| Step | Hyp | Ref
| Expression |
| 1 | | simp3 1138 |
. 2
⊢ ((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) → 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) |
| 2 | | simp2 1137 |
. . . 4
⊢ ((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) → 𝑇 ⊊ 𝑈) |
| 3 | | pssss 4078 |
. . . 4
⊢ (𝑇 ⊊ 𝑈 → 𝑇 ⊆ 𝑈) |
| 4 | 2, 3 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) → 𝑇 ⊆ 𝑈) |
| 5 | | pssnel 4451 |
. . . . 5
⊢ (𝑇 ⊊ 𝑈 → ∃𝑥(𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇)) |
| 6 | 2, 5 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) → ∃𝑥(𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇)) |
| 7 | | simpl3 1194 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇)) → 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) |
| 8 | | simprl 770 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇)) → 𝑥 ∈ 𝑈) |
| 9 | 7, 8 | sseldd 3964 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇)) → 𝑥 ∈ (𝑇 ⊕ (𝑁‘{𝑋}))) |
| 10 | | lsmcv.w |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑊 ∈ LVec) |
| 11 | | lveclmod 21069 |
. . . . . . . . . . . 12
⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) |
| 12 | 10, 11 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑊 ∈ LMod) |
| 13 | | lsmcv.s |
. . . . . . . . . . . 12
⊢ 𝑆 = (LSubSp‘𝑊) |
| 14 | 13 | lsssssubg 20920 |
. . . . . . . . . . 11
⊢ (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊)) |
| 15 | 12, 14 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑆 ⊆ (SubGrp‘𝑊)) |
| 16 | | lsmcv.t |
. . . . . . . . . 10
⊢ (𝜑 → 𝑇 ∈ 𝑆) |
| 17 | 15, 16 | sseldd 3964 |
. . . . . . . . 9
⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝑊)) |
| 18 | | lsmcv.x |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 19 | | lsmcv.v |
. . . . . . . . . . . 12
⊢ 𝑉 = (Base‘𝑊) |
| 20 | | lsmcv.n |
. . . . . . . . . . . 12
⊢ 𝑁 = (LSpan‘𝑊) |
| 21 | 19, 13, 20 | lspsncl 20939 |
. . . . . . . . . . 11
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ 𝑆) |
| 22 | 12, 18, 21 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑁‘{𝑋}) ∈ 𝑆) |
| 23 | 15, 22 | sseldd 3964 |
. . . . . . . . 9
⊢ (𝜑 → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) |
| 24 | | eqid 2736 |
. . . . . . . . . 10
⊢
(+g‘𝑊) = (+g‘𝑊) |
| 25 | | lsmcv.p |
. . . . . . . . . 10
⊢ ⊕ =
(LSSum‘𝑊) |
| 26 | 24, 25 | lsmelval 19635 |
. . . . . . . . 9
⊢ ((𝑇 ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) → (𝑥 ∈ (𝑇 ⊕ (𝑁‘{𝑋})) ↔ ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ (𝑁‘{𝑋})𝑥 = (𝑦(+g‘𝑊)𝑧))) |
| 27 | 17, 23, 26 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ (𝑇 ⊕ (𝑁‘{𝑋})) ↔ ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ (𝑁‘{𝑋})𝑥 = (𝑦(+g‘𝑊)𝑧))) |
| 28 | 27 | 3ad2ant1 1133 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) → (𝑥 ∈ (𝑇 ⊕ (𝑁‘{𝑋})) ↔ ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ (𝑁‘{𝑋})𝑥 = (𝑦(+g‘𝑊)𝑧))) |
| 29 | 28 | adantr 480 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇)) → (𝑥 ∈ (𝑇 ⊕ (𝑁‘{𝑋})) ↔ ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ (𝑁‘{𝑋})𝑥 = (𝑦(+g‘𝑊)𝑧))) |
| 30 | 9, 29 | mpbid 232 |
. . . . 5
⊢ (((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇)) → ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ (𝑁‘{𝑋})𝑥 = (𝑦(+g‘𝑊)𝑧)) |
| 31 | | simp1rr 1240 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇)) ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g‘𝑊)𝑧)) → ¬ 𝑥 ∈ 𝑇) |
| 32 | | simp2l 1200 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇)) ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g‘𝑊)𝑧)) → 𝑦 ∈ 𝑇) |
| 33 | | oveq2 7418 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = (0g‘𝑊) → (𝑦(+g‘𝑊)𝑧) = (𝑦(+g‘𝑊)(0g‘𝑊))) |
| 34 | 33 | eqeq2d 2747 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (0g‘𝑊) → (𝑥 = (𝑦(+g‘𝑊)𝑧) ↔ 𝑥 = (𝑦(+g‘𝑊)(0g‘𝑊)))) |
| 35 | 34 | biimpac 478 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 = (𝑦(+g‘𝑊)𝑧) ∧ 𝑧 = (0g‘𝑊)) → 𝑥 = (𝑦(+g‘𝑊)(0g‘𝑊))) |
| 36 | 12 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) → 𝑊 ∈ LMod) |
| 37 | 36 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇)) ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ (𝑁‘{𝑋}))) → 𝑊 ∈ LMod) |
| 38 | 16 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) → 𝑇 ∈ 𝑆) |
| 39 | 38 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇)) ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ (𝑁‘{𝑋}))) → 𝑇 ∈ 𝑆) |
| 40 | | simprl 770 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇)) ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ (𝑁‘{𝑋}))) → 𝑦 ∈ 𝑇) |
| 41 | 19, 13 | lssel 20899 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑇 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇) → 𝑦 ∈ 𝑉) |
| 42 | 39, 40, 41 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇)) ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ (𝑁‘{𝑋}))) → 𝑦 ∈ 𝑉) |
| 43 | | eqid 2736 |
. . . . . . . . . . . . . . . . . . 19
⊢
(0g‘𝑊) = (0g‘𝑊) |
| 44 | 19, 24, 43 | lmod0vrid 20855 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑊 ∈ LMod ∧ 𝑦 ∈ 𝑉) → (𝑦(+g‘𝑊)(0g‘𝑊)) = 𝑦) |
| 45 | 37, 42, 44 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇)) ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ (𝑁‘{𝑋}))) → (𝑦(+g‘𝑊)(0g‘𝑊)) = 𝑦) |
| 46 | 45 | eqeq2d 2747 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇)) ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ (𝑁‘{𝑋}))) → (𝑥 = (𝑦(+g‘𝑊)(0g‘𝑊)) ↔ 𝑥 = 𝑦)) |
| 47 | 46 | biimpd 229 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇)) ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ (𝑁‘{𝑋}))) → (𝑥 = (𝑦(+g‘𝑊)(0g‘𝑊)) → 𝑥 = 𝑦)) |
| 48 | 47 | ex 412 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇)) → ((𝑦 ∈ 𝑇 ∧ 𝑧 ∈ (𝑁‘{𝑋})) → (𝑥 = (𝑦(+g‘𝑊)(0g‘𝑊)) → 𝑥 = 𝑦))) |
| 49 | 35, 48 | syl7 74 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇)) → ((𝑦 ∈ 𝑇 ∧ 𝑧 ∈ (𝑁‘{𝑋})) → ((𝑥 = (𝑦(+g‘𝑊)𝑧) ∧ 𝑧 = (0g‘𝑊)) → 𝑥 = 𝑦))) |
| 50 | 49 | exp4a 431 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇)) → ((𝑦 ∈ 𝑇 ∧ 𝑧 ∈ (𝑁‘{𝑋})) → (𝑥 = (𝑦(+g‘𝑊)𝑧) → (𝑧 = (0g‘𝑊) → 𝑥 = 𝑦)))) |
| 51 | 50 | 3imp 1110 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇)) ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g‘𝑊)𝑧)) → (𝑧 = (0g‘𝑊) → 𝑥 = 𝑦)) |
| 52 | | eleq1 2823 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑇 ↔ 𝑦 ∈ 𝑇)) |
| 53 | 52 | biimparc 479 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ 𝑇 ∧ 𝑥 = 𝑦) → 𝑥 ∈ 𝑇) |
| 54 | 32, 51, 53 | syl6an 684 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇)) ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g‘𝑊)𝑧)) → (𝑧 = (0g‘𝑊) → 𝑥 ∈ 𝑇)) |
| 55 | 54 | necon3bd 2947 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇)) ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g‘𝑊)𝑧)) → (¬ 𝑥 ∈ 𝑇 → 𝑧 ≠ (0g‘𝑊))) |
| 56 | 31, 55 | mpd 15 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇)) ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g‘𝑊)𝑧)) → 𝑧 ≠ (0g‘𝑊)) |
| 57 | 10 | 3ad2ant1 1133 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) → 𝑊 ∈ LVec) |
| 58 | 57 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇)) → 𝑊 ∈ LVec) |
| 59 | 58 | 3ad2ant1 1133 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇)) ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g‘𝑊)𝑧)) → 𝑊 ∈ LVec) |
| 60 | | lmodabl 20871 |
. . . . . . . . . . . 12
⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) |
| 61 | 11, 60 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑊 ∈ LVec → 𝑊 ∈ Abel) |
| 62 | 59, 61 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇)) ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g‘𝑊)𝑧)) → 𝑊 ∈ Abel) |
| 63 | | simp1l1 1267 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇)) ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g‘𝑊)𝑧)) → 𝜑) |
| 64 | 63, 16 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇)) ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g‘𝑊)𝑧)) → 𝑇 ∈ 𝑆) |
| 65 | 64, 32, 41 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇)) ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g‘𝑊)𝑧)) → 𝑦 ∈ 𝑉) |
| 66 | 59, 11 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇)) ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g‘𝑊)𝑧)) → 𝑊 ∈ LMod) |
| 67 | 63, 18 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇)) ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g‘𝑊)𝑧)) → 𝑋 ∈ 𝑉) |
| 68 | 66, 67, 21 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇)) ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g‘𝑊)𝑧)) → (𝑁‘{𝑋}) ∈ 𝑆) |
| 69 | | simp2r 1201 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇)) ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g‘𝑊)𝑧)) → 𝑧 ∈ (𝑁‘{𝑋})) |
| 70 | 19, 13 | lssel 20899 |
. . . . . . . . . . 11
⊢ (((𝑁‘{𝑋}) ∈ 𝑆 ∧ 𝑧 ∈ (𝑁‘{𝑋})) → 𝑧 ∈ 𝑉) |
| 71 | 68, 69, 70 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇)) ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g‘𝑊)𝑧)) → 𝑧 ∈ 𝑉) |
| 72 | | eqid 2736 |
. . . . . . . . . . 11
⊢
(-g‘𝑊) = (-g‘𝑊) |
| 73 | 19, 24, 72 | ablpncan2 19801 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ Abel ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) → ((𝑦(+g‘𝑊)𝑧)(-g‘𝑊)𝑦) = 𝑧) |
| 74 | 62, 65, 71, 73 | syl3anc 1373 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇)) ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g‘𝑊)𝑧)) → ((𝑦(+g‘𝑊)𝑧)(-g‘𝑊)𝑦) = 𝑧) |
| 75 | | lsmcv.u |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| 76 | 63, 75 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇)) ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g‘𝑊)𝑧)) → 𝑈 ∈ 𝑆) |
| 77 | | simp3 1138 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇)) ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g‘𝑊)𝑧)) → 𝑥 = (𝑦(+g‘𝑊)𝑧)) |
| 78 | | simp1rl 1239 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇)) ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g‘𝑊)𝑧)) → 𝑥 ∈ 𝑈) |
| 79 | 77, 78 | eqeltrrd 2836 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇)) ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g‘𝑊)𝑧)) → (𝑦(+g‘𝑊)𝑧) ∈ 𝑈) |
| 80 | | simp1l2 1268 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇)) ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g‘𝑊)𝑧)) → 𝑇 ⊊ 𝑈) |
| 81 | 3 | sselda 3963 |
. . . . . . . . . . 11
⊢ ((𝑇 ⊊ 𝑈 ∧ 𝑦 ∈ 𝑇) → 𝑦 ∈ 𝑈) |
| 82 | 80, 32, 81 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇)) ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g‘𝑊)𝑧)) → 𝑦 ∈ 𝑈) |
| 83 | 72, 13 | lssvsubcl 20906 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ ((𝑦(+g‘𝑊)𝑧) ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → ((𝑦(+g‘𝑊)𝑧)(-g‘𝑊)𝑦) ∈ 𝑈) |
| 84 | 66, 76, 79, 82, 83 | syl22anc 838 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇)) ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g‘𝑊)𝑧)) → ((𝑦(+g‘𝑊)𝑧)(-g‘𝑊)𝑦) ∈ 𝑈) |
| 85 | 74, 84 | eqeltrrd 2836 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇)) ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g‘𝑊)𝑧)) → 𝑧 ∈ 𝑈) |
| 86 | 59 | 3ad2ant1 1133 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇)) ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g‘𝑊)𝑧)) ∧ 𝑧 ≠ (0g‘𝑊) ∧ 𝑧 ∈ 𝑈) → 𝑊 ∈ LVec) |
| 87 | 63 | 3ad2ant1 1133 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇)) ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g‘𝑊)𝑧)) ∧ 𝑧 ≠ (0g‘𝑊) ∧ 𝑧 ∈ 𝑈) → 𝜑) |
| 88 | 87, 18 | syl 17 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇)) ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g‘𝑊)𝑧)) ∧ 𝑧 ≠ (0g‘𝑊) ∧ 𝑧 ∈ 𝑈) → 𝑋 ∈ 𝑉) |
| 89 | | simp12r 1288 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇)) ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g‘𝑊)𝑧)) ∧ 𝑧 ≠ (0g‘𝑊) ∧ 𝑧 ∈ 𝑈) → 𝑧 ∈ (𝑁‘{𝑋})) |
| 90 | | simp2 1137 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇)) ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g‘𝑊)𝑧)) ∧ 𝑧 ≠ (0g‘𝑊) ∧ 𝑧 ∈ 𝑈) → 𝑧 ≠ (0g‘𝑊)) |
| 91 | 19, 43, 20, 86, 88, 89, 90 | lspsneleq 21081 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇)) ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g‘𝑊)𝑧)) ∧ 𝑧 ≠ (0g‘𝑊) ∧ 𝑧 ∈ 𝑈) → (𝑁‘{𝑧}) = (𝑁‘{𝑋})) |
| 92 | 86, 11 | syl 17 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇)) ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g‘𝑊)𝑧)) ∧ 𝑧 ≠ (0g‘𝑊) ∧ 𝑧 ∈ 𝑈) → 𝑊 ∈ LMod) |
| 93 | 87, 75 | syl 17 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇)) ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g‘𝑊)𝑧)) ∧ 𝑧 ≠ (0g‘𝑊) ∧ 𝑧 ∈ 𝑈) → 𝑈 ∈ 𝑆) |
| 94 | | simp3 1138 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇)) ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g‘𝑊)𝑧)) ∧ 𝑧 ≠ (0g‘𝑊) ∧ 𝑧 ∈ 𝑈) → 𝑧 ∈ 𝑈) |
| 95 | 13, 20, 92, 93, 94 | ellspsn5 20958 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇)) ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g‘𝑊)𝑧)) ∧ 𝑧 ≠ (0g‘𝑊) ∧ 𝑧 ∈ 𝑈) → (𝑁‘{𝑧}) ⊆ 𝑈) |
| 96 | 91, 95 | eqsstrrd 3999 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇)) ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g‘𝑊)𝑧)) ∧ 𝑧 ≠ (0g‘𝑊) ∧ 𝑧 ∈ 𝑈) → (𝑁‘{𝑋}) ⊆ 𝑈) |
| 97 | 56, 85, 96 | mpd3an23 1465 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇)) ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ (𝑁‘{𝑋})) ∧ 𝑥 = (𝑦(+g‘𝑊)𝑧)) → (𝑁‘{𝑋}) ⊆ 𝑈) |
| 98 | 97 | 3exp 1119 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇)) → ((𝑦 ∈ 𝑇 ∧ 𝑧 ∈ (𝑁‘{𝑋})) → (𝑥 = (𝑦(+g‘𝑊)𝑧) → (𝑁‘{𝑋}) ⊆ 𝑈))) |
| 99 | 98 | rexlimdvv 3201 |
. . . . 5
⊢ (((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇)) → (∃𝑦 ∈ 𝑇 ∃𝑧 ∈ (𝑁‘{𝑋})𝑥 = (𝑦(+g‘𝑊)𝑧) → (𝑁‘{𝑋}) ⊆ 𝑈)) |
| 100 | 30, 99 | mpd 15 |
. . . 4
⊢ (((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇)) → (𝑁‘{𝑋}) ⊆ 𝑈) |
| 101 | 6, 100 | exlimddv 1935 |
. . 3
⊢ ((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) → (𝑁‘{𝑋}) ⊆ 𝑈) |
| 102 | 15, 75 | sseldd 3964 |
. . . . 5
⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝑊)) |
| 103 | 25 | lsmlub 19650 |
. . . . 5
⊢ ((𝑇 ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → ((𝑇 ⊆ 𝑈 ∧ (𝑁‘{𝑋}) ⊆ 𝑈) ↔ (𝑇 ⊕ (𝑁‘{𝑋})) ⊆ 𝑈)) |
| 104 | 17, 23, 102, 103 | syl3anc 1373 |
. . . 4
⊢ (𝜑 → ((𝑇 ⊆ 𝑈 ∧ (𝑁‘{𝑋}) ⊆ 𝑈) ↔ (𝑇 ⊕ (𝑁‘{𝑋})) ⊆ 𝑈)) |
| 105 | 104 | 3ad2ant1 1133 |
. . 3
⊢ ((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) → ((𝑇 ⊆ 𝑈 ∧ (𝑁‘{𝑋}) ⊆ 𝑈) ↔ (𝑇 ⊕ (𝑁‘{𝑋})) ⊆ 𝑈)) |
| 106 | 4, 101, 105 | mpbi2and 712 |
. 2
⊢ ((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) → (𝑇 ⊕ (𝑁‘{𝑋})) ⊆ 𝑈) |
| 107 | 1, 106 | eqssd 3981 |
1
⊢ ((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) → 𝑈 = (𝑇 ⊕ (𝑁‘{𝑋}))) |