MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmcv Structured version   Visualization version   GIF version

Theorem lsmcv 20403
Description: Subspace sum has the covering property (using spans of singletons to represent atoms). Similar to Exercise 5 of [Kalmbach] p. 153. (spansncvi 30014 analog.) TODO: ugly proof; can it be shortened? (Contributed by NM, 2-Oct-2014.)
Hypotheses
Ref Expression
lsmcv.v 𝑉 = (Base‘𝑊)
lsmcv.s 𝑆 = (LSubSp‘𝑊)
lsmcv.n 𝑁 = (LSpan‘𝑊)
lsmcv.p = (LSSum‘𝑊)
lsmcv.w (𝜑𝑊 ∈ LVec)
lsmcv.t (𝜑𝑇𝑆)
lsmcv.u (𝜑𝑈𝑆)
lsmcv.x (𝜑𝑋𝑉)
Assertion
Ref Expression
lsmcv ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → 𝑈 = (𝑇 (𝑁‘{𝑋})))

Proof of Theorem lsmcv
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1137 . 2 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → 𝑈 ⊆ (𝑇 (𝑁‘{𝑋})))
2 simp2 1136 . . . 4 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → 𝑇𝑈)
3 pssss 4030 . . . 4 (𝑇𝑈𝑇𝑈)
42, 3syl 17 . . 3 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → 𝑇𝑈)
5 pssnel 4404 . . . . 5 (𝑇𝑈 → ∃𝑥(𝑥𝑈 ∧ ¬ 𝑥𝑇))
62, 5syl 17 . . . 4 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → ∃𝑥(𝑥𝑈 ∧ ¬ 𝑥𝑇))
7 simpl3 1192 . . . . . . 7 (((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) → 𝑈 ⊆ (𝑇 (𝑁‘{𝑋})))
8 simprl 768 . . . . . . 7 (((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) → 𝑥𝑈)
97, 8sseldd 3922 . . . . . 6 (((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) → 𝑥 ∈ (𝑇 (𝑁‘{𝑋})))
10 lsmcv.w . . . . . . . . . . . 12 (𝜑𝑊 ∈ LVec)
11 lveclmod 20368 . . . . . . . . . . . 12 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
1210, 11syl 17 . . . . . . . . . . 11 (𝜑𝑊 ∈ LMod)
13 lsmcv.s . . . . . . . . . . . 12 𝑆 = (LSubSp‘𝑊)
1413lsssssubg 20220 . . . . . . . . . . 11 (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊))
1512, 14syl 17 . . . . . . . . . 10 (𝜑𝑆 ⊆ (SubGrp‘𝑊))
16 lsmcv.t . . . . . . . . . 10 (𝜑𝑇𝑆)
1715, 16sseldd 3922 . . . . . . . . 9 (𝜑𝑇 ∈ (SubGrp‘𝑊))
18 lsmcv.x . . . . . . . . . . 11 (𝜑𝑋𝑉)
19 lsmcv.v . . . . . . . . . . . 12 𝑉 = (Base‘𝑊)
20 lsmcv.n . . . . . . . . . . . 12 𝑁 = (LSpan‘𝑊)
2119, 13, 20lspsncl 20239 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ 𝑆)
2212, 18, 21syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝑁‘{𝑋}) ∈ 𝑆)
2315, 22sseldd 3922 . . . . . . . . 9 (𝜑 → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
24 eqid 2738 . . . . . . . . . 10 (+g𝑊) = (+g𝑊)
25 lsmcv.p . . . . . . . . . 10 = (LSSum‘𝑊)
2624, 25lsmelval 19254 . . . . . . . . 9 ((𝑇 ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) → (𝑥 ∈ (𝑇 (𝑁‘{𝑋})) ↔ ∃𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})𝑥 = (𝑦(+g𝑊)𝑧)))
2717, 23, 26syl2anc 584 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝑇 (𝑁‘{𝑋})) ↔ ∃𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})𝑥 = (𝑦(+g𝑊)𝑧)))
28273ad2ant1 1132 . . . . . . 7 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → (𝑥 ∈ (𝑇 (𝑁‘{𝑋})) ↔ ∃𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})𝑥 = (𝑦(+g𝑊)𝑧)))
2928adantr 481 . . . . . 6 (((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) → (𝑥 ∈ (𝑇 (𝑁‘{𝑋})) ↔ ∃𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})𝑥 = (𝑦(+g𝑊)𝑧)))
309, 29mpbid 231 . . . . 5 (((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) → ∃𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})𝑥 = (𝑦(+g𝑊)𝑧))
31 simp1rr 1238 . . . . . . . . 9 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → ¬ 𝑥𝑇)
32 simp2l 1198 . . . . . . . . . . 11 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑦𝑇)
33 oveq2 7283 . . . . . . . . . . . . . . . 16 (𝑧 = (0g𝑊) → (𝑦(+g𝑊)𝑧) = (𝑦(+g𝑊)(0g𝑊)))
3433eqeq2d 2749 . . . . . . . . . . . . . . 15 (𝑧 = (0g𝑊) → (𝑥 = (𝑦(+g𝑊)𝑧) ↔ 𝑥 = (𝑦(+g𝑊)(0g𝑊))))
3534biimpac 479 . . . . . . . . . . . . . 14 ((𝑥 = (𝑦(+g𝑊)𝑧) ∧ 𝑧 = (0g𝑊)) → 𝑥 = (𝑦(+g𝑊)(0g𝑊)))
36123ad2ant1 1132 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → 𝑊 ∈ LMod)
3736ad2antrr 723 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋}))) → 𝑊 ∈ LMod)
38163ad2ant1 1132 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → 𝑇𝑆)
3938ad2antrr 723 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋}))) → 𝑇𝑆)
40 simprl 768 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋}))) → 𝑦𝑇)
4119, 13lssel 20199 . . . . . . . . . . . . . . . . . . 19 ((𝑇𝑆𝑦𝑇) → 𝑦𝑉)
4239, 40, 41syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋}))) → 𝑦𝑉)
43 eqid 2738 . . . . . . . . . . . . . . . . . . 19 (0g𝑊) = (0g𝑊)
4419, 24, 43lmod0vrid 20154 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ LMod ∧ 𝑦𝑉) → (𝑦(+g𝑊)(0g𝑊)) = 𝑦)
4537, 42, 44syl2anc 584 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋}))) → (𝑦(+g𝑊)(0g𝑊)) = 𝑦)
4645eqeq2d 2749 . . . . . . . . . . . . . . . 16 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋}))) → (𝑥 = (𝑦(+g𝑊)(0g𝑊)) ↔ 𝑥 = 𝑦))
4746biimpd 228 . . . . . . . . . . . . . . 15 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋}))) → (𝑥 = (𝑦(+g𝑊)(0g𝑊)) → 𝑥 = 𝑦))
4847ex 413 . . . . . . . . . . . . . 14 (((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) → ((𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) → (𝑥 = (𝑦(+g𝑊)(0g𝑊)) → 𝑥 = 𝑦)))
4935, 48syl7 74 . . . . . . . . . . . . 13 (((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) → ((𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) → ((𝑥 = (𝑦(+g𝑊)𝑧) ∧ 𝑧 = (0g𝑊)) → 𝑥 = 𝑦)))
5049exp4a 432 . . . . . . . . . . . 12 (((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) → ((𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) → (𝑥 = (𝑦(+g𝑊)𝑧) → (𝑧 = (0g𝑊) → 𝑥 = 𝑦))))
51503imp 1110 . . . . . . . . . . 11 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → (𝑧 = (0g𝑊) → 𝑥 = 𝑦))
52 eleq1 2826 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝑥𝑇𝑦𝑇))
5352biimparc 480 . . . . . . . . . . 11 ((𝑦𝑇𝑥 = 𝑦) → 𝑥𝑇)
5432, 51, 53syl6an 681 . . . . . . . . . 10 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → (𝑧 = (0g𝑊) → 𝑥𝑇))
5554necon3bd 2957 . . . . . . . . 9 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → (¬ 𝑥𝑇𝑧 ≠ (0g𝑊)))
5631, 55mpd 15 . . . . . . . 8 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑧 ≠ (0g𝑊))
57103ad2ant1 1132 . . . . . . . . . . . . 13 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → 𝑊 ∈ LVec)
5857adantr 481 . . . . . . . . . . . 12 (((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) → 𝑊 ∈ LVec)
59583ad2ant1 1132 . . . . . . . . . . 11 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑊 ∈ LVec)
60 lmodabl 20170 . . . . . . . . . . . 12 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
6111, 60syl 17 . . . . . . . . . . 11 (𝑊 ∈ LVec → 𝑊 ∈ Abel)
6259, 61syl 17 . . . . . . . . . 10 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑊 ∈ Abel)
63 simp1l1 1265 . . . . . . . . . . . 12 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝜑)
6463, 16syl 17 . . . . . . . . . . 11 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑇𝑆)
6564, 32, 41syl2anc 584 . . . . . . . . . 10 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑦𝑉)
6659, 11syl 17 . . . . . . . . . . . 12 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑊 ∈ LMod)
6763, 18syl 17 . . . . . . . . . . . 12 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑋𝑉)
6866, 67, 21syl2anc 584 . . . . . . . . . . 11 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → (𝑁‘{𝑋}) ∈ 𝑆)
69 simp2r 1199 . . . . . . . . . . 11 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑧 ∈ (𝑁‘{𝑋}))
7019, 13lssel 20199 . . . . . . . . . . 11 (((𝑁‘{𝑋}) ∈ 𝑆𝑧 ∈ (𝑁‘{𝑋})) → 𝑧𝑉)
7168, 69, 70syl2anc 584 . . . . . . . . . 10 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑧𝑉)
72 eqid 2738 . . . . . . . . . . 11 (-g𝑊) = (-g𝑊)
7319, 24, 72ablpncan2 19417 . . . . . . . . . 10 ((𝑊 ∈ Abel ∧ 𝑦𝑉𝑧𝑉) → ((𝑦(+g𝑊)𝑧)(-g𝑊)𝑦) = 𝑧)
7462, 65, 71, 73syl3anc 1370 . . . . . . . . 9 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → ((𝑦(+g𝑊)𝑧)(-g𝑊)𝑦) = 𝑧)
75 lsmcv.u . . . . . . . . . . 11 (𝜑𝑈𝑆)
7663, 75syl 17 . . . . . . . . . 10 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑈𝑆)
77 simp3 1137 . . . . . . . . . . 11 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑥 = (𝑦(+g𝑊)𝑧))
78 simp1rl 1237 . . . . . . . . . . 11 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑥𝑈)
7977, 78eqeltrrd 2840 . . . . . . . . . 10 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → (𝑦(+g𝑊)𝑧) ∈ 𝑈)
80 simp1l2 1266 . . . . . . . . . . 11 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑇𝑈)
813sselda 3921 . . . . . . . . . . 11 ((𝑇𝑈𝑦𝑇) → 𝑦𝑈)
8280, 32, 81syl2anc 584 . . . . . . . . . 10 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑦𝑈)
8372, 13lssvsubcl 20205 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ ((𝑦(+g𝑊)𝑧) ∈ 𝑈𝑦𝑈)) → ((𝑦(+g𝑊)𝑧)(-g𝑊)𝑦) ∈ 𝑈)
8466, 76, 79, 82, 83syl22anc 836 . . . . . . . . 9 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → ((𝑦(+g𝑊)𝑧)(-g𝑊)𝑦) ∈ 𝑈)
8574, 84eqeltrrd 2840 . . . . . . . 8 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑧𝑈)
86593ad2ant1 1132 . . . . . . . . . 10 (((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) ∧ 𝑧 ≠ (0g𝑊) ∧ 𝑧𝑈) → 𝑊 ∈ LVec)
87633ad2ant1 1132 . . . . . . . . . . 11 (((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) ∧ 𝑧 ≠ (0g𝑊) ∧ 𝑧𝑈) → 𝜑)
8887, 18syl 17 . . . . . . . . . 10 (((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) ∧ 𝑧 ≠ (0g𝑊) ∧ 𝑧𝑈) → 𝑋𝑉)
89 simp12r 1286 . . . . . . . . . 10 (((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) ∧ 𝑧 ≠ (0g𝑊) ∧ 𝑧𝑈) → 𝑧 ∈ (𝑁‘{𝑋}))
90 simp2 1136 . . . . . . . . . 10 (((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) ∧ 𝑧 ≠ (0g𝑊) ∧ 𝑧𝑈) → 𝑧 ≠ (0g𝑊))
9119, 43, 20, 86, 88, 89, 90lspsneleq 20377 . . . . . . . . 9 (((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) ∧ 𝑧 ≠ (0g𝑊) ∧ 𝑧𝑈) → (𝑁‘{𝑧}) = (𝑁‘{𝑋}))
9286, 11syl 17 . . . . . . . . . 10 (((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) ∧ 𝑧 ≠ (0g𝑊) ∧ 𝑧𝑈) → 𝑊 ∈ LMod)
9387, 75syl 17 . . . . . . . . . 10 (((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) ∧ 𝑧 ≠ (0g𝑊) ∧ 𝑧𝑈) → 𝑈𝑆)
94 simp3 1137 . . . . . . . . . 10 (((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) ∧ 𝑧 ≠ (0g𝑊) ∧ 𝑧𝑈) → 𝑧𝑈)
9513, 20, 92, 93, 94lspsnel5a 20258 . . . . . . . . 9 (((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) ∧ 𝑧 ≠ (0g𝑊) ∧ 𝑧𝑈) → (𝑁‘{𝑧}) ⊆ 𝑈)
9691, 95eqsstrrd 3960 . . . . . . . 8 (((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) ∧ 𝑧 ≠ (0g𝑊) ∧ 𝑧𝑈) → (𝑁‘{𝑋}) ⊆ 𝑈)
9756, 85, 96mpd3an23 1462 . . . . . . 7 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → (𝑁‘{𝑋}) ⊆ 𝑈)
98973exp 1118 . . . . . 6 (((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) → ((𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) → (𝑥 = (𝑦(+g𝑊)𝑧) → (𝑁‘{𝑋}) ⊆ 𝑈)))
9998rexlimdvv 3222 . . . . 5 (((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) → (∃𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})𝑥 = (𝑦(+g𝑊)𝑧) → (𝑁‘{𝑋}) ⊆ 𝑈))
10030, 99mpd 15 . . . 4 (((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) → (𝑁‘{𝑋}) ⊆ 𝑈)
1016, 100exlimddv 1938 . . 3 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → (𝑁‘{𝑋}) ⊆ 𝑈)
10215, 75sseldd 3922 . . . . 5 (𝜑𝑈 ∈ (SubGrp‘𝑊))
10325lsmlub 19270 . . . . 5 ((𝑇 ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → ((𝑇𝑈 ∧ (𝑁‘{𝑋}) ⊆ 𝑈) ↔ (𝑇 (𝑁‘{𝑋})) ⊆ 𝑈))
10417, 23, 102, 103syl3anc 1370 . . . 4 (𝜑 → ((𝑇𝑈 ∧ (𝑁‘{𝑋}) ⊆ 𝑈) ↔ (𝑇 (𝑁‘{𝑋})) ⊆ 𝑈))
1051043ad2ant1 1132 . . 3 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → ((𝑇𝑈 ∧ (𝑁‘{𝑋}) ⊆ 𝑈) ↔ (𝑇 (𝑁‘{𝑋})) ⊆ 𝑈))
1064, 101, 105mpbi2and 709 . 2 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → (𝑇 (𝑁‘{𝑋})) ⊆ 𝑈)
1071, 106eqssd 3938 1 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → 𝑈 = (𝑇 (𝑁‘{𝑋})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wex 1782  wcel 2106  wne 2943  wrex 3065  wss 3887  wpss 3888  {csn 4561  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  0gc0g 17150  -gcsg 18579  SubGrpcsubg 18749  LSSumclsm 19239  Abelcabl 19387  LModclmod 20123  LSubSpclss 20193  LSpanclspn 20233  LVecclvec 20364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-lsm 19241  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-drng 19993  df-lmod 20125  df-lss 20194  df-lsp 20234  df-lvec 20365
This theorem is referenced by:  lshpnelb  36998  lshpcmp  37002  lsmsatcv  37024  lsmcv2  37043  dochshpncl  39398
  Copyright terms: Public domain W3C validator