Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrval4N Structured version   Visualization version   GIF version

Theorem cvrval4N 39411
Description: Binary relation expressing 𝑌 covers 𝑋. (Contributed by NM, 16-Jun-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
cvrval4.b 𝐵 = (Base‘𝐾)
cvrval4.s < = (lt‘𝐾)
cvrval4.j = (join‘𝐾)
cvrval4.c 𝐶 = ( ⋖ ‘𝐾)
cvrval4.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cvrval4N ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ∃𝑝𝐴 (𝑋 𝑝) = 𝑌)))
Distinct variable groups:   < ,𝑝   𝐴,𝑝   𝐵,𝑝   𝐶,𝑝   𝐾,𝑝   𝑋,𝑝   𝑌,𝑝
Allowed substitution hint:   (𝑝)

Proof of Theorem cvrval4N
StepHypRef Expression
1 cvrval4.b . . . . 5 𝐵 = (Base‘𝐾)
2 cvrval4.s . . . . 5 < = (lt‘𝐾)
3 cvrval4.c . . . . 5 𝐶 = ( ⋖ ‘𝐾)
41, 2, 3cvrlt 39266 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 < 𝑌)
5 eqid 2737 . . . . . . 7 (le‘𝐾) = (le‘𝐾)
6 cvrval4.j . . . . . . 7 = (join‘𝐾)
7 cvrval4.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
81, 5, 6, 3, 7cvrval3 39410 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ ∃𝑝𝐴𝑝(le‘𝐾)𝑋 ∧ (𝑋 𝑝) = 𝑌)))
9 simpr 484 . . . . . . 7 ((¬ 𝑝(le‘𝐾)𝑋 ∧ (𝑋 𝑝) = 𝑌) → (𝑋 𝑝) = 𝑌)
109reximi 3084 . . . . . 6 (∃𝑝𝐴𝑝(le‘𝐾)𝑋 ∧ (𝑋 𝑝) = 𝑌) → ∃𝑝𝐴 (𝑋 𝑝) = 𝑌)
118, 10biimtrdi 253 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 → ∃𝑝𝐴 (𝑋 𝑝) = 𝑌))
1211imp 406 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → ∃𝑝𝐴 (𝑋 𝑝) = 𝑌)
134, 12jca 511 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → (𝑋 < 𝑌 ∧ ∃𝑝𝐴 (𝑋 𝑝) = 𝑌))
1413ex 412 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 → (𝑋 < 𝑌 ∧ ∃𝑝𝐴 (𝑋 𝑝) = 𝑌)))
15 simp1r 1199 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (𝑋 𝑝) = 𝑌) → 𝑋 < 𝑌)
16 simp3 1139 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (𝑋 𝑝) = 𝑌) → (𝑋 𝑝) = 𝑌)
1715, 16breqtrrd 5179 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (𝑋 𝑝) = 𝑌) → 𝑋 < (𝑋 𝑝))
18 simp1l1 1267 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (𝑋 𝑝) = 𝑌) → 𝐾 ∈ HL)
19 simp1l2 1268 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (𝑋 𝑝) = 𝑌) → 𝑋𝐵)
20 simp2 1138 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (𝑋 𝑝) = 𝑌) → 𝑝𝐴)
211, 5, 6, 3, 7cvr1 39407 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑝𝐴) → (¬ 𝑝(le‘𝐾)𝑋𝑋𝐶(𝑋 𝑝)))
2218, 19, 20, 21syl3anc 1372 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (𝑋 𝑝) = 𝑌) → (¬ 𝑝(le‘𝐾)𝑋𝑋𝐶(𝑋 𝑝)))
231, 2, 6, 3, 7cvr2N 39408 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑝𝐴) → (𝑋 < (𝑋 𝑝) ↔ 𝑋𝐶(𝑋 𝑝)))
2418, 19, 20, 23syl3anc 1372 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (𝑋 𝑝) = 𝑌) → (𝑋 < (𝑋 𝑝) ↔ 𝑋𝐶(𝑋 𝑝)))
2522, 24bitr4d 282 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (𝑋 𝑝) = 𝑌) → (¬ 𝑝(le‘𝐾)𝑋𝑋 < (𝑋 𝑝)))
2617, 25mpbird 257 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (𝑋 𝑝) = 𝑌) → ¬ 𝑝(le‘𝐾)𝑋)
2726, 16jca 511 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (𝑋 𝑝) = 𝑌) → (¬ 𝑝(le‘𝐾)𝑋 ∧ (𝑋 𝑝) = 𝑌))
28273exp 1120 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → (𝑝𝐴 → ((𝑋 𝑝) = 𝑌 → (¬ 𝑝(le‘𝐾)𝑋 ∧ (𝑋 𝑝) = 𝑌))))
2928reximdvai 3165 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → (∃𝑝𝐴 (𝑋 𝑝) = 𝑌 → ∃𝑝𝐴𝑝(le‘𝐾)𝑋 ∧ (𝑋 𝑝) = 𝑌)))
3029expimpd 453 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 < 𝑌 ∧ ∃𝑝𝐴 (𝑋 𝑝) = 𝑌) → ∃𝑝𝐴𝑝(le‘𝐾)𝑋 ∧ (𝑋 𝑝) = 𝑌)))
3130, 8sylibrd 259 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 < 𝑌 ∧ ∃𝑝𝐴 (𝑋 𝑝) = 𝑌) → 𝑋𝐶𝑌))
3214, 31impbid 212 1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ∃𝑝𝐴 (𝑋 𝑝) = 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1539  wcel 2108  wrex 3070   class class class wbr 5151  cfv 6569  (class class class)co 7438  Basecbs 17254  lecple 17314  ltcplt 18375  joincjn 18378  ccvr 39258  Atomscatm 39259  HLchlt 39346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-proset 18361  df-poset 18380  df-plt 18397  df-lub 18413  df-glb 18414  df-join 18415  df-meet 18416  df-p0 18492  df-lat 18499  df-clat 18566  df-oposet 39172  df-ol 39174  df-oml 39175  df-covers 39262  df-ats 39263  df-atl 39294  df-cvlat 39318  df-hlat 39347
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator