Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrval4N Structured version   Visualization version   GIF version

Theorem cvrval4N 39373
Description: Binary relation expressing 𝑌 covers 𝑋. (Contributed by NM, 16-Jun-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
cvrval4.b 𝐵 = (Base‘𝐾)
cvrval4.s < = (lt‘𝐾)
cvrval4.j = (join‘𝐾)
cvrval4.c 𝐶 = ( ⋖ ‘𝐾)
cvrval4.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cvrval4N ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ∃𝑝𝐴 (𝑋 𝑝) = 𝑌)))
Distinct variable groups:   < ,𝑝   𝐴,𝑝   𝐵,𝑝   𝐶,𝑝   𝐾,𝑝   𝑋,𝑝   𝑌,𝑝
Allowed substitution hint:   (𝑝)

Proof of Theorem cvrval4N
StepHypRef Expression
1 cvrval4.b . . . . 5 𝐵 = (Base‘𝐾)
2 cvrval4.s . . . . 5 < = (lt‘𝐾)
3 cvrval4.c . . . . 5 𝐶 = ( ⋖ ‘𝐾)
41, 2, 3cvrlt 39228 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 < 𝑌)
5 eqid 2740 . . . . . . 7 (le‘𝐾) = (le‘𝐾)
6 cvrval4.j . . . . . . 7 = (join‘𝐾)
7 cvrval4.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
81, 5, 6, 3, 7cvrval3 39372 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ ∃𝑝𝐴𝑝(le‘𝐾)𝑋 ∧ (𝑋 𝑝) = 𝑌)))
9 simpr 484 . . . . . . 7 ((¬ 𝑝(le‘𝐾)𝑋 ∧ (𝑋 𝑝) = 𝑌) → (𝑋 𝑝) = 𝑌)
109reximi 3090 . . . . . 6 (∃𝑝𝐴𝑝(le‘𝐾)𝑋 ∧ (𝑋 𝑝) = 𝑌) → ∃𝑝𝐴 (𝑋 𝑝) = 𝑌)
118, 10biimtrdi 253 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 → ∃𝑝𝐴 (𝑋 𝑝) = 𝑌))
1211imp 406 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → ∃𝑝𝐴 (𝑋 𝑝) = 𝑌)
134, 12jca 511 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → (𝑋 < 𝑌 ∧ ∃𝑝𝐴 (𝑋 𝑝) = 𝑌))
1413ex 412 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 → (𝑋 < 𝑌 ∧ ∃𝑝𝐴 (𝑋 𝑝) = 𝑌)))
15 simp1r 1198 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (𝑋 𝑝) = 𝑌) → 𝑋 < 𝑌)
16 simp3 1138 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (𝑋 𝑝) = 𝑌) → (𝑋 𝑝) = 𝑌)
1715, 16breqtrrd 5194 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (𝑋 𝑝) = 𝑌) → 𝑋 < (𝑋 𝑝))
18 simp1l1 1266 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (𝑋 𝑝) = 𝑌) → 𝐾 ∈ HL)
19 simp1l2 1267 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (𝑋 𝑝) = 𝑌) → 𝑋𝐵)
20 simp2 1137 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (𝑋 𝑝) = 𝑌) → 𝑝𝐴)
211, 5, 6, 3, 7cvr1 39369 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑝𝐴) → (¬ 𝑝(le‘𝐾)𝑋𝑋𝐶(𝑋 𝑝)))
2218, 19, 20, 21syl3anc 1371 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (𝑋 𝑝) = 𝑌) → (¬ 𝑝(le‘𝐾)𝑋𝑋𝐶(𝑋 𝑝)))
231, 2, 6, 3, 7cvr2N 39370 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑝𝐴) → (𝑋 < (𝑋 𝑝) ↔ 𝑋𝐶(𝑋 𝑝)))
2418, 19, 20, 23syl3anc 1371 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (𝑋 𝑝) = 𝑌) → (𝑋 < (𝑋 𝑝) ↔ 𝑋𝐶(𝑋 𝑝)))
2522, 24bitr4d 282 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (𝑋 𝑝) = 𝑌) → (¬ 𝑝(le‘𝐾)𝑋𝑋 < (𝑋 𝑝)))
2617, 25mpbird 257 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (𝑋 𝑝) = 𝑌) → ¬ 𝑝(le‘𝐾)𝑋)
2726, 16jca 511 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (𝑋 𝑝) = 𝑌) → (¬ 𝑝(le‘𝐾)𝑋 ∧ (𝑋 𝑝) = 𝑌))
28273exp 1119 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → (𝑝𝐴 → ((𝑋 𝑝) = 𝑌 → (¬ 𝑝(le‘𝐾)𝑋 ∧ (𝑋 𝑝) = 𝑌))))
2928reximdvai 3171 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → (∃𝑝𝐴 (𝑋 𝑝) = 𝑌 → ∃𝑝𝐴𝑝(le‘𝐾)𝑋 ∧ (𝑋 𝑝) = 𝑌)))
3029expimpd 453 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 < 𝑌 ∧ ∃𝑝𝐴 (𝑋 𝑝) = 𝑌) → ∃𝑝𝐴𝑝(le‘𝐾)𝑋 ∧ (𝑋 𝑝) = 𝑌)))
3130, 8sylibrd 259 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 < 𝑌 ∧ ∃𝑝𝐴 (𝑋 𝑝) = 𝑌) → 𝑋𝐶𝑌))
3214, 31impbid 212 1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ∃𝑝𝐴 (𝑋 𝑝) = 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wrex 3076   class class class wbr 5166  cfv 6575  (class class class)co 7450  Basecbs 17260  lecple 17320  ltcplt 18380  joincjn 18383  ccvr 39220  Atomscatm 39221  HLchlt 39308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-riota 7406  df-ov 7453  df-oprab 7454  df-proset 18367  df-poset 18385  df-plt 18402  df-lub 18418  df-glb 18419  df-join 18420  df-meet 18421  df-p0 18497  df-lat 18504  df-clat 18571  df-oposet 39134  df-ol 39136  df-oml 39137  df-covers 39224  df-ats 39225  df-atl 39256  df-cvlat 39280  df-hlat 39309
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator