![]() |
Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > setrec1lem3 | Structured version Visualization version GIF version |
Description: Lemma for setrec1 44274. If each element 𝑎 of 𝐴 is covered by a set 𝑥 recursively generated by 𝐹, then there is a single such set covering all of 𝐴. The set is constructed explicitly using setrec1lem2 44271. It turns out that 𝑥 = 𝐴 also works, i.e., given the hypotheses it is possible to prove that 𝐴 ∈ 𝑌. I don't know if proving this fact directly using setrec1lem1 44270 would be any easier than the current proof using setrec1lem2 44271, and it would only slightly simplify the proof of setrec1 44274. Other than the use of bnd2d 44264, this is a purely technical theorem for rearranging notation from that of setrec1lem2 44271 to that of setrec1 44274. (Contributed by Emmett Weisz, 20-Jan-2021.) (New usage is discouraged.) |
Ref | Expression |
---|---|
setrec1lem3.1 | ⊢ 𝑌 = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} |
setrec1lem3.2 | ⊢ (𝜑 → 𝐴 ∈ V) |
setrec1lem3.3 | ⊢ (𝜑 → ∀𝑎 ∈ 𝐴 ∃𝑥(𝑎 ∈ 𝑥 ∧ 𝑥 ∈ 𝑌)) |
Ref | Expression |
---|---|
setrec1lem3 | ⊢ (𝜑 → ∃𝑥(𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setrec1lem3.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ V) | |
2 | setrec1lem3.3 | . . . . . 6 ⊢ (𝜑 → ∀𝑎 ∈ 𝐴 ∃𝑥(𝑎 ∈ 𝑥 ∧ 𝑥 ∈ 𝑌)) | |
3 | exancom 1842 | . . . . . . 7 ⊢ (∃𝑥(𝑎 ∈ 𝑥 ∧ 𝑥 ∈ 𝑌) ↔ ∃𝑥(𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝑥)) | |
4 | 3 | ralbii 3132 | . . . . . 6 ⊢ (∀𝑎 ∈ 𝐴 ∃𝑥(𝑎 ∈ 𝑥 ∧ 𝑥 ∈ 𝑌) ↔ ∀𝑎 ∈ 𝐴 ∃𝑥(𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝑥)) |
5 | 2, 4 | sylib 219 | . . . . 5 ⊢ (𝜑 → ∀𝑎 ∈ 𝐴 ∃𝑥(𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝑥)) |
6 | df-rex 3111 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝑌 𝑎 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝑥)) | |
7 | 6 | ralbii 3132 | . . . . 5 ⊢ (∀𝑎 ∈ 𝐴 ∃𝑥 ∈ 𝑌 𝑎 ∈ 𝑥 ↔ ∀𝑎 ∈ 𝐴 ∃𝑥(𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝑥)) |
8 | 5, 7 | sylibr 235 | . . . 4 ⊢ (𝜑 → ∀𝑎 ∈ 𝐴 ∃𝑥 ∈ 𝑌 𝑎 ∈ 𝑥) |
9 | 1, 8 | bnd2d 44264 | . . 3 ⊢ (𝜑 → ∃𝑣(𝑣 ⊆ 𝑌 ∧ ∀𝑎 ∈ 𝐴 ∃𝑥 ∈ 𝑣 𝑎 ∈ 𝑥)) |
10 | exancom 1842 | . . . . . . . 8 ⊢ (∃𝑥(𝑥 ∈ 𝑣 ∧ 𝑎 ∈ 𝑥) ↔ ∃𝑥(𝑎 ∈ 𝑥 ∧ 𝑥 ∈ 𝑣)) | |
11 | df-rex 3111 | . . . . . . . 8 ⊢ (∃𝑥 ∈ 𝑣 𝑎 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑣 ∧ 𝑎 ∈ 𝑥)) | |
12 | eluni 4748 | . . . . . . . 8 ⊢ (𝑎 ∈ ∪ 𝑣 ↔ ∃𝑥(𝑎 ∈ 𝑥 ∧ 𝑥 ∈ 𝑣)) | |
13 | 10, 11, 12 | 3bitr4i 304 | . . . . . . 7 ⊢ (∃𝑥 ∈ 𝑣 𝑎 ∈ 𝑥 ↔ 𝑎 ∈ ∪ 𝑣) |
14 | 13 | ralbii 3132 | . . . . . 6 ⊢ (∀𝑎 ∈ 𝐴 ∃𝑥 ∈ 𝑣 𝑎 ∈ 𝑥 ↔ ∀𝑎 ∈ 𝐴 𝑎 ∈ ∪ 𝑣) |
15 | dfss3 3878 | . . . . . 6 ⊢ (𝐴 ⊆ ∪ 𝑣 ↔ ∀𝑎 ∈ 𝐴 𝑎 ∈ ∪ 𝑣) | |
16 | 14, 15 | bitr4i 279 | . . . . 5 ⊢ (∀𝑎 ∈ 𝐴 ∃𝑥 ∈ 𝑣 𝑎 ∈ 𝑥 ↔ 𝐴 ⊆ ∪ 𝑣) |
17 | 16 | anbi2i 622 | . . . 4 ⊢ ((𝑣 ⊆ 𝑌 ∧ ∀𝑎 ∈ 𝐴 ∃𝑥 ∈ 𝑣 𝑎 ∈ 𝑥) ↔ (𝑣 ⊆ 𝑌 ∧ 𝐴 ⊆ ∪ 𝑣)) |
18 | 17 | exbii 1829 | . . 3 ⊢ (∃𝑣(𝑣 ⊆ 𝑌 ∧ ∀𝑎 ∈ 𝐴 ∃𝑥 ∈ 𝑣 𝑎 ∈ 𝑥) ↔ ∃𝑣(𝑣 ⊆ 𝑌 ∧ 𝐴 ⊆ ∪ 𝑣)) |
19 | 9, 18 | sylib 219 | . 2 ⊢ (𝜑 → ∃𝑣(𝑣 ⊆ 𝑌 ∧ 𝐴 ⊆ ∪ 𝑣)) |
20 | setrec1lem3.1 | . . . . . . 7 ⊢ 𝑌 = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} | |
21 | vex 3440 | . . . . . . . 8 ⊢ 𝑣 ∈ V | |
22 | 21 | a1i 11 | . . . . . . 7 ⊢ (𝑣 ⊆ 𝑌 → 𝑣 ∈ V) |
23 | id 22 | . . . . . . 7 ⊢ (𝑣 ⊆ 𝑌 → 𝑣 ⊆ 𝑌) | |
24 | 20, 22, 23 | setrec1lem2 44271 | . . . . . 6 ⊢ (𝑣 ⊆ 𝑌 → ∪ 𝑣 ∈ 𝑌) |
25 | 24 | anim1i 614 | . . . . 5 ⊢ ((𝑣 ⊆ 𝑌 ∧ 𝐴 ⊆ ∪ 𝑣) → (∪ 𝑣 ∈ 𝑌 ∧ 𝐴 ⊆ ∪ 𝑣)) |
26 | 25 | ancomd 462 | . . . 4 ⊢ ((𝑣 ⊆ 𝑌 ∧ 𝐴 ⊆ ∪ 𝑣) → (𝐴 ⊆ ∪ 𝑣 ∧ ∪ 𝑣 ∈ 𝑌)) |
27 | 21 | uniex 7323 | . . . . 5 ⊢ ∪ 𝑣 ∈ V |
28 | sseq2 3914 | . . . . . 6 ⊢ (𝑥 = ∪ 𝑣 → (𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ ∪ 𝑣)) | |
29 | eleq1 2870 | . . . . . 6 ⊢ (𝑥 = ∪ 𝑣 → (𝑥 ∈ 𝑌 ↔ ∪ 𝑣 ∈ 𝑌)) | |
30 | 28, 29 | anbi12d 630 | . . . . 5 ⊢ (𝑥 = ∪ 𝑣 → ((𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ 𝑌) ↔ (𝐴 ⊆ ∪ 𝑣 ∧ ∪ 𝑣 ∈ 𝑌))) |
31 | 27, 30 | spcev 3549 | . . . 4 ⊢ ((𝐴 ⊆ ∪ 𝑣 ∧ ∪ 𝑣 ∈ 𝑌) → ∃𝑥(𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ 𝑌)) |
32 | 26, 31 | syl 17 | . . 3 ⊢ ((𝑣 ⊆ 𝑌 ∧ 𝐴 ⊆ ∪ 𝑣) → ∃𝑥(𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ 𝑌)) |
33 | 32 | exlimiv 1908 | . 2 ⊢ (∃𝑣(𝑣 ⊆ 𝑌 ∧ 𝐴 ⊆ ∪ 𝑣) → ∃𝑥(𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ 𝑌)) |
34 | 19, 33 | syl 17 | 1 ⊢ (𝜑 → ∃𝑥(𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∀wal 1520 = wceq 1522 ∃wex 1761 ∈ wcel 2081 {cab 2775 ∀wral 3105 ∃wrex 3106 Vcvv 3437 ⊆ wss 3859 ∪ cuni 4745 ‘cfv 6225 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5081 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-reg 8902 ax-inf2 8950 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-ral 3110 df-rex 3111 df-reu 3112 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-tp 4477 df-op 4479 df-uni 4746 df-int 4783 df-iun 4827 df-iin 4828 df-br 4963 df-opab 5025 df-mpt 5042 df-tr 5064 df-id 5348 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-we 5404 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-pred 6023 df-ord 6069 df-on 6070 df-lim 6071 df-suc 6072 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-om 7437 df-wrecs 7798 df-recs 7860 df-rdg 7898 df-r1 9039 df-rank 9040 |
This theorem is referenced by: setrec1 44274 |
Copyright terms: Public domain | W3C validator |