Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setrec1lem3 Structured version   Visualization version   GIF version

Theorem setrec1lem3 47687
Description: Lemma for setrec1 47689. If each element 𝑎 of 𝐴 is covered by a set 𝑥 recursively generated by 𝐹, then there is a single such set covering all of 𝐴. The set is constructed explicitly using setrec1lem2 47686. It turns out that 𝑥 = 𝐴 also works, i.e., given the hypotheses it is possible to prove that 𝐴𝑌. I don't know if proving this fact directly using setrec1lem1 47685 would be any easier than the current proof using setrec1lem2 47686, and it would only slightly simplify the proof of setrec1 47689. Other than the use of bnd2d 47679, this is a purely technical theorem for rearranging notation from that of setrec1lem2 47686 to that of setrec1 47689. (Contributed by Emmett Weisz, 20-Jan-2021.) (New usage is discouraged.)
Hypotheses
Ref Expression
setrec1lem3.1 𝑌 = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
setrec1lem3.2 (𝜑𝐴 ∈ V)
setrec1lem3.3 (𝜑 → ∀𝑎𝐴𝑥(𝑎𝑥𝑥𝑌))
Assertion
Ref Expression
setrec1lem3 (𝜑 → ∃𝑥(𝐴𝑥𝑥𝑌))
Distinct variable groups:   𝑦,𝑤,𝑧   𝑥,𝑎,𝐴   𝑌,𝑎,𝑥   𝑥,𝑦,𝐹
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑎)   𝐴(𝑦,𝑧,𝑤)   𝐹(𝑧,𝑤,𝑎)   𝑌(𝑦,𝑧,𝑤)

Proof of Theorem setrec1lem3
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 setrec1lem3.2 . . . 4 (𝜑𝐴 ∈ V)
2 setrec1lem3.3 . . . . . 6 (𝜑 → ∀𝑎𝐴𝑥(𝑎𝑥𝑥𝑌))
3 exancom 1864 . . . . . . 7 (∃𝑥(𝑎𝑥𝑥𝑌) ↔ ∃𝑥(𝑥𝑌𝑎𝑥))
43ralbii 3093 . . . . . 6 (∀𝑎𝐴𝑥(𝑎𝑥𝑥𝑌) ↔ ∀𝑎𝐴𝑥(𝑥𝑌𝑎𝑥))
52, 4sylib 217 . . . . 5 (𝜑 → ∀𝑎𝐴𝑥(𝑥𝑌𝑎𝑥))
6 df-rex 3071 . . . . . 6 (∃𝑥𝑌 𝑎𝑥 ↔ ∃𝑥(𝑥𝑌𝑎𝑥))
76ralbii 3093 . . . . 5 (∀𝑎𝐴𝑥𝑌 𝑎𝑥 ↔ ∀𝑎𝐴𝑥(𝑥𝑌𝑎𝑥))
85, 7sylibr 233 . . . 4 (𝜑 → ∀𝑎𝐴𝑥𝑌 𝑎𝑥)
91, 8bnd2d 47679 . . 3 (𝜑 → ∃𝑣(𝑣𝑌 ∧ ∀𝑎𝐴𝑥𝑣 𝑎𝑥))
10 exancom 1864 . . . . . . . 8 (∃𝑥(𝑥𝑣𝑎𝑥) ↔ ∃𝑥(𝑎𝑥𝑥𝑣))
11 df-rex 3071 . . . . . . . 8 (∃𝑥𝑣 𝑎𝑥 ↔ ∃𝑥(𝑥𝑣𝑎𝑥))
12 eluni 4910 . . . . . . . 8 (𝑎 𝑣 ↔ ∃𝑥(𝑎𝑥𝑥𝑣))
1310, 11, 123bitr4i 302 . . . . . . 7 (∃𝑥𝑣 𝑎𝑥𝑎 𝑣)
1413ralbii 3093 . . . . . 6 (∀𝑎𝐴𝑥𝑣 𝑎𝑥 ↔ ∀𝑎𝐴 𝑎 𝑣)
15 dfss3 3969 . . . . . 6 (𝐴 𝑣 ↔ ∀𝑎𝐴 𝑎 𝑣)
1614, 15bitr4i 277 . . . . 5 (∀𝑎𝐴𝑥𝑣 𝑎𝑥𝐴 𝑣)
1716anbi2i 623 . . . 4 ((𝑣𝑌 ∧ ∀𝑎𝐴𝑥𝑣 𝑎𝑥) ↔ (𝑣𝑌𝐴 𝑣))
1817exbii 1850 . . 3 (∃𝑣(𝑣𝑌 ∧ ∀𝑎𝐴𝑥𝑣 𝑎𝑥) ↔ ∃𝑣(𝑣𝑌𝐴 𝑣))
199, 18sylib 217 . 2 (𝜑 → ∃𝑣(𝑣𝑌𝐴 𝑣))
20 setrec1lem3.1 . . . . . . 7 𝑌 = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
21 vex 3478 . . . . . . . 8 𝑣 ∈ V
2221a1i 11 . . . . . . 7 (𝑣𝑌𝑣 ∈ V)
23 id 22 . . . . . . 7 (𝑣𝑌𝑣𝑌)
2420, 22, 23setrec1lem2 47686 . . . . . 6 (𝑣𝑌 𝑣𝑌)
2524anim1i 615 . . . . 5 ((𝑣𝑌𝐴 𝑣) → ( 𝑣𝑌𝐴 𝑣))
2625ancomd 462 . . . 4 ((𝑣𝑌𝐴 𝑣) → (𝐴 𝑣 𝑣𝑌))
2721uniex 7727 . . . . 5 𝑣 ∈ V
28 sseq2 4007 . . . . . 6 (𝑥 = 𝑣 → (𝐴𝑥𝐴 𝑣))
29 eleq1 2821 . . . . . 6 (𝑥 = 𝑣 → (𝑥𝑌 𝑣𝑌))
3028, 29anbi12d 631 . . . . 5 (𝑥 = 𝑣 → ((𝐴𝑥𝑥𝑌) ↔ (𝐴 𝑣 𝑣𝑌)))
3127, 30spcev 3596 . . . 4 ((𝐴 𝑣 𝑣𝑌) → ∃𝑥(𝐴𝑥𝑥𝑌))
3226, 31syl 17 . . 3 ((𝑣𝑌𝐴 𝑣) → ∃𝑥(𝐴𝑥𝑥𝑌))
3332exlimiv 1933 . 2 (∃𝑣(𝑣𝑌𝐴 𝑣) → ∃𝑥(𝐴𝑥𝑥𝑌))
3419, 33syl 17 1 (𝜑 → ∃𝑥(𝐴𝑥𝑥𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1539   = wceq 1541  wex 1781  wcel 2106  {cab 2709  wral 3061  wrex 3070  Vcvv 3474  wss 3947   cuni 4907  cfv 6540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-reg 9583  ax-inf2 9632
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-om 7852  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-r1 9755  df-rank 9756
This theorem is referenced by:  setrec1  47689
  Copyright terms: Public domain W3C validator