Step | Hyp | Ref
| Expression |
1 | | simp3 1137 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑃) → 𝑌 ∈ 𝑃) |
2 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝐾) =
(Base‘𝐾) |
3 | | lvolnlelpln.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
4 | | eqid 2738 |
. . . . 5
⊢
(join‘𝐾) =
(join‘𝐾) |
5 | | eqid 2738 |
. . . . 5
⊢
(Atoms‘𝐾) =
(Atoms‘𝐾) |
6 | | lvolnlelpln.p |
. . . . 5
⊢ 𝑃 = (LPlanes‘𝐾) |
7 | 2, 3, 4, 5, 6 | islpln2 37550 |
. . . 4
⊢ (𝐾 ∈ HL → (𝑌 ∈ 𝑃 ↔ (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)∃𝑠 ∈ (Atoms‘𝐾)(𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞(join‘𝐾)𝑟) ∧ 𝑌 = ((𝑞(join‘𝐾)𝑟)(join‘𝐾)𝑠))))) |
8 | 7 | 3ad2ant1 1132 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑃) → (𝑌 ∈ 𝑃 ↔ (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)∃𝑠 ∈ (Atoms‘𝐾)(𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞(join‘𝐾)𝑟) ∧ 𝑌 = ((𝑞(join‘𝐾)𝑟)(join‘𝐾)𝑠))))) |
9 | 1, 8 | mpbid 231 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑃) → (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)∃𝑠 ∈ (Atoms‘𝐾)(𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞(join‘𝐾)𝑟) ∧ 𝑌 = ((𝑞(join‘𝐾)𝑟)(join‘𝐾)𝑠)))) |
10 | | simp1l1 1265 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑃) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾)) ∧ (𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞(join‘𝐾)𝑟) ∧ 𝑌 = ((𝑞(join‘𝐾)𝑟)(join‘𝐾)𝑠))) → 𝐾 ∈ HL) |
11 | | simp1l2 1266 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑃) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾)) ∧ (𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞(join‘𝐾)𝑟) ∧ 𝑌 = ((𝑞(join‘𝐾)𝑟)(join‘𝐾)𝑠))) → 𝑋 ∈ 𝑉) |
12 | | simp1r 1197 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑃) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾)) ∧ (𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞(join‘𝐾)𝑟) ∧ 𝑌 = ((𝑞(join‘𝐾)𝑟)(join‘𝐾)𝑠))) → 𝑞 ∈ (Atoms‘𝐾)) |
13 | | simp2l 1198 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑃) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾)) ∧ (𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞(join‘𝐾)𝑟) ∧ 𝑌 = ((𝑞(join‘𝐾)𝑟)(join‘𝐾)𝑠))) → 𝑟 ∈ (Atoms‘𝐾)) |
14 | | simp2r 1199 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑃) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾)) ∧ (𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞(join‘𝐾)𝑟) ∧ 𝑌 = ((𝑞(join‘𝐾)𝑟)(join‘𝐾)𝑠))) → 𝑠 ∈ (Atoms‘𝐾)) |
15 | | lvolnlelpln.v |
. . . . . . . . 9
⊢ 𝑉 = (LVols‘𝐾) |
16 | 3, 4, 5, 15 | lvolnle3at 37596 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) → ¬ 𝑋 ≤ ((𝑞(join‘𝐾)𝑟)(join‘𝐾)𝑠)) |
17 | 10, 11, 12, 13, 14, 16 | syl23anc 1376 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑃) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾)) ∧ (𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞(join‘𝐾)𝑟) ∧ 𝑌 = ((𝑞(join‘𝐾)𝑟)(join‘𝐾)𝑠))) → ¬ 𝑋 ≤ ((𝑞(join‘𝐾)𝑟)(join‘𝐾)𝑠)) |
18 | | simp33 1210 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑃) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾)) ∧ (𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞(join‘𝐾)𝑟) ∧ 𝑌 = ((𝑞(join‘𝐾)𝑟)(join‘𝐾)𝑠))) → 𝑌 = ((𝑞(join‘𝐾)𝑟)(join‘𝐾)𝑠)) |
19 | 18 | breq2d 5086 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑃) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾)) ∧ (𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞(join‘𝐾)𝑟) ∧ 𝑌 = ((𝑞(join‘𝐾)𝑟)(join‘𝐾)𝑠))) → (𝑋 ≤ 𝑌 ↔ 𝑋 ≤ ((𝑞(join‘𝐾)𝑟)(join‘𝐾)𝑠))) |
20 | 17, 19 | mtbird 325 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑃) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾)) ∧ (𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞(join‘𝐾)𝑟) ∧ 𝑌 = ((𝑞(join‘𝐾)𝑟)(join‘𝐾)𝑠))) → ¬ 𝑋 ≤ 𝑌) |
21 | 20 | 3exp 1118 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑃) ∧ 𝑞 ∈ (Atoms‘𝐾)) → ((𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾)) → ((𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞(join‘𝐾)𝑟) ∧ 𝑌 = ((𝑞(join‘𝐾)𝑟)(join‘𝐾)𝑠)) → ¬ 𝑋 ≤ 𝑌))) |
22 | 21 | rexlimdvv 3222 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑃) ∧ 𝑞 ∈ (Atoms‘𝐾)) → (∃𝑟 ∈ (Atoms‘𝐾)∃𝑠 ∈ (Atoms‘𝐾)(𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞(join‘𝐾)𝑟) ∧ 𝑌 = ((𝑞(join‘𝐾)𝑟)(join‘𝐾)𝑠)) → ¬ 𝑋 ≤ 𝑌)) |
23 | 22 | rexlimdva 3213 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑃) → (∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)∃𝑠 ∈ (Atoms‘𝐾)(𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞(join‘𝐾)𝑟) ∧ 𝑌 = ((𝑞(join‘𝐾)𝑟)(join‘𝐾)𝑠)) → ¬ 𝑋 ≤ 𝑌)) |
24 | 23 | adantld 491 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑃) → ((𝑌 ∈ (Base‘𝐾) ∧ ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)∃𝑠 ∈ (Atoms‘𝐾)(𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞(join‘𝐾)𝑟) ∧ 𝑌 = ((𝑞(join‘𝐾)𝑟)(join‘𝐾)𝑠))) → ¬ 𝑋 ≤ 𝑌)) |
25 | 9, 24 | mpd 15 |
1
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑃) → ¬ 𝑋 ≤ 𝑌) |