![]() |
Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > setrec1lem3 | Structured version Visualization version GIF version |
Description: Lemma for setrec1 48233. If each element 𝑎 of 𝐴 is covered by a set 𝑥 recursively generated by 𝐹, then there is a single such set covering all of 𝐴. The set is constructed explicitly using setrec1lem2 48230. It turns out that 𝑥 = 𝐴 also works, i.e., given the hypotheses it is possible to prove that 𝐴 ∈ 𝑌. I don't know if proving this fact directly using setrec1lem1 48229 would be any easier than the current proof using setrec1lem2 48230, and it would only slightly simplify the proof of setrec1 48233. Other than the use of bnd2d 48223, this is a purely technical theorem for rearranging notation from that of setrec1lem2 48230 to that of setrec1 48233. (Contributed by Emmett Weisz, 20-Jan-2021.) (New usage is discouraged.) |
Ref | Expression |
---|---|
setrec1lem3.1 | ⊢ 𝑌 = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} |
setrec1lem3.2 | ⊢ (𝜑 → 𝐴 ∈ V) |
setrec1lem3.3 | ⊢ (𝜑 → ∀𝑎 ∈ 𝐴 ∃𝑥(𝑎 ∈ 𝑥 ∧ 𝑥 ∈ 𝑌)) |
Ref | Expression |
---|---|
setrec1lem3 | ⊢ (𝜑 → ∃𝑥(𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setrec1lem3.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ V) | |
2 | setrec1lem3.3 | . . . . . 6 ⊢ (𝜑 → ∀𝑎 ∈ 𝐴 ∃𝑥(𝑎 ∈ 𝑥 ∧ 𝑥 ∈ 𝑌)) | |
3 | exancom 1856 | . . . . . . 7 ⊢ (∃𝑥(𝑎 ∈ 𝑥 ∧ 𝑥 ∈ 𝑌) ↔ ∃𝑥(𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝑥)) | |
4 | 3 | ralbii 3083 | . . . . . 6 ⊢ (∀𝑎 ∈ 𝐴 ∃𝑥(𝑎 ∈ 𝑥 ∧ 𝑥 ∈ 𝑌) ↔ ∀𝑎 ∈ 𝐴 ∃𝑥(𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝑥)) |
5 | 2, 4 | sylib 217 | . . . . 5 ⊢ (𝜑 → ∀𝑎 ∈ 𝐴 ∃𝑥(𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝑥)) |
6 | df-rex 3061 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝑌 𝑎 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝑥)) | |
7 | 6 | ralbii 3083 | . . . . 5 ⊢ (∀𝑎 ∈ 𝐴 ∃𝑥 ∈ 𝑌 𝑎 ∈ 𝑥 ↔ ∀𝑎 ∈ 𝐴 ∃𝑥(𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝑥)) |
8 | 5, 7 | sylibr 233 | . . . 4 ⊢ (𝜑 → ∀𝑎 ∈ 𝐴 ∃𝑥 ∈ 𝑌 𝑎 ∈ 𝑥) |
9 | 1, 8 | bnd2d 48223 | . . 3 ⊢ (𝜑 → ∃𝑣(𝑣 ⊆ 𝑌 ∧ ∀𝑎 ∈ 𝐴 ∃𝑥 ∈ 𝑣 𝑎 ∈ 𝑥)) |
10 | exancom 1856 | . . . . . . . 8 ⊢ (∃𝑥(𝑥 ∈ 𝑣 ∧ 𝑎 ∈ 𝑥) ↔ ∃𝑥(𝑎 ∈ 𝑥 ∧ 𝑥 ∈ 𝑣)) | |
11 | df-rex 3061 | . . . . . . . 8 ⊢ (∃𝑥 ∈ 𝑣 𝑎 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑣 ∧ 𝑎 ∈ 𝑥)) | |
12 | eluni 4906 | . . . . . . . 8 ⊢ (𝑎 ∈ ∪ 𝑣 ↔ ∃𝑥(𝑎 ∈ 𝑥 ∧ 𝑥 ∈ 𝑣)) | |
13 | 10, 11, 12 | 3bitr4i 302 | . . . . . . 7 ⊢ (∃𝑥 ∈ 𝑣 𝑎 ∈ 𝑥 ↔ 𝑎 ∈ ∪ 𝑣) |
14 | 13 | ralbii 3083 | . . . . . 6 ⊢ (∀𝑎 ∈ 𝐴 ∃𝑥 ∈ 𝑣 𝑎 ∈ 𝑥 ↔ ∀𝑎 ∈ 𝐴 𝑎 ∈ ∪ 𝑣) |
15 | dfss3 3961 | . . . . . 6 ⊢ (𝐴 ⊆ ∪ 𝑣 ↔ ∀𝑎 ∈ 𝐴 𝑎 ∈ ∪ 𝑣) | |
16 | 14, 15 | bitr4i 277 | . . . . 5 ⊢ (∀𝑎 ∈ 𝐴 ∃𝑥 ∈ 𝑣 𝑎 ∈ 𝑥 ↔ 𝐴 ⊆ ∪ 𝑣) |
17 | 16 | anbi2i 621 | . . . 4 ⊢ ((𝑣 ⊆ 𝑌 ∧ ∀𝑎 ∈ 𝐴 ∃𝑥 ∈ 𝑣 𝑎 ∈ 𝑥) ↔ (𝑣 ⊆ 𝑌 ∧ 𝐴 ⊆ ∪ 𝑣)) |
18 | 17 | exbii 1842 | . . 3 ⊢ (∃𝑣(𝑣 ⊆ 𝑌 ∧ ∀𝑎 ∈ 𝐴 ∃𝑥 ∈ 𝑣 𝑎 ∈ 𝑥) ↔ ∃𝑣(𝑣 ⊆ 𝑌 ∧ 𝐴 ⊆ ∪ 𝑣)) |
19 | 9, 18 | sylib 217 | . 2 ⊢ (𝜑 → ∃𝑣(𝑣 ⊆ 𝑌 ∧ 𝐴 ⊆ ∪ 𝑣)) |
20 | setrec1lem3.1 | . . . . . . 7 ⊢ 𝑌 = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} | |
21 | vex 3467 | . . . . . . . 8 ⊢ 𝑣 ∈ V | |
22 | 21 | a1i 11 | . . . . . . 7 ⊢ (𝑣 ⊆ 𝑌 → 𝑣 ∈ V) |
23 | id 22 | . . . . . . 7 ⊢ (𝑣 ⊆ 𝑌 → 𝑣 ⊆ 𝑌) | |
24 | 20, 22, 23 | setrec1lem2 48230 | . . . . . 6 ⊢ (𝑣 ⊆ 𝑌 → ∪ 𝑣 ∈ 𝑌) |
25 | 24 | anim1i 613 | . . . . 5 ⊢ ((𝑣 ⊆ 𝑌 ∧ 𝐴 ⊆ ∪ 𝑣) → (∪ 𝑣 ∈ 𝑌 ∧ 𝐴 ⊆ ∪ 𝑣)) |
26 | 25 | ancomd 460 | . . . 4 ⊢ ((𝑣 ⊆ 𝑌 ∧ 𝐴 ⊆ ∪ 𝑣) → (𝐴 ⊆ ∪ 𝑣 ∧ ∪ 𝑣 ∈ 𝑌)) |
27 | 21 | uniex 7743 | . . . . 5 ⊢ ∪ 𝑣 ∈ V |
28 | sseq2 3999 | . . . . . 6 ⊢ (𝑥 = ∪ 𝑣 → (𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ ∪ 𝑣)) | |
29 | eleq1 2813 | . . . . . 6 ⊢ (𝑥 = ∪ 𝑣 → (𝑥 ∈ 𝑌 ↔ ∪ 𝑣 ∈ 𝑌)) | |
30 | 28, 29 | anbi12d 630 | . . . . 5 ⊢ (𝑥 = ∪ 𝑣 → ((𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ 𝑌) ↔ (𝐴 ⊆ ∪ 𝑣 ∧ ∪ 𝑣 ∈ 𝑌))) |
31 | 27, 30 | spcev 3586 | . . . 4 ⊢ ((𝐴 ⊆ ∪ 𝑣 ∧ ∪ 𝑣 ∈ 𝑌) → ∃𝑥(𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ 𝑌)) |
32 | 26, 31 | syl 17 | . . 3 ⊢ ((𝑣 ⊆ 𝑌 ∧ 𝐴 ⊆ ∪ 𝑣) → ∃𝑥(𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ 𝑌)) |
33 | 32 | exlimiv 1925 | . 2 ⊢ (∃𝑣(𝑣 ⊆ 𝑌 ∧ 𝐴 ⊆ ∪ 𝑣) → ∃𝑥(𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ 𝑌)) |
34 | 19, 33 | syl 17 | 1 ⊢ (𝜑 → ∃𝑥(𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∀wal 1531 = wceq 1533 ∃wex 1773 ∈ wcel 2098 {cab 2702 ∀wral 3051 ∃wrex 3060 Vcvv 3463 ⊆ wss 3940 ∪ cuni 4903 ‘cfv 6542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-reg 9613 ax-inf2 9662 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7418 df-om 7868 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-r1 9785 df-rank 9786 |
This theorem is referenced by: setrec1 48233 |
Copyright terms: Public domain | W3C validator |