MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmcv Structured version   Visualization version   GIF version

Theorem lsmcv 19414
Description: Subspace sum has the covering property (using spans of singletons to represent atoms). Similar to Exercise 5 of [Kalmbach] p. 153. (spansncvi 28902 analog.) TODO: ugly proof; can it be shortened? (Contributed by NM, 2-Oct-2014.)
Hypotheses
Ref Expression
lsmcv.v 𝑉 = (Base‘𝑊)
lsmcv.s 𝑆 = (LSubSp‘𝑊)
lsmcv.n 𝑁 = (LSpan‘𝑊)
lsmcv.p = (LSSum‘𝑊)
lsmcv.w (𝜑𝑊 ∈ LVec)
lsmcv.t (𝜑𝑇𝑆)
lsmcv.u (𝜑𝑈𝑆)
lsmcv.x (𝜑𝑋𝑉)
Assertion
Ref Expression
lsmcv ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → 𝑈 = (𝑇 (𝑁‘{𝑋})))

Proof of Theorem lsmcv
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1168 . 2 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → 𝑈 ⊆ (𝑇 (𝑁‘{𝑋})))
2 simp2 1167 . . . 4 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → 𝑇𝑈)
3 pssss 3863 . . . 4 (𝑇𝑈𝑇𝑈)
42, 3syl 17 . . 3 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → 𝑇𝑈)
5 pssnel 4199 . . . . 5 (𝑇𝑈 → ∃𝑥(𝑥𝑈 ∧ ¬ 𝑥𝑇))
62, 5syl 17 . . . 4 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → ∃𝑥(𝑥𝑈 ∧ ¬ 𝑥𝑇))
7 simpl3 1246 . . . . . . 7 (((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) → 𝑈 ⊆ (𝑇 (𝑁‘{𝑋})))
8 simprl 787 . . . . . . 7 (((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) → 𝑥𝑈)
97, 8sseldd 3762 . . . . . 6 (((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) → 𝑥 ∈ (𝑇 (𝑁‘{𝑋})))
10 lsmcv.w . . . . . . . . . . . 12 (𝜑𝑊 ∈ LVec)
11 lveclmod 19378 . . . . . . . . . . . 12 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
1210, 11syl 17 . . . . . . . . . . 11 (𝜑𝑊 ∈ LMod)
13 lsmcv.s . . . . . . . . . . . 12 𝑆 = (LSubSp‘𝑊)
1413lsssssubg 19230 . . . . . . . . . . 11 (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊))
1512, 14syl 17 . . . . . . . . . 10 (𝜑𝑆 ⊆ (SubGrp‘𝑊))
16 lsmcv.t . . . . . . . . . 10 (𝜑𝑇𝑆)
1715, 16sseldd 3762 . . . . . . . . 9 (𝜑𝑇 ∈ (SubGrp‘𝑊))
18 lsmcv.x . . . . . . . . . . 11 (𝜑𝑋𝑉)
19 lsmcv.v . . . . . . . . . . . 12 𝑉 = (Base‘𝑊)
20 lsmcv.n . . . . . . . . . . . 12 𝑁 = (LSpan‘𝑊)
2119, 13, 20lspsncl 19249 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ 𝑆)
2212, 18, 21syl2anc 579 . . . . . . . . . 10 (𝜑 → (𝑁‘{𝑋}) ∈ 𝑆)
2315, 22sseldd 3762 . . . . . . . . 9 (𝜑 → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
24 eqid 2765 . . . . . . . . . 10 (+g𝑊) = (+g𝑊)
25 lsmcv.p . . . . . . . . . 10 = (LSSum‘𝑊)
2624, 25lsmelval 18330 . . . . . . . . 9 ((𝑇 ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) → (𝑥 ∈ (𝑇 (𝑁‘{𝑋})) ↔ ∃𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})𝑥 = (𝑦(+g𝑊)𝑧)))
2717, 23, 26syl2anc 579 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝑇 (𝑁‘{𝑋})) ↔ ∃𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})𝑥 = (𝑦(+g𝑊)𝑧)))
28273ad2ant1 1163 . . . . . . 7 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → (𝑥 ∈ (𝑇 (𝑁‘{𝑋})) ↔ ∃𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})𝑥 = (𝑦(+g𝑊)𝑧)))
2928adantr 472 . . . . . 6 (((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) → (𝑥 ∈ (𝑇 (𝑁‘{𝑋})) ↔ ∃𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})𝑥 = (𝑦(+g𝑊)𝑧)))
309, 29mpbid 223 . . . . 5 (((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) → ∃𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})𝑥 = (𝑦(+g𝑊)𝑧))
31 simp1rr 1320 . . . . . . . . 9 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → ¬ 𝑥𝑇)
32 simp2l 1256 . . . . . . . . . . 11 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑦𝑇)
33 oveq2 6850 . . . . . . . . . . . . . . . 16 (𝑧 = (0g𝑊) → (𝑦(+g𝑊)𝑧) = (𝑦(+g𝑊)(0g𝑊)))
3433eqeq2d 2775 . . . . . . . . . . . . . . 15 (𝑧 = (0g𝑊) → (𝑥 = (𝑦(+g𝑊)𝑧) ↔ 𝑥 = (𝑦(+g𝑊)(0g𝑊))))
3534biimpac 470 . . . . . . . . . . . . . 14 ((𝑥 = (𝑦(+g𝑊)𝑧) ∧ 𝑧 = (0g𝑊)) → 𝑥 = (𝑦(+g𝑊)(0g𝑊)))
36123ad2ant1 1163 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → 𝑊 ∈ LMod)
3736ad2antrr 717 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋}))) → 𝑊 ∈ LMod)
38163ad2ant1 1163 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → 𝑇𝑆)
3938ad2antrr 717 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋}))) → 𝑇𝑆)
40 simprl 787 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋}))) → 𝑦𝑇)
4119, 13lssel 19207 . . . . . . . . . . . . . . . . . . 19 ((𝑇𝑆𝑦𝑇) → 𝑦𝑉)
4239, 40, 41syl2anc 579 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋}))) → 𝑦𝑉)
43 eqid 2765 . . . . . . . . . . . . . . . . . . 19 (0g𝑊) = (0g𝑊)
4419, 24, 43lmod0vrid 19163 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ LMod ∧ 𝑦𝑉) → (𝑦(+g𝑊)(0g𝑊)) = 𝑦)
4537, 42, 44syl2anc 579 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋}))) → (𝑦(+g𝑊)(0g𝑊)) = 𝑦)
4645eqeq2d 2775 . . . . . . . . . . . . . . . 16 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋}))) → (𝑥 = (𝑦(+g𝑊)(0g𝑊)) ↔ 𝑥 = 𝑦))
4746biimpd 220 . . . . . . . . . . . . . . 15 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋}))) → (𝑥 = (𝑦(+g𝑊)(0g𝑊)) → 𝑥 = 𝑦))
4847ex 401 . . . . . . . . . . . . . 14 (((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) → ((𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) → (𝑥 = (𝑦(+g𝑊)(0g𝑊)) → 𝑥 = 𝑦)))
4935, 48syl7 74 . . . . . . . . . . . . 13 (((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) → ((𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) → ((𝑥 = (𝑦(+g𝑊)𝑧) ∧ 𝑧 = (0g𝑊)) → 𝑥 = 𝑦)))
5049exp4a 422 . . . . . . . . . . . 12 (((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) → ((𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) → (𝑥 = (𝑦(+g𝑊)𝑧) → (𝑧 = (0g𝑊) → 𝑥 = 𝑦))))
51503imp 1137 . . . . . . . . . . 11 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → (𝑧 = (0g𝑊) → 𝑥 = 𝑦))
52 eleq1 2832 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝑥𝑇𝑦𝑇))
5352biimparc 471 . . . . . . . . . . 11 ((𝑦𝑇𝑥 = 𝑦) → 𝑥𝑇)
5432, 51, 53syl6an 674 . . . . . . . . . 10 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → (𝑧 = (0g𝑊) → 𝑥𝑇))
5554necon3bd 2951 . . . . . . . . 9 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → (¬ 𝑥𝑇𝑧 ≠ (0g𝑊)))
5631, 55mpd 15 . . . . . . . 8 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑧 ≠ (0g𝑊))
57103ad2ant1 1163 . . . . . . . . . . . . 13 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → 𝑊 ∈ LVec)
5857adantr 472 . . . . . . . . . . . 12 (((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) → 𝑊 ∈ LVec)
59583ad2ant1 1163 . . . . . . . . . . 11 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑊 ∈ LVec)
60 lmodabl 19179 . . . . . . . . . . . 12 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
6111, 60syl 17 . . . . . . . . . . 11 (𝑊 ∈ LVec → 𝑊 ∈ Abel)
6259, 61syl 17 . . . . . . . . . 10 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑊 ∈ Abel)
63 simp1l1 1365 . . . . . . . . . . . 12 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝜑)
6463, 16syl 17 . . . . . . . . . . 11 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑇𝑆)
6564, 32, 41syl2anc 579 . . . . . . . . . 10 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑦𝑉)
6659, 11syl 17 . . . . . . . . . . . 12 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑊 ∈ LMod)
6763, 18syl 17 . . . . . . . . . . . 12 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑋𝑉)
6866, 67, 21syl2anc 579 . . . . . . . . . . 11 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → (𝑁‘{𝑋}) ∈ 𝑆)
69 simp2r 1257 . . . . . . . . . . 11 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑧 ∈ (𝑁‘{𝑋}))
7019, 13lssel 19207 . . . . . . . . . . 11 (((𝑁‘{𝑋}) ∈ 𝑆𝑧 ∈ (𝑁‘{𝑋})) → 𝑧𝑉)
7168, 69, 70syl2anc 579 . . . . . . . . . 10 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑧𝑉)
72 eqid 2765 . . . . . . . . . . 11 (-g𝑊) = (-g𝑊)
7319, 24, 72ablpncan2 18487 . . . . . . . . . 10 ((𝑊 ∈ Abel ∧ 𝑦𝑉𝑧𝑉) → ((𝑦(+g𝑊)𝑧)(-g𝑊)𝑦) = 𝑧)
7462, 65, 71, 73syl3anc 1490 . . . . . . . . 9 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → ((𝑦(+g𝑊)𝑧)(-g𝑊)𝑦) = 𝑧)
75 lsmcv.u . . . . . . . . . . 11 (𝜑𝑈𝑆)
7663, 75syl 17 . . . . . . . . . 10 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑈𝑆)
77 simp3 1168 . . . . . . . . . . 11 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑥 = (𝑦(+g𝑊)𝑧))
78 simp1rl 1319 . . . . . . . . . . 11 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑥𝑈)
7977, 78eqeltrrd 2845 . . . . . . . . . 10 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → (𝑦(+g𝑊)𝑧) ∈ 𝑈)
80 simp1l2 1366 . . . . . . . . . . 11 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑇𝑈)
813sselda 3761 . . . . . . . . . . 11 ((𝑇𝑈𝑦𝑇) → 𝑦𝑈)
8280, 32, 81syl2anc 579 . . . . . . . . . 10 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑦𝑈)
8372, 13lssvsubcl 19213 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ ((𝑦(+g𝑊)𝑧) ∈ 𝑈𝑦𝑈)) → ((𝑦(+g𝑊)𝑧)(-g𝑊)𝑦) ∈ 𝑈)
8466, 76, 79, 82, 83syl22anc 867 . . . . . . . . 9 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → ((𝑦(+g𝑊)𝑧)(-g𝑊)𝑦) ∈ 𝑈)
8574, 84eqeltrrd 2845 . . . . . . . 8 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑧𝑈)
86593ad2ant1 1163 . . . . . . . . . 10 (((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) ∧ 𝑧 ≠ (0g𝑊) ∧ 𝑧𝑈) → 𝑊 ∈ LVec)
87633ad2ant1 1163 . . . . . . . . . . 11 (((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) ∧ 𝑧 ≠ (0g𝑊) ∧ 𝑧𝑈) → 𝜑)
8887, 18syl 17 . . . . . . . . . 10 (((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) ∧ 𝑧 ≠ (0g𝑊) ∧ 𝑧𝑈) → 𝑋𝑉)
89 simp12r 1386 . . . . . . . . . 10 (((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) ∧ 𝑧 ≠ (0g𝑊) ∧ 𝑧𝑈) → 𝑧 ∈ (𝑁‘{𝑋}))
90 simp2 1167 . . . . . . . . . 10 (((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) ∧ 𝑧 ≠ (0g𝑊) ∧ 𝑧𝑈) → 𝑧 ≠ (0g𝑊))
9119, 43, 20, 86, 88, 89, 90lspsneleq 19387 . . . . . . . . 9 (((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) ∧ 𝑧 ≠ (0g𝑊) ∧ 𝑧𝑈) → (𝑁‘{𝑧}) = (𝑁‘{𝑋}))
9286, 11syl 17 . . . . . . . . . 10 (((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) ∧ 𝑧 ≠ (0g𝑊) ∧ 𝑧𝑈) → 𝑊 ∈ LMod)
9387, 75syl 17 . . . . . . . . . 10 (((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) ∧ 𝑧 ≠ (0g𝑊) ∧ 𝑧𝑈) → 𝑈𝑆)
94 simp3 1168 . . . . . . . . . 10 (((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) ∧ 𝑧 ≠ (0g𝑊) ∧ 𝑧𝑈) → 𝑧𝑈)
9513, 20, 92, 93, 94lspsnel5a 19268 . . . . . . . . 9 (((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) ∧ 𝑧 ≠ (0g𝑊) ∧ 𝑧𝑈) → (𝑁‘{𝑧}) ⊆ 𝑈)
9691, 95eqsstr3d 3800 . . . . . . . 8 (((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) ∧ 𝑧 ≠ (0g𝑊) ∧ 𝑧𝑈) → (𝑁‘{𝑋}) ⊆ 𝑈)
9756, 85, 96mpd3an23 1587 . . . . . . 7 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → (𝑁‘{𝑋}) ⊆ 𝑈)
98973exp 1148 . . . . . 6 (((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) → ((𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) → (𝑥 = (𝑦(+g𝑊)𝑧) → (𝑁‘{𝑋}) ⊆ 𝑈)))
9998rexlimdvv 3184 . . . . 5 (((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) → (∃𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})𝑥 = (𝑦(+g𝑊)𝑧) → (𝑁‘{𝑋}) ⊆ 𝑈))
10030, 99mpd 15 . . . 4 (((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) → (𝑁‘{𝑋}) ⊆ 𝑈)
1016, 100exlimddv 2030 . . 3 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → (𝑁‘{𝑋}) ⊆ 𝑈)
10215, 75sseldd 3762 . . . . 5 (𝜑𝑈 ∈ (SubGrp‘𝑊))
10325lsmlub 18344 . . . . 5 ((𝑇 ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → ((𝑇𝑈 ∧ (𝑁‘{𝑋}) ⊆ 𝑈) ↔ (𝑇 (𝑁‘{𝑋})) ⊆ 𝑈))
10417, 23, 102, 103syl3anc 1490 . . . 4 (𝜑 → ((𝑇𝑈 ∧ (𝑁‘{𝑋}) ⊆ 𝑈) ↔ (𝑇 (𝑁‘{𝑋})) ⊆ 𝑈))
1051043ad2ant1 1163 . . 3 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → ((𝑇𝑈 ∧ (𝑁‘{𝑋}) ⊆ 𝑈) ↔ (𝑇 (𝑁‘{𝑋})) ⊆ 𝑈))
1064, 101, 105mpbi2and 703 . 2 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → (𝑇 (𝑁‘{𝑋})) ⊆ 𝑈)
1071, 106eqssd 3778 1 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → 𝑈 = (𝑇 (𝑁‘{𝑋})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wex 1874  wcel 2155  wne 2937  wrex 3056  wss 3732  wpss 3733  {csn 4334  cfv 6068  (class class class)co 6842  Basecbs 16132  +gcplusg 16216  0gc0g 16368  -gcsg 17693  SubGrpcsubg 17854  LSSumclsm 18315  Abelcabl 18460  LModclmod 19132  LSubSpclss 19201  LSpanclspn 19243  LVecclvec 19374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-tpos 7555  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-nn 11275  df-2 11335  df-3 11336  df-ndx 16135  df-slot 16136  df-base 16138  df-sets 16139  df-ress 16140  df-plusg 16229  df-mulr 16230  df-0g 16370  df-mgm 17510  df-sgrp 17552  df-mnd 17563  df-submnd 17604  df-grp 17694  df-minusg 17695  df-sbg 17696  df-subg 17857  df-lsm 18317  df-cmn 18461  df-abl 18462  df-mgp 18757  df-ur 18769  df-ring 18816  df-oppr 18890  df-dvdsr 18908  df-unit 18909  df-invr 18939  df-drng 19018  df-lmod 19134  df-lss 19202  df-lsp 19244  df-lvec 19375
This theorem is referenced by:  lshpnelb  34872  lshpcmp  34876  lsmsatcv  34898  lsmcv2  34917  dochshpncl  37272
  Copyright terms: Public domain W3C validator