![]() |
Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > setrec1lem3 | Structured version Visualization version GIF version |
Description: Lemma for setrec1 48035. If each element 𝑎 of 𝐴 is covered by a set 𝑥 recursively generated by 𝐹, then there is a single such set covering all of 𝐴. The set is constructed explicitly using setrec1lem2 48032. It turns out that 𝑥 = 𝐴 also works, i.e., given the hypotheses it is possible to prove that 𝐴 ∈ 𝑌. I don't know if proving this fact directly using setrec1lem1 48031 would be any easier than the current proof using setrec1lem2 48032, and it would only slightly simplify the proof of setrec1 48035. Other than the use of bnd2d 48025, this is a purely technical theorem for rearranging notation from that of setrec1lem2 48032 to that of setrec1 48035. (Contributed by Emmett Weisz, 20-Jan-2021.) (New usage is discouraged.) |
Ref | Expression |
---|---|
setrec1lem3.1 | ⊢ 𝑌 = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} |
setrec1lem3.2 | ⊢ (𝜑 → 𝐴 ∈ V) |
setrec1lem3.3 | ⊢ (𝜑 → ∀𝑎 ∈ 𝐴 ∃𝑥(𝑎 ∈ 𝑥 ∧ 𝑥 ∈ 𝑌)) |
Ref | Expression |
---|---|
setrec1lem3 | ⊢ (𝜑 → ∃𝑥(𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setrec1lem3.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ V) | |
2 | setrec1lem3.3 | . . . . . 6 ⊢ (𝜑 → ∀𝑎 ∈ 𝐴 ∃𝑥(𝑎 ∈ 𝑥 ∧ 𝑥 ∈ 𝑌)) | |
3 | exancom 1857 | . . . . . . 7 ⊢ (∃𝑥(𝑎 ∈ 𝑥 ∧ 𝑥 ∈ 𝑌) ↔ ∃𝑥(𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝑥)) | |
4 | 3 | ralbii 3088 | . . . . . 6 ⊢ (∀𝑎 ∈ 𝐴 ∃𝑥(𝑎 ∈ 𝑥 ∧ 𝑥 ∈ 𝑌) ↔ ∀𝑎 ∈ 𝐴 ∃𝑥(𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝑥)) |
5 | 2, 4 | sylib 217 | . . . . 5 ⊢ (𝜑 → ∀𝑎 ∈ 𝐴 ∃𝑥(𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝑥)) |
6 | df-rex 3066 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝑌 𝑎 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝑥)) | |
7 | 6 | ralbii 3088 | . . . . 5 ⊢ (∀𝑎 ∈ 𝐴 ∃𝑥 ∈ 𝑌 𝑎 ∈ 𝑥 ↔ ∀𝑎 ∈ 𝐴 ∃𝑥(𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝑥)) |
8 | 5, 7 | sylibr 233 | . . . 4 ⊢ (𝜑 → ∀𝑎 ∈ 𝐴 ∃𝑥 ∈ 𝑌 𝑎 ∈ 𝑥) |
9 | 1, 8 | bnd2d 48025 | . . 3 ⊢ (𝜑 → ∃𝑣(𝑣 ⊆ 𝑌 ∧ ∀𝑎 ∈ 𝐴 ∃𝑥 ∈ 𝑣 𝑎 ∈ 𝑥)) |
10 | exancom 1857 | . . . . . . . 8 ⊢ (∃𝑥(𝑥 ∈ 𝑣 ∧ 𝑎 ∈ 𝑥) ↔ ∃𝑥(𝑎 ∈ 𝑥 ∧ 𝑥 ∈ 𝑣)) | |
11 | df-rex 3066 | . . . . . . . 8 ⊢ (∃𝑥 ∈ 𝑣 𝑎 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑣 ∧ 𝑎 ∈ 𝑥)) | |
12 | eluni 4906 | . . . . . . . 8 ⊢ (𝑎 ∈ ∪ 𝑣 ↔ ∃𝑥(𝑎 ∈ 𝑥 ∧ 𝑥 ∈ 𝑣)) | |
13 | 10, 11, 12 | 3bitr4i 303 | . . . . . . 7 ⊢ (∃𝑥 ∈ 𝑣 𝑎 ∈ 𝑥 ↔ 𝑎 ∈ ∪ 𝑣) |
14 | 13 | ralbii 3088 | . . . . . 6 ⊢ (∀𝑎 ∈ 𝐴 ∃𝑥 ∈ 𝑣 𝑎 ∈ 𝑥 ↔ ∀𝑎 ∈ 𝐴 𝑎 ∈ ∪ 𝑣) |
15 | dfss3 3966 | . . . . . 6 ⊢ (𝐴 ⊆ ∪ 𝑣 ↔ ∀𝑎 ∈ 𝐴 𝑎 ∈ ∪ 𝑣) | |
16 | 14, 15 | bitr4i 278 | . . . . 5 ⊢ (∀𝑎 ∈ 𝐴 ∃𝑥 ∈ 𝑣 𝑎 ∈ 𝑥 ↔ 𝐴 ⊆ ∪ 𝑣) |
17 | 16 | anbi2i 622 | . . . 4 ⊢ ((𝑣 ⊆ 𝑌 ∧ ∀𝑎 ∈ 𝐴 ∃𝑥 ∈ 𝑣 𝑎 ∈ 𝑥) ↔ (𝑣 ⊆ 𝑌 ∧ 𝐴 ⊆ ∪ 𝑣)) |
18 | 17 | exbii 1843 | . . 3 ⊢ (∃𝑣(𝑣 ⊆ 𝑌 ∧ ∀𝑎 ∈ 𝐴 ∃𝑥 ∈ 𝑣 𝑎 ∈ 𝑥) ↔ ∃𝑣(𝑣 ⊆ 𝑌 ∧ 𝐴 ⊆ ∪ 𝑣)) |
19 | 9, 18 | sylib 217 | . 2 ⊢ (𝜑 → ∃𝑣(𝑣 ⊆ 𝑌 ∧ 𝐴 ⊆ ∪ 𝑣)) |
20 | setrec1lem3.1 | . . . . . . 7 ⊢ 𝑌 = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} | |
21 | vex 3473 | . . . . . . . 8 ⊢ 𝑣 ∈ V | |
22 | 21 | a1i 11 | . . . . . . 7 ⊢ (𝑣 ⊆ 𝑌 → 𝑣 ∈ V) |
23 | id 22 | . . . . . . 7 ⊢ (𝑣 ⊆ 𝑌 → 𝑣 ⊆ 𝑌) | |
24 | 20, 22, 23 | setrec1lem2 48032 | . . . . . 6 ⊢ (𝑣 ⊆ 𝑌 → ∪ 𝑣 ∈ 𝑌) |
25 | 24 | anim1i 614 | . . . . 5 ⊢ ((𝑣 ⊆ 𝑌 ∧ 𝐴 ⊆ ∪ 𝑣) → (∪ 𝑣 ∈ 𝑌 ∧ 𝐴 ⊆ ∪ 𝑣)) |
26 | 25 | ancomd 461 | . . . 4 ⊢ ((𝑣 ⊆ 𝑌 ∧ 𝐴 ⊆ ∪ 𝑣) → (𝐴 ⊆ ∪ 𝑣 ∧ ∪ 𝑣 ∈ 𝑌)) |
27 | 21 | uniex 7738 | . . . . 5 ⊢ ∪ 𝑣 ∈ V |
28 | sseq2 4004 | . . . . . 6 ⊢ (𝑥 = ∪ 𝑣 → (𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ ∪ 𝑣)) | |
29 | eleq1 2816 | . . . . . 6 ⊢ (𝑥 = ∪ 𝑣 → (𝑥 ∈ 𝑌 ↔ ∪ 𝑣 ∈ 𝑌)) | |
30 | 28, 29 | anbi12d 630 | . . . . 5 ⊢ (𝑥 = ∪ 𝑣 → ((𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ 𝑌) ↔ (𝐴 ⊆ ∪ 𝑣 ∧ ∪ 𝑣 ∈ 𝑌))) |
31 | 27, 30 | spcev 3591 | . . . 4 ⊢ ((𝐴 ⊆ ∪ 𝑣 ∧ ∪ 𝑣 ∈ 𝑌) → ∃𝑥(𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ 𝑌)) |
32 | 26, 31 | syl 17 | . . 3 ⊢ ((𝑣 ⊆ 𝑌 ∧ 𝐴 ⊆ ∪ 𝑣) → ∃𝑥(𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ 𝑌)) |
33 | 32 | exlimiv 1926 | . 2 ⊢ (∃𝑣(𝑣 ⊆ 𝑌 ∧ 𝐴 ⊆ ∪ 𝑣) → ∃𝑥(𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ 𝑌)) |
34 | 19, 33 | syl 17 | 1 ⊢ (𝜑 → ∃𝑥(𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1532 = wceq 1534 ∃wex 1774 ∈ wcel 2099 {cab 2704 ∀wral 3056 ∃wrex 3065 Vcvv 3469 ⊆ wss 3944 ∪ cuni 4903 ‘cfv 6542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-reg 9601 ax-inf2 9650 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-om 7863 df-2nd 7986 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-r1 9773 df-rank 9774 |
This theorem is referenced by: setrec1 48035 |
Copyright terms: Public domain | W3C validator |