MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmcv Structured version   Visualization version   GIF version

Theorem lsmcv 19607
Description: Subspace sum has the covering property (using spans of singletons to represent atoms). Similar to Exercise 5 of [Kalmbach] p. 153. (spansncvi 29116 analog.) TODO: ugly proof; can it be shortened? (Contributed by NM, 2-Oct-2014.)
Hypotheses
Ref Expression
lsmcv.v 𝑉 = (Base‘𝑊)
lsmcv.s 𝑆 = (LSubSp‘𝑊)
lsmcv.n 𝑁 = (LSpan‘𝑊)
lsmcv.p = (LSSum‘𝑊)
lsmcv.w (𝜑𝑊 ∈ LVec)
lsmcv.t (𝜑𝑇𝑆)
lsmcv.u (𝜑𝑈𝑆)
lsmcv.x (𝜑𝑋𝑉)
Assertion
Ref Expression
lsmcv ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → 𝑈 = (𝑇 (𝑁‘{𝑋})))

Proof of Theorem lsmcv
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1131 . 2 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → 𝑈 ⊆ (𝑇 (𝑁‘{𝑋})))
2 simp2 1130 . . . 4 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → 𝑇𝑈)
3 pssss 3999 . . . 4 (𝑇𝑈𝑇𝑈)
42, 3syl 17 . . 3 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → 𝑇𝑈)
5 pssnel 4340 . . . . 5 (𝑇𝑈 → ∃𝑥(𝑥𝑈 ∧ ¬ 𝑥𝑇))
62, 5syl 17 . . . 4 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → ∃𝑥(𝑥𝑈 ∧ ¬ 𝑥𝑇))
7 simpl3 1186 . . . . . . 7 (((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) → 𝑈 ⊆ (𝑇 (𝑁‘{𝑋})))
8 simprl 767 . . . . . . 7 (((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) → 𝑥𝑈)
97, 8sseldd 3896 . . . . . 6 (((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) → 𝑥 ∈ (𝑇 (𝑁‘{𝑋})))
10 lsmcv.w . . . . . . . . . . . 12 (𝜑𝑊 ∈ LVec)
11 lveclmod 19572 . . . . . . . . . . . 12 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
1210, 11syl 17 . . . . . . . . . . 11 (𝜑𝑊 ∈ LMod)
13 lsmcv.s . . . . . . . . . . . 12 𝑆 = (LSubSp‘𝑊)
1413lsssssubg 19424 . . . . . . . . . . 11 (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊))
1512, 14syl 17 . . . . . . . . . 10 (𝜑𝑆 ⊆ (SubGrp‘𝑊))
16 lsmcv.t . . . . . . . . . 10 (𝜑𝑇𝑆)
1715, 16sseldd 3896 . . . . . . . . 9 (𝜑𝑇 ∈ (SubGrp‘𝑊))
18 lsmcv.x . . . . . . . . . . 11 (𝜑𝑋𝑉)
19 lsmcv.v . . . . . . . . . . . 12 𝑉 = (Base‘𝑊)
20 lsmcv.n . . . . . . . . . . . 12 𝑁 = (LSpan‘𝑊)
2119, 13, 20lspsncl 19443 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ 𝑆)
2212, 18, 21syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝑁‘{𝑋}) ∈ 𝑆)
2315, 22sseldd 3896 . . . . . . . . 9 (𝜑 → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
24 eqid 2797 . . . . . . . . . 10 (+g𝑊) = (+g𝑊)
25 lsmcv.p . . . . . . . . . 10 = (LSSum‘𝑊)
2624, 25lsmelval 18508 . . . . . . . . 9 ((𝑇 ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) → (𝑥 ∈ (𝑇 (𝑁‘{𝑋})) ↔ ∃𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})𝑥 = (𝑦(+g𝑊)𝑧)))
2717, 23, 26syl2anc 584 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝑇 (𝑁‘{𝑋})) ↔ ∃𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})𝑥 = (𝑦(+g𝑊)𝑧)))
28273ad2ant1 1126 . . . . . . 7 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → (𝑥 ∈ (𝑇 (𝑁‘{𝑋})) ↔ ∃𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})𝑥 = (𝑦(+g𝑊)𝑧)))
2928adantr 481 . . . . . 6 (((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) → (𝑥 ∈ (𝑇 (𝑁‘{𝑋})) ↔ ∃𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})𝑥 = (𝑦(+g𝑊)𝑧)))
309, 29mpbid 233 . . . . 5 (((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) → ∃𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})𝑥 = (𝑦(+g𝑊)𝑧))
31 simp1rr 1232 . . . . . . . . 9 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → ¬ 𝑥𝑇)
32 simp2l 1192 . . . . . . . . . . 11 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑦𝑇)
33 oveq2 7031 . . . . . . . . . . . . . . . 16 (𝑧 = (0g𝑊) → (𝑦(+g𝑊)𝑧) = (𝑦(+g𝑊)(0g𝑊)))
3433eqeq2d 2807 . . . . . . . . . . . . . . 15 (𝑧 = (0g𝑊) → (𝑥 = (𝑦(+g𝑊)𝑧) ↔ 𝑥 = (𝑦(+g𝑊)(0g𝑊))))
3534biimpac 479 . . . . . . . . . . . . . 14 ((𝑥 = (𝑦(+g𝑊)𝑧) ∧ 𝑧 = (0g𝑊)) → 𝑥 = (𝑦(+g𝑊)(0g𝑊)))
36123ad2ant1 1126 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → 𝑊 ∈ LMod)
3736ad2antrr 722 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋}))) → 𝑊 ∈ LMod)
38163ad2ant1 1126 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → 𝑇𝑆)
3938ad2antrr 722 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋}))) → 𝑇𝑆)
40 simprl 767 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋}))) → 𝑦𝑇)
4119, 13lssel 19403 . . . . . . . . . . . . . . . . . . 19 ((𝑇𝑆𝑦𝑇) → 𝑦𝑉)
4239, 40, 41syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋}))) → 𝑦𝑉)
43 eqid 2797 . . . . . . . . . . . . . . . . . . 19 (0g𝑊) = (0g𝑊)
4419, 24, 43lmod0vrid 19359 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ LMod ∧ 𝑦𝑉) → (𝑦(+g𝑊)(0g𝑊)) = 𝑦)
4537, 42, 44syl2anc 584 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋}))) → (𝑦(+g𝑊)(0g𝑊)) = 𝑦)
4645eqeq2d 2807 . . . . . . . . . . . . . . . 16 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋}))) → (𝑥 = (𝑦(+g𝑊)(0g𝑊)) ↔ 𝑥 = 𝑦))
4746biimpd 230 . . . . . . . . . . . . . . 15 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋}))) → (𝑥 = (𝑦(+g𝑊)(0g𝑊)) → 𝑥 = 𝑦))
4847ex 413 . . . . . . . . . . . . . 14 (((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) → ((𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) → (𝑥 = (𝑦(+g𝑊)(0g𝑊)) → 𝑥 = 𝑦)))
4935, 48syl7 74 . . . . . . . . . . . . 13 (((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) → ((𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) → ((𝑥 = (𝑦(+g𝑊)𝑧) ∧ 𝑧 = (0g𝑊)) → 𝑥 = 𝑦)))
5049exp4a 432 . . . . . . . . . . . 12 (((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) → ((𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) → (𝑥 = (𝑦(+g𝑊)𝑧) → (𝑧 = (0g𝑊) → 𝑥 = 𝑦))))
51503imp 1104 . . . . . . . . . . 11 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → (𝑧 = (0g𝑊) → 𝑥 = 𝑦))
52 eleq1 2872 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝑥𝑇𝑦𝑇))
5352biimparc 480 . . . . . . . . . . 11 ((𝑦𝑇𝑥 = 𝑦) → 𝑥𝑇)
5432, 51, 53syl6an 680 . . . . . . . . . 10 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → (𝑧 = (0g𝑊) → 𝑥𝑇))
5554necon3bd 3000 . . . . . . . . 9 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → (¬ 𝑥𝑇𝑧 ≠ (0g𝑊)))
5631, 55mpd 15 . . . . . . . 8 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑧 ≠ (0g𝑊))
57103ad2ant1 1126 . . . . . . . . . . . . 13 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → 𝑊 ∈ LVec)
5857adantr 481 . . . . . . . . . . . 12 (((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) → 𝑊 ∈ LVec)
59583ad2ant1 1126 . . . . . . . . . . 11 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑊 ∈ LVec)
60 lmodabl 19375 . . . . . . . . . . . 12 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
6111, 60syl 17 . . . . . . . . . . 11 (𝑊 ∈ LVec → 𝑊 ∈ Abel)
6259, 61syl 17 . . . . . . . . . 10 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑊 ∈ Abel)
63 simp1l1 1259 . . . . . . . . . . . 12 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝜑)
6463, 16syl 17 . . . . . . . . . . 11 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑇𝑆)
6564, 32, 41syl2anc 584 . . . . . . . . . 10 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑦𝑉)
6659, 11syl 17 . . . . . . . . . . . 12 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑊 ∈ LMod)
6763, 18syl 17 . . . . . . . . . . . 12 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑋𝑉)
6866, 67, 21syl2anc 584 . . . . . . . . . . 11 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → (𝑁‘{𝑋}) ∈ 𝑆)
69 simp2r 1193 . . . . . . . . . . 11 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑧 ∈ (𝑁‘{𝑋}))
7019, 13lssel 19403 . . . . . . . . . . 11 (((𝑁‘{𝑋}) ∈ 𝑆𝑧 ∈ (𝑁‘{𝑋})) → 𝑧𝑉)
7168, 69, 70syl2anc 584 . . . . . . . . . 10 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑧𝑉)
72 eqid 2797 . . . . . . . . . . 11 (-g𝑊) = (-g𝑊)
7319, 24, 72ablpncan2 18665 . . . . . . . . . 10 ((𝑊 ∈ Abel ∧ 𝑦𝑉𝑧𝑉) → ((𝑦(+g𝑊)𝑧)(-g𝑊)𝑦) = 𝑧)
7462, 65, 71, 73syl3anc 1364 . . . . . . . . 9 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → ((𝑦(+g𝑊)𝑧)(-g𝑊)𝑦) = 𝑧)
75 lsmcv.u . . . . . . . . . . 11 (𝜑𝑈𝑆)
7663, 75syl 17 . . . . . . . . . 10 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑈𝑆)
77 simp3 1131 . . . . . . . . . . 11 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑥 = (𝑦(+g𝑊)𝑧))
78 simp1rl 1231 . . . . . . . . . . 11 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑥𝑈)
7977, 78eqeltrrd 2886 . . . . . . . . . 10 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → (𝑦(+g𝑊)𝑧) ∈ 𝑈)
80 simp1l2 1260 . . . . . . . . . . 11 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑇𝑈)
813sselda 3895 . . . . . . . . . . 11 ((𝑇𝑈𝑦𝑇) → 𝑦𝑈)
8280, 32, 81syl2anc 584 . . . . . . . . . 10 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑦𝑈)
8372, 13lssvsubcl 19409 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ ((𝑦(+g𝑊)𝑧) ∈ 𝑈𝑦𝑈)) → ((𝑦(+g𝑊)𝑧)(-g𝑊)𝑦) ∈ 𝑈)
8466, 76, 79, 82, 83syl22anc 835 . . . . . . . . 9 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → ((𝑦(+g𝑊)𝑧)(-g𝑊)𝑦) ∈ 𝑈)
8574, 84eqeltrrd 2886 . . . . . . . 8 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑧𝑈)
86593ad2ant1 1126 . . . . . . . . . 10 (((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) ∧ 𝑧 ≠ (0g𝑊) ∧ 𝑧𝑈) → 𝑊 ∈ LVec)
87633ad2ant1 1126 . . . . . . . . . . 11 (((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) ∧ 𝑧 ≠ (0g𝑊) ∧ 𝑧𝑈) → 𝜑)
8887, 18syl 17 . . . . . . . . . 10 (((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) ∧ 𝑧 ≠ (0g𝑊) ∧ 𝑧𝑈) → 𝑋𝑉)
89 simp12r 1280 . . . . . . . . . 10 (((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) ∧ 𝑧 ≠ (0g𝑊) ∧ 𝑧𝑈) → 𝑧 ∈ (𝑁‘{𝑋}))
90 simp2 1130 . . . . . . . . . 10 (((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) ∧ 𝑧 ≠ (0g𝑊) ∧ 𝑧𝑈) → 𝑧 ≠ (0g𝑊))
9119, 43, 20, 86, 88, 89, 90lspsneleq 19581 . . . . . . . . 9 (((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) ∧ 𝑧 ≠ (0g𝑊) ∧ 𝑧𝑈) → (𝑁‘{𝑧}) = (𝑁‘{𝑋}))
9286, 11syl 17 . . . . . . . . . 10 (((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) ∧ 𝑧 ≠ (0g𝑊) ∧ 𝑧𝑈) → 𝑊 ∈ LMod)
9387, 75syl 17 . . . . . . . . . 10 (((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) ∧ 𝑧 ≠ (0g𝑊) ∧ 𝑧𝑈) → 𝑈𝑆)
94 simp3 1131 . . . . . . . . . 10 (((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) ∧ 𝑧 ≠ (0g𝑊) ∧ 𝑧𝑈) → 𝑧𝑈)
9513, 20, 92, 93, 94lspsnel5a 19462 . . . . . . . . 9 (((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) ∧ 𝑧 ≠ (0g𝑊) ∧ 𝑧𝑈) → (𝑁‘{𝑧}) ⊆ 𝑈)
9691, 95eqsstrrd 3933 . . . . . . . 8 (((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) ∧ 𝑧 ≠ (0g𝑊) ∧ 𝑧𝑈) → (𝑁‘{𝑋}) ⊆ 𝑈)
9756, 85, 96mpd3an23 1455 . . . . . . 7 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → (𝑁‘{𝑋}) ⊆ 𝑈)
98973exp 1112 . . . . . 6 (((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) → ((𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) → (𝑥 = (𝑦(+g𝑊)𝑧) → (𝑁‘{𝑋}) ⊆ 𝑈)))
9998rexlimdvv 3258 . . . . 5 (((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) → (∃𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})𝑥 = (𝑦(+g𝑊)𝑧) → (𝑁‘{𝑋}) ⊆ 𝑈))
10030, 99mpd 15 . . . 4 (((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) → (𝑁‘{𝑋}) ⊆ 𝑈)
1016, 100exlimddv 1917 . . 3 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → (𝑁‘{𝑋}) ⊆ 𝑈)
10215, 75sseldd 3896 . . . . 5 (𝜑𝑈 ∈ (SubGrp‘𝑊))
10325lsmlub 18522 . . . . 5 ((𝑇 ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → ((𝑇𝑈 ∧ (𝑁‘{𝑋}) ⊆ 𝑈) ↔ (𝑇 (𝑁‘{𝑋})) ⊆ 𝑈))
10417, 23, 102, 103syl3anc 1364 . . . 4 (𝜑 → ((𝑇𝑈 ∧ (𝑁‘{𝑋}) ⊆ 𝑈) ↔ (𝑇 (𝑁‘{𝑋})) ⊆ 𝑈))
1051043ad2ant1 1126 . . 3 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → ((𝑇𝑈 ∧ (𝑁‘{𝑋}) ⊆ 𝑈) ↔ (𝑇 (𝑁‘{𝑋})) ⊆ 𝑈))
1064, 101, 105mpbi2and 708 . 2 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → (𝑇 (𝑁‘{𝑋})) ⊆ 𝑈)
1071, 106eqssd 3912 1 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → 𝑈 = (𝑇 (𝑁‘{𝑋})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1080   = wceq 1525  wex 1765  wcel 2083  wne 2986  wrex 3108  wss 3865  wpss 3866  {csn 4478  cfv 6232  (class class class)co 7023  Basecbs 16316  +gcplusg 16398  0gc0g 16546  -gcsg 17867  SubGrpcsubg 18031  LSSumclsm 18493  Abelcabl 18638  LModclmod 19328  LSubSpclss 19397  LSpanclspn 19437  LVecclvec 19568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-cnex 10446  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-int 4789  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-om 7444  df-1st 7552  df-2nd 7553  df-tpos 7750  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-er 8146  df-en 8365  df-dom 8366  df-sdom 8367  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726  df-nn 11493  df-2 11554  df-3 11555  df-ndx 16319  df-slot 16320  df-base 16322  df-sets 16323  df-ress 16324  df-plusg 16411  df-mulr 16412  df-0g 16548  df-mgm 17685  df-sgrp 17727  df-mnd 17738  df-submnd 17779  df-grp 17868  df-minusg 17869  df-sbg 17870  df-subg 18034  df-lsm 18495  df-cmn 18639  df-abl 18640  df-mgp 18934  df-ur 18946  df-ring 18993  df-oppr 19067  df-dvdsr 19085  df-unit 19086  df-invr 19116  df-drng 19198  df-lmod 19330  df-lss 19398  df-lsp 19438  df-lvec 19569
This theorem is referenced by:  lshpnelb  35672  lshpcmp  35676  lsmsatcv  35698  lsmcv2  35717  dochshpncl  38072
  Copyright terms: Public domain W3C validator