MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmcv Structured version   Visualization version   GIF version

Theorem lsmcv 21051
Description: Subspace sum has the covering property (using spans of singletons to represent atoms). Similar to Exercise 5 of [Kalmbach] p. 153. (spansncvi 31581 analog.) TODO: ugly proof; can it be shortened? (Contributed by NM, 2-Oct-2014.)
Hypotheses
Ref Expression
lsmcv.v 𝑉 = (Base‘𝑊)
lsmcv.s 𝑆 = (LSubSp‘𝑊)
lsmcv.n 𝑁 = (LSpan‘𝑊)
lsmcv.p = (LSSum‘𝑊)
lsmcv.w (𝜑𝑊 ∈ LVec)
lsmcv.t (𝜑𝑇𝑆)
lsmcv.u (𝜑𝑈𝑆)
lsmcv.x (𝜑𝑋𝑉)
Assertion
Ref Expression
lsmcv ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → 𝑈 = (𝑇 (𝑁‘{𝑋})))

Proof of Theorem lsmcv
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1138 . 2 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → 𝑈 ⊆ (𝑇 (𝑁‘{𝑋})))
2 simp2 1137 . . . 4 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → 𝑇𝑈)
3 pssss 4061 . . . 4 (𝑇𝑈𝑇𝑈)
42, 3syl 17 . . 3 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → 𝑇𝑈)
5 pssnel 4434 . . . . 5 (𝑇𝑈 → ∃𝑥(𝑥𝑈 ∧ ¬ 𝑥𝑇))
62, 5syl 17 . . . 4 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → ∃𝑥(𝑥𝑈 ∧ ¬ 𝑥𝑇))
7 simpl3 1194 . . . . . . 7 (((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) → 𝑈 ⊆ (𝑇 (𝑁‘{𝑋})))
8 simprl 770 . . . . . . 7 (((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) → 𝑥𝑈)
97, 8sseldd 3947 . . . . . 6 (((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) → 𝑥 ∈ (𝑇 (𝑁‘{𝑋})))
10 lsmcv.w . . . . . . . . . . . 12 (𝜑𝑊 ∈ LVec)
11 lveclmod 21013 . . . . . . . . . . . 12 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
1210, 11syl 17 . . . . . . . . . . 11 (𝜑𝑊 ∈ LMod)
13 lsmcv.s . . . . . . . . . . . 12 𝑆 = (LSubSp‘𝑊)
1413lsssssubg 20864 . . . . . . . . . . 11 (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊))
1512, 14syl 17 . . . . . . . . . 10 (𝜑𝑆 ⊆ (SubGrp‘𝑊))
16 lsmcv.t . . . . . . . . . 10 (𝜑𝑇𝑆)
1715, 16sseldd 3947 . . . . . . . . 9 (𝜑𝑇 ∈ (SubGrp‘𝑊))
18 lsmcv.x . . . . . . . . . . 11 (𝜑𝑋𝑉)
19 lsmcv.v . . . . . . . . . . . 12 𝑉 = (Base‘𝑊)
20 lsmcv.n . . . . . . . . . . . 12 𝑁 = (LSpan‘𝑊)
2119, 13, 20lspsncl 20883 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ 𝑆)
2212, 18, 21syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝑁‘{𝑋}) ∈ 𝑆)
2315, 22sseldd 3947 . . . . . . . . 9 (𝜑 → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
24 eqid 2729 . . . . . . . . . 10 (+g𝑊) = (+g𝑊)
25 lsmcv.p . . . . . . . . . 10 = (LSSum‘𝑊)
2624, 25lsmelval 19579 . . . . . . . . 9 ((𝑇 ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) → (𝑥 ∈ (𝑇 (𝑁‘{𝑋})) ↔ ∃𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})𝑥 = (𝑦(+g𝑊)𝑧)))
2717, 23, 26syl2anc 584 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝑇 (𝑁‘{𝑋})) ↔ ∃𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})𝑥 = (𝑦(+g𝑊)𝑧)))
28273ad2ant1 1133 . . . . . . 7 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → (𝑥 ∈ (𝑇 (𝑁‘{𝑋})) ↔ ∃𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})𝑥 = (𝑦(+g𝑊)𝑧)))
2928adantr 480 . . . . . 6 (((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) → (𝑥 ∈ (𝑇 (𝑁‘{𝑋})) ↔ ∃𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})𝑥 = (𝑦(+g𝑊)𝑧)))
309, 29mpbid 232 . . . . 5 (((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) → ∃𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})𝑥 = (𝑦(+g𝑊)𝑧))
31 simp1rr 1240 . . . . . . . . 9 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → ¬ 𝑥𝑇)
32 simp2l 1200 . . . . . . . . . . 11 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑦𝑇)
33 oveq2 7395 . . . . . . . . . . . . . . . 16 (𝑧 = (0g𝑊) → (𝑦(+g𝑊)𝑧) = (𝑦(+g𝑊)(0g𝑊)))
3433eqeq2d 2740 . . . . . . . . . . . . . . 15 (𝑧 = (0g𝑊) → (𝑥 = (𝑦(+g𝑊)𝑧) ↔ 𝑥 = (𝑦(+g𝑊)(0g𝑊))))
3534biimpac 478 . . . . . . . . . . . . . 14 ((𝑥 = (𝑦(+g𝑊)𝑧) ∧ 𝑧 = (0g𝑊)) → 𝑥 = (𝑦(+g𝑊)(0g𝑊)))
36123ad2ant1 1133 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → 𝑊 ∈ LMod)
3736ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋}))) → 𝑊 ∈ LMod)
38163ad2ant1 1133 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → 𝑇𝑆)
3938ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋}))) → 𝑇𝑆)
40 simprl 770 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋}))) → 𝑦𝑇)
4119, 13lssel 20843 . . . . . . . . . . . . . . . . . . 19 ((𝑇𝑆𝑦𝑇) → 𝑦𝑉)
4239, 40, 41syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋}))) → 𝑦𝑉)
43 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (0g𝑊) = (0g𝑊)
4419, 24, 43lmod0vrid 20799 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ LMod ∧ 𝑦𝑉) → (𝑦(+g𝑊)(0g𝑊)) = 𝑦)
4537, 42, 44syl2anc 584 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋}))) → (𝑦(+g𝑊)(0g𝑊)) = 𝑦)
4645eqeq2d 2740 . . . . . . . . . . . . . . . 16 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋}))) → (𝑥 = (𝑦(+g𝑊)(0g𝑊)) ↔ 𝑥 = 𝑦))
4746biimpd 229 . . . . . . . . . . . . . . 15 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋}))) → (𝑥 = (𝑦(+g𝑊)(0g𝑊)) → 𝑥 = 𝑦))
4847ex 412 . . . . . . . . . . . . . 14 (((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) → ((𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) → (𝑥 = (𝑦(+g𝑊)(0g𝑊)) → 𝑥 = 𝑦)))
4935, 48syl7 74 . . . . . . . . . . . . 13 (((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) → ((𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) → ((𝑥 = (𝑦(+g𝑊)𝑧) ∧ 𝑧 = (0g𝑊)) → 𝑥 = 𝑦)))
5049exp4a 431 . . . . . . . . . . . 12 (((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) → ((𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) → (𝑥 = (𝑦(+g𝑊)𝑧) → (𝑧 = (0g𝑊) → 𝑥 = 𝑦))))
51503imp 1110 . . . . . . . . . . 11 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → (𝑧 = (0g𝑊) → 𝑥 = 𝑦))
52 eleq1 2816 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝑥𝑇𝑦𝑇))
5352biimparc 479 . . . . . . . . . . 11 ((𝑦𝑇𝑥 = 𝑦) → 𝑥𝑇)
5432, 51, 53syl6an 684 . . . . . . . . . 10 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → (𝑧 = (0g𝑊) → 𝑥𝑇))
5554necon3bd 2939 . . . . . . . . 9 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → (¬ 𝑥𝑇𝑧 ≠ (0g𝑊)))
5631, 55mpd 15 . . . . . . . 8 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑧 ≠ (0g𝑊))
57103ad2ant1 1133 . . . . . . . . . . . . 13 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → 𝑊 ∈ LVec)
5857adantr 480 . . . . . . . . . . . 12 (((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) → 𝑊 ∈ LVec)
59583ad2ant1 1133 . . . . . . . . . . 11 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑊 ∈ LVec)
60 lmodabl 20815 . . . . . . . . . . . 12 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
6111, 60syl 17 . . . . . . . . . . 11 (𝑊 ∈ LVec → 𝑊 ∈ Abel)
6259, 61syl 17 . . . . . . . . . 10 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑊 ∈ Abel)
63 simp1l1 1267 . . . . . . . . . . . 12 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝜑)
6463, 16syl 17 . . . . . . . . . . 11 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑇𝑆)
6564, 32, 41syl2anc 584 . . . . . . . . . 10 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑦𝑉)
6659, 11syl 17 . . . . . . . . . . . 12 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑊 ∈ LMod)
6763, 18syl 17 . . . . . . . . . . . 12 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑋𝑉)
6866, 67, 21syl2anc 584 . . . . . . . . . . 11 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → (𝑁‘{𝑋}) ∈ 𝑆)
69 simp2r 1201 . . . . . . . . . . 11 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑧 ∈ (𝑁‘{𝑋}))
7019, 13lssel 20843 . . . . . . . . . . 11 (((𝑁‘{𝑋}) ∈ 𝑆𝑧 ∈ (𝑁‘{𝑋})) → 𝑧𝑉)
7168, 69, 70syl2anc 584 . . . . . . . . . 10 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑧𝑉)
72 eqid 2729 . . . . . . . . . . 11 (-g𝑊) = (-g𝑊)
7319, 24, 72ablpncan2 19745 . . . . . . . . . 10 ((𝑊 ∈ Abel ∧ 𝑦𝑉𝑧𝑉) → ((𝑦(+g𝑊)𝑧)(-g𝑊)𝑦) = 𝑧)
7462, 65, 71, 73syl3anc 1373 . . . . . . . . 9 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → ((𝑦(+g𝑊)𝑧)(-g𝑊)𝑦) = 𝑧)
75 lsmcv.u . . . . . . . . . . 11 (𝜑𝑈𝑆)
7663, 75syl 17 . . . . . . . . . 10 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑈𝑆)
77 simp3 1138 . . . . . . . . . . 11 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑥 = (𝑦(+g𝑊)𝑧))
78 simp1rl 1239 . . . . . . . . . . 11 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑥𝑈)
7977, 78eqeltrrd 2829 . . . . . . . . . 10 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → (𝑦(+g𝑊)𝑧) ∈ 𝑈)
80 simp1l2 1268 . . . . . . . . . . 11 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑇𝑈)
813sselda 3946 . . . . . . . . . . 11 ((𝑇𝑈𝑦𝑇) → 𝑦𝑈)
8280, 32, 81syl2anc 584 . . . . . . . . . 10 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑦𝑈)
8372, 13lssvsubcl 20850 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ ((𝑦(+g𝑊)𝑧) ∈ 𝑈𝑦𝑈)) → ((𝑦(+g𝑊)𝑧)(-g𝑊)𝑦) ∈ 𝑈)
8466, 76, 79, 82, 83syl22anc 838 . . . . . . . . 9 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → ((𝑦(+g𝑊)𝑧)(-g𝑊)𝑦) ∈ 𝑈)
8574, 84eqeltrrd 2829 . . . . . . . 8 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → 𝑧𝑈)
86593ad2ant1 1133 . . . . . . . . . 10 (((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) ∧ 𝑧 ≠ (0g𝑊) ∧ 𝑧𝑈) → 𝑊 ∈ LVec)
87633ad2ant1 1133 . . . . . . . . . . 11 (((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) ∧ 𝑧 ≠ (0g𝑊) ∧ 𝑧𝑈) → 𝜑)
8887, 18syl 17 . . . . . . . . . 10 (((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) ∧ 𝑧 ≠ (0g𝑊) ∧ 𝑧𝑈) → 𝑋𝑉)
89 simp12r 1288 . . . . . . . . . 10 (((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) ∧ 𝑧 ≠ (0g𝑊) ∧ 𝑧𝑈) → 𝑧 ∈ (𝑁‘{𝑋}))
90 simp2 1137 . . . . . . . . . 10 (((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) ∧ 𝑧 ≠ (0g𝑊) ∧ 𝑧𝑈) → 𝑧 ≠ (0g𝑊))
9119, 43, 20, 86, 88, 89, 90lspsneleq 21025 . . . . . . . . 9 (((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) ∧ 𝑧 ≠ (0g𝑊) ∧ 𝑧𝑈) → (𝑁‘{𝑧}) = (𝑁‘{𝑋}))
9286, 11syl 17 . . . . . . . . . 10 (((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) ∧ 𝑧 ≠ (0g𝑊) ∧ 𝑧𝑈) → 𝑊 ∈ LMod)
9387, 75syl 17 . . . . . . . . . 10 (((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) ∧ 𝑧 ≠ (0g𝑊) ∧ 𝑧𝑈) → 𝑈𝑆)
94 simp3 1138 . . . . . . . . . 10 (((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) ∧ 𝑧 ≠ (0g𝑊) ∧ 𝑧𝑈) → 𝑧𝑈)
9513, 20, 92, 93, 94ellspsn5 20902 . . . . . . . . 9 (((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) ∧ 𝑧 ≠ (0g𝑊) ∧ 𝑧𝑈) → (𝑁‘{𝑧}) ⊆ 𝑈)
9691, 95eqsstrrd 3982 . . . . . . . 8 (((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) ∧ 𝑧 ≠ (0g𝑊) ∧ 𝑧𝑈) → (𝑁‘{𝑋}) ⊆ 𝑈)
9756, 85, 96mpd3an23 1465 . . . . . . 7 ((((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) ∧ (𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g𝑊)𝑧)) → (𝑁‘{𝑋}) ⊆ 𝑈)
98973exp 1119 . . . . . 6 (((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) → ((𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})) → (𝑥 = (𝑦(+g𝑊)𝑧) → (𝑁‘{𝑋}) ⊆ 𝑈)))
9998rexlimdvv 3193 . . . . 5 (((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) → (∃𝑦𝑇𝑧 ∈ (𝑁‘{𝑋})𝑥 = (𝑦(+g𝑊)𝑧) → (𝑁‘{𝑋}) ⊆ 𝑈))
10030, 99mpd 15 . . . 4 (((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) ∧ (𝑥𝑈 ∧ ¬ 𝑥𝑇)) → (𝑁‘{𝑋}) ⊆ 𝑈)
1016, 100exlimddv 1935 . . 3 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → (𝑁‘{𝑋}) ⊆ 𝑈)
10215, 75sseldd 3947 . . . . 5 (𝜑𝑈 ∈ (SubGrp‘𝑊))
10325lsmlub 19594 . . . . 5 ((𝑇 ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → ((𝑇𝑈 ∧ (𝑁‘{𝑋}) ⊆ 𝑈) ↔ (𝑇 (𝑁‘{𝑋})) ⊆ 𝑈))
10417, 23, 102, 103syl3anc 1373 . . . 4 (𝜑 → ((𝑇𝑈 ∧ (𝑁‘{𝑋}) ⊆ 𝑈) ↔ (𝑇 (𝑁‘{𝑋})) ⊆ 𝑈))
1051043ad2ant1 1133 . . 3 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → ((𝑇𝑈 ∧ (𝑁‘{𝑋}) ⊆ 𝑈) ↔ (𝑇 (𝑁‘{𝑋})) ⊆ 𝑈))
1064, 101, 105mpbi2and 712 . 2 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → (𝑇 (𝑁‘{𝑋})) ⊆ 𝑈)
1071, 106eqssd 3964 1 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 (𝑁‘{𝑋}))) → 𝑈 = (𝑇 (𝑁‘{𝑋})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2925  wrex 3053  wss 3914  wpss 3915  {csn 4589  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  0gc0g 17402  -gcsg 18867  SubGrpcsubg 19052  LSSumclsm 19564  Abelcabl 19711  LModclmod 20766  LSubSpclss 20837  LSpanclspn 20877  LVecclvec 21009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-subg 19055  df-lsm 19566  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-drng 20640  df-lmod 20768  df-lss 20838  df-lsp 20878  df-lvec 21010
This theorem is referenced by:  lshpnelb  38977  lshpcmp  38981  lsmsatcv  39003  lsmcv2  39022  dochshpncl  41378
  Copyright terms: Public domain W3C validator