MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmcv Structured version   Visualization version   GIF version

Theorem lsmcv 20132
Description: Subspace sum has the covering property (using spans of singletons to represent atoms). Similar to Exercise 5 of [Kalmbach] p. 153. (spansncvi 29687 analog.) TODO: ugly proof; can it be shortened? (Contributed by NM, 2-Oct-2014.)
Hypotheses
Ref Expression
lsmcv.v 𝑉 = (Base‘𝑊)
lsmcv.s 𝑆 = (LSubSp‘𝑊)
lsmcv.n 𝑁 = (LSpan‘𝑊)
lsmcv.p = (LSSum‘𝑊)
lsmcv.w (𝜑𝑊 ∈ LVec)
lsmcv.t (𝜑𝑇𝑆)
lsmcv.u (𝜑𝑈𝑆)
lsmcv.x (𝜑𝑋𝑉)
Assertion
Ref Expression
lsmcv ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → 𝑈 = (𝑇 (𝑁‘{𝑋})))

Proof of Theorem lsmcv
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1140 . 2 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → 𝑈 ⊆ (𝑇 (𝑁‘{𝑋})))
2 simp2 1139 . . . 4 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → 𝑇𝑈)
3 pssss 3996 . . . 4 (𝑇𝑈𝑇𝑈)
42, 3syl 17 . . 3 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → 𝑇𝑈)
5 pssnel 4371 . . . . 5 (𝑇𝑈 → ∃𝑥(𝑥𝑈 ∧ ¬ 𝑥𝑇))
62, 5syl 17 . . . 4 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → ∃𝑥(𝑥𝑈 ∧ ¬ 𝑥𝑇))
7 simpl3 1195 . . . . . . 7 (((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) → 𝑈 ⊆ (𝑇 (𝑁‘{𝑋})))
8 simprl 771 . . . . . . 7 (((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) → 𝑥𝑈)
97, 8sseldd 3888 . . . . . 6 (((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) → 𝑥 ∈ (𝑇 (𝑁‘{𝑋})))
10 lsmcv.w . . . . . . . . . . . 12 (𝜑𝑊 ∈ LVec)
11 lveclmod 20097 . . . . . . . . . . . 12 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
1210, 11syl 17 . . . . . . . . . . 11 (𝜑𝑊 ∈ LMod)
13 lsmcv.s . . . . . . . . . . . 12 𝑆 = (LSubSp‘𝑊)
1413lsssssubg 19949 . . . . . . . . . . 11 (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊))
1512, 14syl 17 . . . . . . . . . 10 (𝜑𝑆 ⊆ (SubGrp‘𝑊))
16 lsmcv.t . . . . . . . . . 10 (𝜑𝑇𝑆)
1715, 16sseldd 3888 . . . . . . . . 9 (𝜑𝑇 ∈ (SubGrp‘𝑊))
18 lsmcv.x . . . . . . . . . . 11 (𝜑𝑋𝑉)
19 lsmcv.v . . . . . . . . . . . 12 𝑉 = (Base‘𝑊)
20 lsmcv.n . . . . . . . . . . . 12 𝑁 = (LSpan‘𝑊)
2119, 13, 20lspsncl 19968 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ 𝑆)
2212, 18, 21syl2anc 587 . . . . . . . . . 10 (𝜑 → (𝑁‘{𝑋}) ∈ 𝑆)
2315, 22sseldd 3888 . . . . . . . . 9 (𝜑 → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
24 eqid 2736 . . . . . . . . . 10 (+g𝑊) = (+g𝑊)
25 lsmcv.p . . . . . . . . . 10 = (LSSum‘𝑊)
2624, 25lsmelval 18992 . . . . . . . . 9 ((𝑇 ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) → (𝑥 ∈ (𝑇 (𝑁‘{𝑋})) ↔ ∃𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})𝑥 = (𝑦(+g𝑊)𝑧)))
2717, 23, 26syl2anc 587 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝑇 (𝑁‘{𝑋})) ↔ ∃𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})𝑥 = (𝑦(+g𝑊)𝑧)))
28273ad2ant1 1135 . . . . . . 7 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → (𝑥 ∈ (𝑇 (𝑁‘{𝑋})) ↔ ∃𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})𝑥 = (𝑦(+g𝑊)𝑧)))
2928adantr 484 . . . . . 6 (((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) → (𝑥 ∈ (𝑇 (𝑁‘{𝑋})) ↔ ∃𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})𝑥 = (𝑦(+g𝑊)𝑧)))
309, 29mpbid 235 . . . . 5 (((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) → ∃𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})𝑥 = (𝑦(+g𝑊)𝑧))
31 simp1rr 1241 . . . . . . . . 9 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → ¬ 𝑥𝑇)
32 simp2l 1201 . . . . . . . . . . 11 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑦𝑇)
33 oveq2 7199 . . . . . . . . . . . . . . . 16 (𝑧 = (0g𝑊) → (𝑦(+g𝑊)𝑧) = (𝑦(+g𝑊)(0g𝑊)))
3433eqeq2d 2747 . . . . . . . . . . . . . . 15 (𝑧 = (0g𝑊) → (𝑥 = (𝑦(+g𝑊)𝑧) ↔ 𝑥 = (𝑦(+g𝑊)(0g𝑊))))
3534biimpac 482 . . . . . . . . . . . . . 14 ((𝑥 = (𝑦(+g𝑊)𝑧) ∧ 𝑧 = (0g𝑊)) → 𝑥 = (𝑦(+g𝑊)(0g𝑊)))
36123ad2ant1 1135 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → 𝑊 ∈ LMod)
3736ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋}))) → 𝑊 ∈ LMod)
38163ad2ant1 1135 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → 𝑇𝑆)
3938ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋}))) → 𝑇𝑆)
40 simprl 771 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋}))) → 𝑦𝑇)
4119, 13lssel 19928 . . . . . . . . . . . . . . . . . . 19 ((𝑇𝑆𝑦𝑇) → 𝑦𝑉)
4239, 40, 41syl2anc 587 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋}))) → 𝑦𝑉)
43 eqid 2736 . . . . . . . . . . . . . . . . . . 19 (0g𝑊) = (0g𝑊)
4419, 24, 43lmod0vrid 19884 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ LMod ∧ 𝑦𝑉) → (𝑦(+g𝑊)(0g𝑊)) = 𝑦)
4537, 42, 44syl2anc 587 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋}))) → (𝑦(+g𝑊)(0g𝑊)) = 𝑦)
4645eqeq2d 2747 . . . . . . . . . . . . . . . 16 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋}))) → (𝑥 = (𝑦(+g𝑊)(0g𝑊)) ↔ 𝑥 = 𝑦))
4746biimpd 232 . . . . . . . . . . . . . . 15 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋}))) → (𝑥 = (𝑦(+g𝑊)(0g𝑊)) → 𝑥 = 𝑦))
4847ex 416 . . . . . . . . . . . . . 14 (((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) → ((𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) → (𝑥 = (𝑦(+g𝑊)(0g𝑊)) → 𝑥 = 𝑦)))
4935, 48syl7 74 . . . . . . . . . . . . 13 (((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) → ((𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) → ((𝑥 = (𝑦(+g𝑊)𝑧) ∧ 𝑧 = (0g𝑊)) → 𝑥 = 𝑦)))
5049exp4a 435 . . . . . . . . . . . 12 (((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) → ((𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) → (𝑥 = (𝑦(+g𝑊)𝑧) → (𝑧 = (0g𝑊) → 𝑥 = 𝑦))))
51503imp 1113 . . . . . . . . . . 11 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → (𝑧 = (0g𝑊) → 𝑥 = 𝑦))
52 eleq1 2818 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝑥𝑇𝑦𝑇))
5352biimparc 483 . . . . . . . . . . 11 ((𝑦𝑇𝑥 = 𝑦) → 𝑥𝑇)
5432, 51, 53syl6an 684 . . . . . . . . . 10 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → (𝑧 = (0g𝑊) → 𝑥𝑇))
5554necon3bd 2946 . . . . . . . . 9 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → (¬ 𝑥𝑇𝑧 ≠ (0g𝑊)))
5631, 55mpd 15 . . . . . . . 8 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑧 ≠ (0g𝑊))
57103ad2ant1 1135 . . . . . . . . . . . . 13 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → 𝑊 ∈ LVec)
5857adantr 484 . . . . . . . . . . . 12 (((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) → 𝑊 ∈ LVec)
59583ad2ant1 1135 . . . . . . . . . . 11 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑊 ∈ LVec)
60 lmodabl 19900 . . . . . . . . . . . 12 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
6111, 60syl 17 . . . . . . . . . . 11 (𝑊 ∈ LVec → 𝑊 ∈ Abel)
6259, 61syl 17 . . . . . . . . . 10 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑊 ∈ Abel)
63 simp1l1 1268 . . . . . . . . . . . 12 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝜑)
6463, 16syl 17 . . . . . . . . . . 11 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑇𝑆)
6564, 32, 41syl2anc 587 . . . . . . . . . 10 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑦𝑉)
6659, 11syl 17 . . . . . . . . . . . 12 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑊 ∈ LMod)
6763, 18syl 17 . . . . . . . . . . . 12 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑋𝑉)
6866, 67, 21syl2anc 587 . . . . . . . . . . 11 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → (𝑁‘{𝑋}) ∈ 𝑆)
69 simp2r 1202 . . . . . . . . . . 11 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑧 ∈ (𝑁‘{𝑋}))
7019, 13lssel 19928 . . . . . . . . . . 11 (((𝑁‘{𝑋}) ∈ 𝑆𝑧 ∈ (𝑁‘{𝑋})) → 𝑧𝑉)
7168, 69, 70syl2anc 587 . . . . . . . . . 10 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑧𝑉)
72 eqid 2736 . . . . . . . . . . 11 (-g𝑊) = (-g𝑊)
7319, 24, 72ablpncan2 19155 . . . . . . . . . 10 ((𝑊 ∈ Abel ∧ 𝑦𝑉𝑧𝑉) → ((𝑦(+g𝑊)𝑧)(-g𝑊)𝑦) = 𝑧)
7462, 65, 71, 73syl3anc 1373 . . . . . . . . 9 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → ((𝑦(+g𝑊)𝑧)(-g𝑊)𝑦) = 𝑧)
75 lsmcv.u . . . . . . . . . . 11 (𝜑𝑈𝑆)
7663, 75syl 17 . . . . . . . . . 10 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑈𝑆)
77 simp3 1140 . . . . . . . . . . 11 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑥 = (𝑦(+g𝑊)𝑧))
78 simp1rl 1240 . . . . . . . . . . 11 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑥𝑈)
7977, 78eqeltrrd 2832 . . . . . . . . . 10 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → (𝑦(+g𝑊)𝑧) ∈ 𝑈)
80 simp1l2 1269 . . . . . . . . . . 11 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑇𝑈)
813sselda 3887 . . . . . . . . . . 11 ((𝑇𝑈𝑦𝑇) → 𝑦𝑈)
8280, 32, 81syl2anc 587 . . . . . . . . . 10 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑦𝑈)
8372, 13lssvsubcl 19934 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ ((𝑦(+g𝑊)𝑧) ∈ 𝑈𝑦𝑈)) → ((𝑦(+g𝑊)𝑧)(-g𝑊)𝑦) ∈ 𝑈)
8466, 76, 79, 82, 83syl22anc 839 . . . . . . . . 9 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → ((𝑦(+g𝑊)𝑧)(-g𝑊)𝑦) ∈ 𝑈)
8574, 84eqeltrrd 2832 . . . . . . . 8 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑧𝑈)
86593ad2ant1 1135 . . . . . . . . . 10 (((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) ∧ 𝑧 ≠ (0g𝑊) ∧ 𝑧𝑈) → 𝑊 ∈ LVec)
87633ad2ant1 1135 . . . . . . . . . . 11 (((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) ∧ 𝑧 ≠ (0g𝑊) ∧ 𝑧𝑈) → 𝜑)
8887, 18syl 17 . . . . . . . . . 10 (((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) ∧ 𝑧 ≠ (0g𝑊) ∧ 𝑧𝑈) → 𝑋𝑉)
89 simp12r 1289 . . . . . . . . . 10 (((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) ∧ 𝑧 ≠ (0g𝑊) ∧ 𝑧𝑈) → 𝑧 ∈ (𝑁‘{𝑋}))
90 simp2 1139 . . . . . . . . . 10 (((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) ∧ 𝑧 ≠ (0g𝑊) ∧ 𝑧𝑈) → 𝑧 ≠ (0g𝑊))
9119, 43, 20, 86, 88, 89, 90lspsneleq 20106 . . . . . . . . 9 (((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) ∧ 𝑧 ≠ (0g𝑊) ∧ 𝑧𝑈) → (𝑁‘{𝑧}) = (𝑁‘{𝑋}))
9286, 11syl 17 . . . . . . . . . 10 (((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) ∧ 𝑧 ≠ (0g𝑊) ∧ 𝑧𝑈) → 𝑊 ∈ LMod)
9387, 75syl 17 . . . . . . . . . 10 (((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) ∧ 𝑧 ≠ (0g𝑊) ∧ 𝑧𝑈) → 𝑈𝑆)
94 simp3 1140 . . . . . . . . . 10 (((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) ∧ 𝑧 ≠ (0g𝑊) ∧ 𝑧𝑈) → 𝑧𝑈)
9513, 20, 92, 93, 94lspsnel5a 19987 . . . . . . . . 9 (((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) ∧ 𝑧 ≠ (0g𝑊) ∧ 𝑧𝑈) → (𝑁‘{𝑧}) ⊆ 𝑈)
9691, 95eqsstrrd 3926 . . . . . . . 8 (((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) ∧ 𝑧 ≠ (0g𝑊) ∧ 𝑧𝑈) → (𝑁‘{𝑋}) ⊆ 𝑈)
9756, 85, 96mpd3an23 1465 . . . . . . 7 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → (𝑁‘{𝑋}) ⊆ 𝑈)
98973exp 1121 . . . . . 6 (((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) → ((𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) → (𝑥 = (𝑦(+g𝑊)𝑧) → (𝑁‘{𝑋}) ⊆ 𝑈)))
9998rexlimdvv 3202 . . . . 5 (((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) → (∃𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})𝑥 = (𝑦(+g𝑊)𝑧) → (𝑁‘{𝑋}) ⊆ 𝑈))
10030, 99mpd 15 . . . 4 (((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) → (𝑁‘{𝑋}) ⊆ 𝑈)
1016, 100exlimddv 1943 . . 3 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → (𝑁‘{𝑋}) ⊆ 𝑈)
10215, 75sseldd 3888 . . . . 5 (𝜑𝑈 ∈ (SubGrp‘𝑊))
10325lsmlub 19008 . . . . 5 ((𝑇 ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → ((𝑇𝑈 ∧ (𝑁‘{𝑋}) ⊆ 𝑈) ↔ (𝑇 (𝑁‘{𝑋})) ⊆ 𝑈))
10417, 23, 102, 103syl3anc 1373 . . . 4 (𝜑 → ((𝑇𝑈 ∧ (𝑁‘{𝑋}) ⊆ 𝑈) ↔ (𝑇 (𝑁‘{𝑋})) ⊆ 𝑈))
1051043ad2ant1 1135 . . 3 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → ((𝑇𝑈 ∧ (𝑁‘{𝑋}) ⊆ 𝑈) ↔ (𝑇 (𝑁‘{𝑋})) ⊆ 𝑈))
1064, 101, 105mpbi2and 712 . 2 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → (𝑇 (𝑁‘{𝑋})) ⊆ 𝑈)
1071, 106eqssd 3904 1 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → 𝑈 = (𝑇 (𝑁‘{𝑋})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wex 1787  wcel 2112  wne 2932  wrex 3052  wss 3853  wpss 3854  {csn 4527  cfv 6358  (class class class)co 7191  Basecbs 16666  +gcplusg 16749  0gc0g 16898  -gcsg 18321  SubGrpcsubg 18491  LSSumclsm 18977  Abelcabl 19125  LModclmod 19853  LSubSpclss 19922  LSpanclspn 19962  LVecclvec 20093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-tpos 7946  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-2 11858  df-3 11859  df-ndx 16669  df-slot 16670  df-base 16672  df-sets 16673  df-ress 16674  df-plusg 16762  df-mulr 16763  df-0g 16900  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-submnd 18173  df-grp 18322  df-minusg 18323  df-sbg 18324  df-subg 18494  df-lsm 18979  df-cmn 19126  df-abl 19127  df-mgp 19459  df-ur 19471  df-ring 19518  df-oppr 19595  df-dvdsr 19613  df-unit 19614  df-invr 19644  df-drng 19723  df-lmod 19855  df-lss 19923  df-lsp 19963  df-lvec 20094
This theorem is referenced by:  lshpnelb  36684  lshpcmp  36688  lsmsatcv  36710  lsmcv2  36729  dochshpncl  39084
  Copyright terms: Public domain W3C validator