Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lvolnlelpln Structured version   Visualization version   GIF version

Theorem lvolnlelpln 39624
Description: A lattice plane cannot majorize a lattice volume. (Contributed by NM, 14-Jul-2012.)
Hypotheses
Ref Expression
lvolnlelpln.l = (le‘𝐾)
lvolnlelpln.p 𝑃 = (LPlanes‘𝐾)
lvolnlelpln.v 𝑉 = (LVols‘𝐾)
Assertion
Ref Expression
lvolnlelpln ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑃) → ¬ 𝑋 𝑌)

Proof of Theorem lvolnlelpln
Dummy variables 𝑟 𝑞 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1138 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑃) → 𝑌𝑃)
2 eqid 2731 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
3 lvolnlelpln.l . . . . 5 = (le‘𝐾)
4 eqid 2731 . . . . 5 (join‘𝐾) = (join‘𝐾)
5 eqid 2731 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
6 lvolnlelpln.p . . . . 5 𝑃 = (LPlanes‘𝐾)
72, 3, 4, 5, 6islpln2 39575 . . . 4 (𝐾 ∈ HL → (𝑌𝑃 ↔ (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)∃𝑠 ∈ (Atoms‘𝐾)(𝑞𝑟 ∧ ¬ 𝑠 (𝑞(join‘𝐾)𝑟) ∧ 𝑌 = ((𝑞(join‘𝐾)𝑟)(join‘𝐾)𝑠)))))
873ad2ant1 1133 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑃) → (𝑌𝑃 ↔ (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)∃𝑠 ∈ (Atoms‘𝐾)(𝑞𝑟 ∧ ¬ 𝑠 (𝑞(join‘𝐾)𝑟) ∧ 𝑌 = ((𝑞(join‘𝐾)𝑟)(join‘𝐾)𝑠)))))
91, 8mpbid 232 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑃) → (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)∃𝑠 ∈ (Atoms‘𝐾)(𝑞𝑟 ∧ ¬ 𝑠 (𝑞(join‘𝐾)𝑟) ∧ 𝑌 = ((𝑞(join‘𝐾)𝑟)(join‘𝐾)𝑠))))
10 simp1l1 1267 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑃) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞(join‘𝐾)𝑟) ∧ 𝑌 = ((𝑞(join‘𝐾)𝑟)(join‘𝐾)𝑠))) → 𝐾 ∈ HL)
11 simp1l2 1268 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑃) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞(join‘𝐾)𝑟) ∧ 𝑌 = ((𝑞(join‘𝐾)𝑟)(join‘𝐾)𝑠))) → 𝑋𝑉)
12 simp1r 1199 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑃) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞(join‘𝐾)𝑟) ∧ 𝑌 = ((𝑞(join‘𝐾)𝑟)(join‘𝐾)𝑠))) → 𝑞 ∈ (Atoms‘𝐾))
13 simp2l 1200 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑃) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞(join‘𝐾)𝑟) ∧ 𝑌 = ((𝑞(join‘𝐾)𝑟)(join‘𝐾)𝑠))) → 𝑟 ∈ (Atoms‘𝐾))
14 simp2r 1201 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑃) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞(join‘𝐾)𝑟) ∧ 𝑌 = ((𝑞(join‘𝐾)𝑟)(join‘𝐾)𝑠))) → 𝑠 ∈ (Atoms‘𝐾))
15 lvolnlelpln.v . . . . . . . . 9 𝑉 = (LVols‘𝐾)
163, 4, 5, 15lvolnle3at 39621 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) → ¬ 𝑋 ((𝑞(join‘𝐾)𝑟)(join‘𝐾)𝑠))
1710, 11, 12, 13, 14, 16syl23anc 1379 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑃) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞(join‘𝐾)𝑟) ∧ 𝑌 = ((𝑞(join‘𝐾)𝑟)(join‘𝐾)𝑠))) → ¬ 𝑋 ((𝑞(join‘𝐾)𝑟)(join‘𝐾)𝑠))
18 simp33 1212 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑃) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞(join‘𝐾)𝑟) ∧ 𝑌 = ((𝑞(join‘𝐾)𝑟)(join‘𝐾)𝑠))) → 𝑌 = ((𝑞(join‘𝐾)𝑟)(join‘𝐾)𝑠))
1918breq2d 5098 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑃) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞(join‘𝐾)𝑟) ∧ 𝑌 = ((𝑞(join‘𝐾)𝑟)(join‘𝐾)𝑠))) → (𝑋 𝑌𝑋 ((𝑞(join‘𝐾)𝑟)(join‘𝐾)𝑠)))
2017, 19mtbird 325 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑃) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞(join‘𝐾)𝑟) ∧ 𝑌 = ((𝑞(join‘𝐾)𝑟)(join‘𝐾)𝑠))) → ¬ 𝑋 𝑌)
21203exp 1119 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑃) ∧ 𝑞 ∈ (Atoms‘𝐾)) → ((𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾)) → ((𝑞𝑟 ∧ ¬ 𝑠 (𝑞(join‘𝐾)𝑟) ∧ 𝑌 = ((𝑞(join‘𝐾)𝑟)(join‘𝐾)𝑠)) → ¬ 𝑋 𝑌)))
2221rexlimdvv 3188 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑃) ∧ 𝑞 ∈ (Atoms‘𝐾)) → (∃𝑟 ∈ (Atoms‘𝐾)∃𝑠 ∈ (Atoms‘𝐾)(𝑞𝑟 ∧ ¬ 𝑠 (𝑞(join‘𝐾)𝑟) ∧ 𝑌 = ((𝑞(join‘𝐾)𝑟)(join‘𝐾)𝑠)) → ¬ 𝑋 𝑌))
2322rexlimdva 3133 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑃) → (∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)∃𝑠 ∈ (Atoms‘𝐾)(𝑞𝑟 ∧ ¬ 𝑠 (𝑞(join‘𝐾)𝑟) ∧ 𝑌 = ((𝑞(join‘𝐾)𝑟)(join‘𝐾)𝑠)) → ¬ 𝑋 𝑌))
2423adantld 490 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑃) → ((𝑌 ∈ (Base‘𝐾) ∧ ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)∃𝑠 ∈ (Atoms‘𝐾)(𝑞𝑟 ∧ ¬ 𝑠 (𝑞(join‘𝐾)𝑟) ∧ 𝑌 = ((𝑞(join‘𝐾)𝑟)(join‘𝐾)𝑠))) → ¬ 𝑋 𝑌))
259, 24mpd 15 1 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑃) → ¬ 𝑋 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wrex 3056   class class class wbr 5086  cfv 6476  (class class class)co 7341  Basecbs 17115  lecple 17163  joincjn 18212  Atomscatm 39302  HLchlt 39389  LPlanesclpl 39531  LVolsclvol 39532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-proset 18195  df-poset 18214  df-plt 18229  df-lub 18245  df-glb 18246  df-join 18247  df-meet 18248  df-p0 18324  df-lat 18333  df-clat 18400  df-oposet 39215  df-ol 39217  df-oml 39218  df-covers 39305  df-ats 39306  df-atl 39337  df-cvlat 39361  df-hlat 39390  df-llines 39537  df-lplanes 39538  df-lvols 39539
This theorem is referenced by:  lvolnelpln  39629
  Copyright terms: Public domain W3C validator