Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setrec1lem3 Structured version   Visualization version   GIF version

Theorem setrec1lem3 42998
Description: Lemma for setrec1 43000. If each element 𝑎 of 𝐴 is covered by a set 𝑥 recursively generated by 𝐹, then there is a single such set covering all of 𝐴. The set is constructed explicitly using setrec1lem2 42997. It turns out that 𝑥 = 𝐴 also works, i.e., given the hypotheses it is possible to prove that 𝐴𝑌. I don't know if proving this fact directly using setrec1lem1 42996 would be any easier than the current proof using setrec1lem2 42997, and it would only slightly simplify the proof of setrec1 43000. Other than the use of bnd2d 42990, this is a purely technical theorem for rearranging notation from that of setrec1lem2 42997 to that of setrec1 43000. (Contributed by Emmett Weisz, 20-Jan-2021.) (New usage is discouraged.)
Hypotheses
Ref Expression
setrec1lem3.1 𝑌 = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
setrec1lem3.2 (𝜑𝐴 ∈ V)
setrec1lem3.3 (𝜑 → ∀𝑎𝐴𝑥(𝑎𝑥𝑥𝑌))
Assertion
Ref Expression
setrec1lem3 (𝜑 → ∃𝑥(𝐴𝑥𝑥𝑌))
Distinct variable groups:   𝑦,𝑤,𝑧   𝑥,𝑎,𝐴   𝑌,𝑎,𝑥   𝑥,𝑦,𝐹
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑎)   𝐴(𝑦,𝑧,𝑤)   𝐹(𝑧,𝑤,𝑎)   𝑌(𝑦,𝑧,𝑤)

Proof of Theorem setrec1lem3
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 setrec1lem3.2 . . . 4 (𝜑𝐴 ∈ V)
2 setrec1lem3.3 . . . . . 6 (𝜑 → ∀𝑎𝐴𝑥(𝑎𝑥𝑥𝑌))
3 exancom 1947 . . . . . . 7 (∃𝑥(𝑎𝑥𝑥𝑌) ↔ ∃𝑥(𝑥𝑌𝑎𝑥))
43ralbii 3164 . . . . . 6 (∀𝑎𝐴𝑥(𝑎𝑥𝑥𝑌) ↔ ∀𝑎𝐴𝑥(𝑥𝑌𝑎𝑥))
52, 4sylib 209 . . . . 5 (𝜑 → ∀𝑎𝐴𝑥(𝑥𝑌𝑎𝑥))
6 df-rex 3098 . . . . . 6 (∃𝑥𝑌 𝑎𝑥 ↔ ∃𝑥(𝑥𝑌𝑎𝑥))
76ralbii 3164 . . . . 5 (∀𝑎𝐴𝑥𝑌 𝑎𝑥 ↔ ∀𝑎𝐴𝑥(𝑥𝑌𝑎𝑥))
85, 7sylibr 225 . . . 4 (𝜑 → ∀𝑎𝐴𝑥𝑌 𝑎𝑥)
91, 8bnd2d 42990 . . 3 (𝜑 → ∃𝑣(𝑣𝑌 ∧ ∀𝑎𝐴𝑥𝑣 𝑎𝑥))
10 exancom 1947 . . . . . . . 8 (∃𝑥(𝑥𝑣𝑎𝑥) ↔ ∃𝑥(𝑎𝑥𝑥𝑣))
11 df-rex 3098 . . . . . . . 8 (∃𝑥𝑣 𝑎𝑥 ↔ ∃𝑥(𝑥𝑣𝑎𝑥))
12 eluni 4626 . . . . . . . 8 (𝑎 𝑣 ↔ ∃𝑥(𝑎𝑥𝑥𝑣))
1310, 11, 123bitr4i 294 . . . . . . 7 (∃𝑥𝑣 𝑎𝑥𝑎 𝑣)
1413ralbii 3164 . . . . . 6 (∀𝑎𝐴𝑥𝑣 𝑎𝑥 ↔ ∀𝑎𝐴 𝑎 𝑣)
15 dfss3 3781 . . . . . 6 (𝐴 𝑣 ↔ ∀𝑎𝐴 𝑎 𝑣)
1614, 15bitr4i 269 . . . . 5 (∀𝑎𝐴𝑥𝑣 𝑎𝑥𝐴 𝑣)
1716anbi2i 611 . . . 4 ((𝑣𝑌 ∧ ∀𝑎𝐴𝑥𝑣 𝑎𝑥) ↔ (𝑣𝑌𝐴 𝑣))
1817exbii 1933 . . 3 (∃𝑣(𝑣𝑌 ∧ ∀𝑎𝐴𝑥𝑣 𝑎𝑥) ↔ ∃𝑣(𝑣𝑌𝐴 𝑣))
199, 18sylib 209 . 2 (𝜑 → ∃𝑣(𝑣𝑌𝐴 𝑣))
20 setrec1lem3.1 . . . . . . 7 𝑌 = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
21 vex 3390 . . . . . . . 8 𝑣 ∈ V
2221a1i 11 . . . . . . 7 (𝑣𝑌𝑣 ∈ V)
23 id 22 . . . . . . 7 (𝑣𝑌𝑣𝑌)
2420, 22, 23setrec1lem2 42997 . . . . . 6 (𝑣𝑌 𝑣𝑌)
2524anim1i 604 . . . . 5 ((𝑣𝑌𝐴 𝑣) → ( 𝑣𝑌𝐴 𝑣))
2625ancomd 451 . . . 4 ((𝑣𝑌𝐴 𝑣) → (𝐴 𝑣 𝑣𝑌))
2721uniex 7177 . . . . 5 𝑣 ∈ V
28 sseq2 3818 . . . . . 6 (𝑥 = 𝑣 → (𝐴𝑥𝐴 𝑣))
29 eleq1 2869 . . . . . 6 (𝑥 = 𝑣 → (𝑥𝑌 𝑣𝑌))
3028, 29anbi12d 618 . . . . 5 (𝑥 = 𝑣 → ((𝐴𝑥𝑥𝑌) ↔ (𝐴 𝑣 𝑣𝑌)))
3127, 30spcev 3489 . . . 4 ((𝐴 𝑣 𝑣𝑌) → ∃𝑥(𝐴𝑥𝑥𝑌))
3226, 31syl 17 . . 3 ((𝑣𝑌𝐴 𝑣) → ∃𝑥(𝐴𝑥𝑥𝑌))
3332exlimiv 2020 . 2 (∃𝑣(𝑣𝑌𝐴 𝑣) → ∃𝑥(𝐴𝑥𝑥𝑌))
3419, 33syl 17 1 (𝜑 → ∃𝑥(𝐴𝑥𝑥𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wal 1635   = wceq 1637  wex 1859  wcel 2155  {cab 2788  wral 3092  wrex 3093  Vcvv 3387  wss 3763   cuni 4623  cfv 6095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2067  ax-7 2103  ax-8 2157  ax-9 2164  ax-10 2184  ax-11 2200  ax-12 2213  ax-13 2419  ax-ext 2781  ax-rep 4957  ax-sep 4968  ax-nul 4977  ax-pow 5029  ax-pr 5090  ax-un 7173  ax-reg 8730  ax-inf2 8779
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2060  df-eu 2633  df-mo 2634  df-clab 2789  df-cleq 2795  df-clel 2798  df-nfc 2933  df-ne 2975  df-ral 3097  df-rex 3098  df-reu 3099  df-rab 3101  df-v 3389  df-sbc 3628  df-csb 3723  df-dif 3766  df-un 3768  df-in 3770  df-ss 3777  df-pss 3779  df-nul 4111  df-if 4274  df-pw 4347  df-sn 4365  df-pr 4367  df-tp 4369  df-op 4371  df-uni 4624  df-int 4663  df-iun 4707  df-iin 4708  df-br 4838  df-opab 4900  df-mpt 4917  df-tr 4940  df-id 5213  df-eprel 5218  df-po 5226  df-so 5227  df-fr 5264  df-we 5266  df-xp 5311  df-rel 5312  df-cnv 5313  df-co 5314  df-dm 5315  df-rn 5316  df-res 5317  df-ima 5318  df-pred 5887  df-ord 5933  df-on 5934  df-lim 5935  df-suc 5936  df-iota 6058  df-fun 6097  df-fn 6098  df-f 6099  df-f1 6100  df-fo 6101  df-f1o 6102  df-fv 6103  df-om 7290  df-wrecs 7636  df-recs 7698  df-rdg 7736  df-r1 8868  df-rank 8869
This theorem is referenced by:  setrec1  43000
  Copyright terms: Public domain W3C validator