Step | Hyp | Ref
| Expression |
1 | | simp3 1137 |
. . 3
β’ ((πΎ β HL β§ π β π β§ π β π) β π β π) |
2 | | eqid 2731 |
. . . . 5
β’
(BaseβπΎ) =
(BaseβπΎ) |
3 | | lvolnlelpln.l |
. . . . 5
β’ β€ =
(leβπΎ) |
4 | | eqid 2731 |
. . . . 5
β’
(joinβπΎ) =
(joinβπΎ) |
5 | | eqid 2731 |
. . . . 5
β’
(AtomsβπΎ) =
(AtomsβπΎ) |
6 | | lvolnlelpln.p |
. . . . 5
β’ π = (LPlanesβπΎ) |
7 | 2, 3, 4, 5, 6 | islpln2 38711 |
. . . 4
β’ (πΎ β HL β (π β π β (π β (BaseβπΎ) β§ βπ β (AtomsβπΎ)βπ β (AtomsβπΎ)βπ β (AtomsβπΎ)(π β π β§ Β¬ π β€ (π(joinβπΎ)π) β§ π = ((π(joinβπΎ)π)(joinβπΎ)π ))))) |
8 | 7 | 3ad2ant1 1132 |
. . 3
β’ ((πΎ β HL β§ π β π β§ π β π) β (π β π β (π β (BaseβπΎ) β§ βπ β (AtomsβπΎ)βπ β (AtomsβπΎ)βπ β (AtomsβπΎ)(π β π β§ Β¬ π β€ (π(joinβπΎ)π) β§ π = ((π(joinβπΎ)π)(joinβπΎ)π ))))) |
9 | 1, 8 | mpbid 231 |
. 2
β’ ((πΎ β HL β§ π β π β§ π β π) β (π β (BaseβπΎ) β§ βπ β (AtomsβπΎ)βπ β (AtomsβπΎ)βπ β (AtomsβπΎ)(π β π β§ Β¬ π β€ (π(joinβπΎ)π) β§ π = ((π(joinβπΎ)π)(joinβπΎ)π )))) |
10 | | simp1l1 1265 |
. . . . . . . 8
β’ ((((πΎ β HL β§ π β π β§ π β π) β§ π β (AtomsβπΎ)) β§ (π β (AtomsβπΎ) β§ π β (AtomsβπΎ)) β§ (π β π β§ Β¬ π β€ (π(joinβπΎ)π) β§ π = ((π(joinβπΎ)π)(joinβπΎ)π ))) β πΎ β HL) |
11 | | simp1l2 1266 |
. . . . . . . 8
β’ ((((πΎ β HL β§ π β π β§ π β π) β§ π β (AtomsβπΎ)) β§ (π β (AtomsβπΎ) β§ π β (AtomsβπΎ)) β§ (π β π β§ Β¬ π β€ (π(joinβπΎ)π) β§ π = ((π(joinβπΎ)π)(joinβπΎ)π ))) β π β π) |
12 | | simp1r 1197 |
. . . . . . . 8
β’ ((((πΎ β HL β§ π β π β§ π β π) β§ π β (AtomsβπΎ)) β§ (π β (AtomsβπΎ) β§ π β (AtomsβπΎ)) β§ (π β π β§ Β¬ π β€ (π(joinβπΎ)π) β§ π = ((π(joinβπΎ)π)(joinβπΎ)π ))) β π β (AtomsβπΎ)) |
13 | | simp2l 1198 |
. . . . . . . 8
β’ ((((πΎ β HL β§ π β π β§ π β π) β§ π β (AtomsβπΎ)) β§ (π β (AtomsβπΎ) β§ π β (AtomsβπΎ)) β§ (π β π β§ Β¬ π β€ (π(joinβπΎ)π) β§ π = ((π(joinβπΎ)π)(joinβπΎ)π ))) β π β (AtomsβπΎ)) |
14 | | simp2r 1199 |
. . . . . . . 8
β’ ((((πΎ β HL β§ π β π β§ π β π) β§ π β (AtomsβπΎ)) β§ (π β (AtomsβπΎ) β§ π β (AtomsβπΎ)) β§ (π β π β§ Β¬ π β€ (π(joinβπΎ)π) β§ π = ((π(joinβπΎ)π)(joinβπΎ)π ))) β π β (AtomsβπΎ)) |
15 | | lvolnlelpln.v |
. . . . . . . . 9
β’ π = (LVolsβπΎ) |
16 | 3, 4, 5, 15 | lvolnle3at 38757 |
. . . . . . . 8
β’ (((πΎ β HL β§ π β π) β§ (π β (AtomsβπΎ) β§ π β (AtomsβπΎ) β§ π β (AtomsβπΎ))) β Β¬ π β€ ((π(joinβπΎ)π)(joinβπΎ)π )) |
17 | 10, 11, 12, 13, 14, 16 | syl23anc 1376 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π β§ π β π) β§ π β (AtomsβπΎ)) β§ (π β (AtomsβπΎ) β§ π β (AtomsβπΎ)) β§ (π β π β§ Β¬ π β€ (π(joinβπΎ)π) β§ π = ((π(joinβπΎ)π)(joinβπΎ)π ))) β Β¬ π β€ ((π(joinβπΎ)π)(joinβπΎ)π )) |
18 | | simp33 1210 |
. . . . . . . 8
β’ ((((πΎ β HL β§ π β π β§ π β π) β§ π β (AtomsβπΎ)) β§ (π β (AtomsβπΎ) β§ π β (AtomsβπΎ)) β§ (π β π β§ Β¬ π β€ (π(joinβπΎ)π) β§ π = ((π(joinβπΎ)π)(joinβπΎ)π ))) β π = ((π(joinβπΎ)π)(joinβπΎ)π )) |
19 | 18 | breq2d 5160 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π β§ π β π) β§ π β (AtomsβπΎ)) β§ (π β (AtomsβπΎ) β§ π β (AtomsβπΎ)) β§ (π β π β§ Β¬ π β€ (π(joinβπΎ)π) β§ π = ((π(joinβπΎ)π)(joinβπΎ)π ))) β (π β€ π β π β€ ((π(joinβπΎ)π)(joinβπΎ)π ))) |
20 | 17, 19 | mtbird 325 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π β§ π β π) β§ π β (AtomsβπΎ)) β§ (π β (AtomsβπΎ) β§ π β (AtomsβπΎ)) β§ (π β π β§ Β¬ π β€ (π(joinβπΎ)π) β§ π = ((π(joinβπΎ)π)(joinβπΎ)π ))) β Β¬ π β€ π) |
21 | 20 | 3exp 1118 |
. . . . 5
β’ (((πΎ β HL β§ π β π β§ π β π) β§ π β (AtomsβπΎ)) β ((π β (AtomsβπΎ) β§ π β (AtomsβπΎ)) β ((π β π β§ Β¬ π β€ (π(joinβπΎ)π) β§ π = ((π(joinβπΎ)π)(joinβπΎ)π )) β Β¬ π β€ π))) |
22 | 21 | rexlimdvv 3209 |
. . . 4
β’ (((πΎ β HL β§ π β π β§ π β π) β§ π β (AtomsβπΎ)) β (βπ β (AtomsβπΎ)βπ β (AtomsβπΎ)(π β π β§ Β¬ π β€ (π(joinβπΎ)π) β§ π = ((π(joinβπΎ)π)(joinβπΎ)π )) β Β¬ π β€ π)) |
23 | 22 | rexlimdva 3154 |
. . 3
β’ ((πΎ β HL β§ π β π β§ π β π) β (βπ β (AtomsβπΎ)βπ β (AtomsβπΎ)βπ β (AtomsβπΎ)(π β π β§ Β¬ π β€ (π(joinβπΎ)π) β§ π = ((π(joinβπΎ)π)(joinβπΎ)π )) β Β¬ π β€ π)) |
24 | 23 | adantld 490 |
. 2
β’ ((πΎ β HL β§ π β π β§ π β π) β ((π β (BaseβπΎ) β§ βπ β (AtomsβπΎ)βπ β (AtomsβπΎ)βπ β (AtomsβπΎ)(π β π β§ Β¬ π β€ (π(joinβπΎ)π) β§ π = ((π(joinβπΎ)π)(joinβπΎ)π ))) β Β¬ π β€ π)) |
25 | 9, 24 | mpd 15 |
1
β’ ((πΎ β HL β§ π β π β§ π β π) β Β¬ π β€ π) |