| Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > setrec1lem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for setrec1 49680. If each element 𝑎 of 𝐴 is covered by a set 𝑥 recursively generated by 𝐹, then there is a single such set covering all of 𝐴. The set is constructed explicitly using setrec1lem2 49677. It turns out that 𝑥 = 𝐴 also works, i.e., given the hypotheses it is possible to prove that 𝐴 ∈ 𝑌. I don't know if proving this fact directly using setrec1lem1 49676 would be any easier than the current proof using setrec1lem2 49677, and it would only slightly simplify the proof of setrec1 49680. Other than the use of bnd2d 49670, this is a purely technical theorem for rearranging notation from that of setrec1lem2 49677 to that of setrec1 49680. (Contributed by Emmett Weisz, 20-Jan-2021.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| setrec1lem3.1 | ⊢ 𝑌 = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} |
| setrec1lem3.2 | ⊢ (𝜑 → 𝐴 ∈ V) |
| setrec1lem3.3 | ⊢ (𝜑 → ∀𝑎 ∈ 𝐴 ∃𝑥(𝑎 ∈ 𝑥 ∧ 𝑥 ∈ 𝑌)) |
| Ref | Expression |
|---|---|
| setrec1lem3 | ⊢ (𝜑 → ∃𝑥(𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setrec1lem3.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ V) | |
| 2 | setrec1lem3.3 | . . . . . 6 ⊢ (𝜑 → ∀𝑎 ∈ 𝐴 ∃𝑥(𝑎 ∈ 𝑥 ∧ 𝑥 ∈ 𝑌)) | |
| 3 | exancom 1861 | . . . . . . 7 ⊢ (∃𝑥(𝑎 ∈ 𝑥 ∧ 𝑥 ∈ 𝑌) ↔ ∃𝑥(𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝑥)) | |
| 4 | 3 | ralbii 3075 | . . . . . 6 ⊢ (∀𝑎 ∈ 𝐴 ∃𝑥(𝑎 ∈ 𝑥 ∧ 𝑥 ∈ 𝑌) ↔ ∀𝑎 ∈ 𝐴 ∃𝑥(𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝑥)) |
| 5 | 2, 4 | sylib 218 | . . . . 5 ⊢ (𝜑 → ∀𝑎 ∈ 𝐴 ∃𝑥(𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝑥)) |
| 6 | df-rex 3054 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝑌 𝑎 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝑥)) | |
| 7 | 6 | ralbii 3075 | . . . . 5 ⊢ (∀𝑎 ∈ 𝐴 ∃𝑥 ∈ 𝑌 𝑎 ∈ 𝑥 ↔ ∀𝑎 ∈ 𝐴 ∃𝑥(𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝑥)) |
| 8 | 5, 7 | sylibr 234 | . . . 4 ⊢ (𝜑 → ∀𝑎 ∈ 𝐴 ∃𝑥 ∈ 𝑌 𝑎 ∈ 𝑥) |
| 9 | 1, 8 | bnd2d 49670 | . . 3 ⊢ (𝜑 → ∃𝑣(𝑣 ⊆ 𝑌 ∧ ∀𝑎 ∈ 𝐴 ∃𝑥 ∈ 𝑣 𝑎 ∈ 𝑥)) |
| 10 | exancom 1861 | . . . . . . . 8 ⊢ (∃𝑥(𝑥 ∈ 𝑣 ∧ 𝑎 ∈ 𝑥) ↔ ∃𝑥(𝑎 ∈ 𝑥 ∧ 𝑥 ∈ 𝑣)) | |
| 11 | df-rex 3054 | . . . . . . . 8 ⊢ (∃𝑥 ∈ 𝑣 𝑎 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑣 ∧ 𝑎 ∈ 𝑥)) | |
| 12 | eluni 4864 | . . . . . . . 8 ⊢ (𝑎 ∈ ∪ 𝑣 ↔ ∃𝑥(𝑎 ∈ 𝑥 ∧ 𝑥 ∈ 𝑣)) | |
| 13 | 10, 11, 12 | 3bitr4i 303 | . . . . . . 7 ⊢ (∃𝑥 ∈ 𝑣 𝑎 ∈ 𝑥 ↔ 𝑎 ∈ ∪ 𝑣) |
| 14 | 13 | ralbii 3075 | . . . . . 6 ⊢ (∀𝑎 ∈ 𝐴 ∃𝑥 ∈ 𝑣 𝑎 ∈ 𝑥 ↔ ∀𝑎 ∈ 𝐴 𝑎 ∈ ∪ 𝑣) |
| 15 | dfss3 3926 | . . . . . 6 ⊢ (𝐴 ⊆ ∪ 𝑣 ↔ ∀𝑎 ∈ 𝐴 𝑎 ∈ ∪ 𝑣) | |
| 16 | 14, 15 | bitr4i 278 | . . . . 5 ⊢ (∀𝑎 ∈ 𝐴 ∃𝑥 ∈ 𝑣 𝑎 ∈ 𝑥 ↔ 𝐴 ⊆ ∪ 𝑣) |
| 17 | 16 | anbi2i 623 | . . . 4 ⊢ ((𝑣 ⊆ 𝑌 ∧ ∀𝑎 ∈ 𝐴 ∃𝑥 ∈ 𝑣 𝑎 ∈ 𝑥) ↔ (𝑣 ⊆ 𝑌 ∧ 𝐴 ⊆ ∪ 𝑣)) |
| 18 | 17 | exbii 1848 | . . 3 ⊢ (∃𝑣(𝑣 ⊆ 𝑌 ∧ ∀𝑎 ∈ 𝐴 ∃𝑥 ∈ 𝑣 𝑎 ∈ 𝑥) ↔ ∃𝑣(𝑣 ⊆ 𝑌 ∧ 𝐴 ⊆ ∪ 𝑣)) |
| 19 | 9, 18 | sylib 218 | . 2 ⊢ (𝜑 → ∃𝑣(𝑣 ⊆ 𝑌 ∧ 𝐴 ⊆ ∪ 𝑣)) |
| 20 | setrec1lem3.1 | . . . . . . 7 ⊢ 𝑌 = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} | |
| 21 | vex 3442 | . . . . . . . 8 ⊢ 𝑣 ∈ V | |
| 22 | 21 | a1i 11 | . . . . . . 7 ⊢ (𝑣 ⊆ 𝑌 → 𝑣 ∈ V) |
| 23 | id 22 | . . . . . . 7 ⊢ (𝑣 ⊆ 𝑌 → 𝑣 ⊆ 𝑌) | |
| 24 | 20, 22, 23 | setrec1lem2 49677 | . . . . . 6 ⊢ (𝑣 ⊆ 𝑌 → ∪ 𝑣 ∈ 𝑌) |
| 25 | 24 | anim1i 615 | . . . . 5 ⊢ ((𝑣 ⊆ 𝑌 ∧ 𝐴 ⊆ ∪ 𝑣) → (∪ 𝑣 ∈ 𝑌 ∧ 𝐴 ⊆ ∪ 𝑣)) |
| 26 | 25 | ancomd 461 | . . . 4 ⊢ ((𝑣 ⊆ 𝑌 ∧ 𝐴 ⊆ ∪ 𝑣) → (𝐴 ⊆ ∪ 𝑣 ∧ ∪ 𝑣 ∈ 𝑌)) |
| 27 | 21 | uniex 7681 | . . . . 5 ⊢ ∪ 𝑣 ∈ V |
| 28 | sseq2 3964 | . . . . . 6 ⊢ (𝑥 = ∪ 𝑣 → (𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ ∪ 𝑣)) | |
| 29 | eleq1 2816 | . . . . . 6 ⊢ (𝑥 = ∪ 𝑣 → (𝑥 ∈ 𝑌 ↔ ∪ 𝑣 ∈ 𝑌)) | |
| 30 | 28, 29 | anbi12d 632 | . . . . 5 ⊢ (𝑥 = ∪ 𝑣 → ((𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ 𝑌) ↔ (𝐴 ⊆ ∪ 𝑣 ∧ ∪ 𝑣 ∈ 𝑌))) |
| 31 | 27, 30 | spcev 3563 | . . . 4 ⊢ ((𝐴 ⊆ ∪ 𝑣 ∧ ∪ 𝑣 ∈ 𝑌) → ∃𝑥(𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ 𝑌)) |
| 32 | 26, 31 | syl 17 | . . 3 ⊢ ((𝑣 ⊆ 𝑌 ∧ 𝐴 ⊆ ∪ 𝑣) → ∃𝑥(𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ 𝑌)) |
| 33 | 32 | exlimiv 1930 | . 2 ⊢ (∃𝑣(𝑣 ⊆ 𝑌 ∧ 𝐴 ⊆ ∪ 𝑣) → ∃𝑥(𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ 𝑌)) |
| 34 | 19, 33 | syl 17 | 1 ⊢ (𝜑 → ∃𝑥(𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2707 ∀wral 3044 ∃wrex 3053 Vcvv 3438 ⊆ wss 3905 ∪ cuni 4861 ‘cfv 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-reg 9503 ax-inf2 9556 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-r1 9679 df-rank 9680 |
| This theorem is referenced by: setrec1 49680 |
| Copyright terms: Public domain | W3C validator |