (𝜑 → ∃𝑣(𝑣 ⊆ 𝑌 ∧ ∀𝑎 ∈ 𝐴 ∃𝑥 ∈ 𝑣 𝑎 ∈ 𝑥)) |
| 10 | exancom 1862 | . . . . . . . 8 ⊢ (∃𝑥(𝑥 ∈ 𝑣 ∧ 𝑎 ∈ 𝑥) ↔ ∃𝑥(𝑎 ∈ 𝑥 ∧ 𝑥 ∈ 𝑣)) | |
| 11 | df-rex 3057 | . . . . . . . 8 ⊢ (∃𝑥 ∈ 𝑣 𝑎 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑣 ∧ 𝑎 ∈ 𝑥)) | |
| 12 | eluni 4862 | . . . . . . . 8 ⊢ (𝑎 ∈ ∪ 𝑣 ↔ ∃𝑥(𝑎 ∈ 𝑥 ∧ 𝑥 ∈ 𝑣)) | |
| 13 | 10, 11, 12 | 3bitr4i 303 | . . . . . . 7 ⊢ (∃𝑥 ∈ 𝑣 𝑎 ∈ 𝑥 ↔ 𝑎 ∈ ∪ 𝑣) |
| 14 | 13 | ralbii 3078 | . . . . . 6 ⊢ (∀𝑎 ∈ 𝐴 ∃𝑥 ∈ 𝑣 𝑎 ∈ 𝑥 ↔ ∀𝑎 ∈ 𝐴 𝑎 ∈ ∪ 𝑣) |
| 15 | dfss3 3923 | . . . . . 6 ⊢ (𝐴 ⊆ ∪ 𝑣 ↔ ∀𝑎 ∈ 𝐴 𝑎 ∈ ∪ 𝑣) | |
| 16 | 14, 15 | bitr4i 278 | . . . . 5 ⊢ (∀𝑎 ∈ 𝐴 ∃𝑥 ∈ 𝑣 𝑎 ∈ 𝑥 ↔ 𝐴 ⊆ ∪ 𝑣) |
| 17 | 16 | anbi2i 623 | . . . 4 ⊢ ((𝑣 ⊆ 𝑌 ∧ ∀𝑎 ∈ 𝐴 ∃𝑥 ∈ 𝑣 𝑎 ∈ 𝑥) ↔ (𝑣 ⊆ 𝑌 ∧ 𝐴 ⊆ ∪ 𝑣)) |
| 18 | 17 | exbii 1849 | . . 3 ⊢ (∃𝑣(𝑣 ⊆ 𝑌 ∧ ∀𝑎 ∈ 𝐴 ∃𝑥 ∈ 𝑣 𝑎 ∈ 𝑥) ↔ ∃𝑣(𝑣 ⊆ 𝑌 ∧ 𝐴 ⊆ ∪ 𝑣)) |
| 19 | 9, 18 | sylib 218 | . 2 ⊢ (𝜑 → ∃𝑣(𝑣 ⊆ 𝑌 ∧ 𝐴 ⊆ ∪ 𝑣)) |
| 20 | setrec1lem3.1 | . . . . . . 7 ⊢ 𝑌 = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} | |
| 21 | vex 3440 | . . . . . . . 8 ⊢ 𝑣 ∈ V | |
| 22 | 21 | a1i 11 | . . . . . . 7 ⊢ (𝑣 ⊆ 𝑌 → 𝑣 ∈ V) |
| 23 | id 22 | . . . . . . 7 ⊢ (𝑣 ⊆ 𝑌 → 𝑣 ⊆ 𝑌) | |
| 24 | 20, 22, 23 | setrec1lem2 49726 | . . . . . 6 ⊢ (𝑣 ⊆ 𝑌 → ∪ 𝑣 ∈ 𝑌) |
| 25 | 24 | anim1i 615 | . . . . 5 ⊢ ((𝑣 ⊆ 𝑌 ∧ 𝐴 ⊆ ∪ 𝑣) → (∪ 𝑣 ∈ 𝑌 ∧ 𝐴 ⊆ ∪ 𝑣)) |
| 26 | 25 | ancomd 461 | . . . 4 ⊢ ((𝑣 ⊆ 𝑌 ∧ 𝐴 ⊆ ∪ 𝑣) → (𝐴 ⊆ ∪ 𝑣 ∧ ∪ 𝑣 ∈ 𝑌)) |
| 27 | 21 | uniex 7674 | . . . . 5 ⊢ ∪ 𝑣 ∈ V |
| 28 | sseq2 3961 | . . . . . 6 ⊢ (𝑥 = ∪ 𝑣 → (𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ ∪ 𝑣)) | |
| 29 | eleq1 2819 | . . . . . 6 ⊢ (𝑥 = ∪ 𝑣 → (𝑥 ∈ 𝑌 ↔ ∪ 𝑣 ∈ 𝑌)) | |
| 30 | 28, 29 | anbi12d 632 | . . . . 5 ⊢ (𝑥 = ∪ 𝑣 → ((𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ 𝑌) ↔ (𝐴 ⊆ ∪ 𝑣 ∧ ∪ 𝑣 ∈ 𝑌))) |
| 31 | 27, 30 | spcev 3561 | . . . 4 ⊢ ((𝐴 ⊆ ∪ 𝑣 ∧ ∪ 𝑣 ∈ 𝑌) → ∃𝑥(𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ 𝑌)) |
| 32 | 26, 31 | syl 17 | . . 3 ⊢ ((𝑣 ⊆ 𝑌 ∧ 𝐴 ⊆ ∪ 𝑣) → ∃𝑥(𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ 𝑌)) |
| 33 | 32 | exlimiv 1931 | . 2 ⊢ (∃𝑣(𝑣 ⊆ 𝑌 ∧ 𝐴 ⊆ ∪ 𝑣) → ∃𝑥(𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ 𝑌)) |
| 34 | 19, 33 | syl 17 | 1 ⊢ (𝜑 → ∃𝑥(𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1539 = wceq 1541 ∃wex 1780 ∈ wcel 2111 {cab 2709 ∀wral 3047 ∃wrex 3056 Vcvv 3436 ⊆ wss 3902 ∪ cuni 4859 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-reg 9478 ax-inf2 9531 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-r1 9657 df-rank 9658 |
| This theorem is referenced by: setrec1 49729 |
| Copyright terms: Public domain | W3C validator |