| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pmatcollpw2 | Structured version Visualization version GIF version | ||
| Description: Write a polynomial matrix as a sum of matrices whose entries are products of variable powers and constant polynomials collecting like powers. (Contributed by AV, 3-Oct-2019.) (Revised by AV, 3-Dec-2019.) |
| Ref | Expression |
|---|---|
| pmatcollpw1.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| pmatcollpw1.c | ⊢ 𝐶 = (𝑁 Mat 𝑃) |
| pmatcollpw1.b | ⊢ 𝐵 = (Base‘𝐶) |
| pmatcollpw1.m | ⊢ × = ( ·𝑠 ‘𝑃) |
| pmatcollpw1.e | ⊢ ↑ = (.g‘(mulGrp‘𝑃)) |
| pmatcollpw1.x | ⊢ 𝑋 = (var1‘𝑅) |
| Ref | Expression |
|---|---|
| pmatcollpw2 | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑀 = (𝐶 Σg (𝑛 ∈ ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmatcollpw1.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 2 | pmatcollpw1.c | . . 3 ⊢ 𝐶 = (𝑁 Mat 𝑃) | |
| 3 | pmatcollpw1.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 4 | pmatcollpw1.m | . . 3 ⊢ × = ( ·𝑠 ‘𝑃) | |
| 5 | pmatcollpw1.e | . . 3 ⊢ ↑ = (.g‘(mulGrp‘𝑃)) | |
| 6 | pmatcollpw1.x | . . 3 ⊢ 𝑋 = (var1‘𝑅) | |
| 7 | 1, 2, 3, 4, 5, 6 | pmatcollpw1 22692 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑀 = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)))))) |
| 8 | eqid 2733 | . . 3 ⊢ (0g‘𝐶) = (0g‘𝐶) | |
| 9 | simp1 1136 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑁 ∈ Fin) | |
| 10 | nn0ex 12394 | . . . 4 ⊢ ℕ0 ∈ V | |
| 11 | 10 | a1i 11 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ℕ0 ∈ V) |
| 12 | 1 | ply1ring 22161 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
| 13 | 12 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑃 ∈ Ring) |
| 14 | eqid 2733 | . . . 4 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
| 15 | 9 | adantr 480 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑁 ∈ Fin) |
| 16 | 13 | adantr 480 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑃 ∈ Ring) |
| 17 | simp1l2 1268 | . . . . 5 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑅 ∈ Ring) | |
| 18 | eqid 2733 | . . . . . 6 ⊢ (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅) | |
| 19 | eqid 2733 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 20 | eqid 2733 | . . . . . 6 ⊢ (Base‘(𝑁 Mat 𝑅)) = (Base‘(𝑁 Mat 𝑅)) | |
| 21 | simp2 1137 | . . . . . 6 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑖 ∈ 𝑁) | |
| 22 | simp3 1138 | . . . . . 6 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑗 ∈ 𝑁) | |
| 23 | simp2 1137 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑅 ∈ Ring) | |
| 24 | 23 | adantr 480 | . . . . . . . . 9 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ Ring) |
| 25 | simp3 1138 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑀 ∈ 𝐵) | |
| 26 | 25 | adantr 480 | . . . . . . . . 9 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑀 ∈ 𝐵) |
| 27 | simpr 484 | . . . . . . . . 9 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0) | |
| 28 | 24, 26, 27 | 3jca 1128 | . . . . . . . 8 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑛 ∈ ℕ0)) |
| 29 | 28 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑛 ∈ ℕ0)) |
| 30 | 1, 2, 3, 18, 20 | decpmatcl 22683 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑛 ∈ ℕ0) → (𝑀 decompPMat 𝑛) ∈ (Base‘(𝑁 Mat 𝑅))) |
| 31 | 29, 30 | syl 17 | . . . . . 6 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑀 decompPMat 𝑛) ∈ (Base‘(𝑁 Mat 𝑅))) |
| 32 | 18, 19, 20, 21, 22, 31 | matecld 22342 | . . . . 5 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑖(𝑀 decompPMat 𝑛)𝑗) ∈ (Base‘𝑅)) |
| 33 | simp1r 1199 | . . . . 5 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑛 ∈ ℕ0) | |
| 34 | eqid 2733 | . . . . . 6 ⊢ (mulGrp‘𝑃) = (mulGrp‘𝑃) | |
| 35 | 19, 1, 6, 4, 34, 5, 14 | ply1tmcl 22187 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑖(𝑀 decompPMat 𝑛)𝑗) ∈ (Base‘𝑅) ∧ 𝑛 ∈ ℕ0) → ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)) ∈ (Base‘𝑃)) |
| 36 | 17, 32, 33, 35 | syl3anc 1373 | . . . 4 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)) ∈ (Base‘𝑃)) |
| 37 | 2, 14, 3, 15, 16, 36 | matbas2d 22339 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))) ∈ 𝐵) |
| 38 | 1, 2, 3, 4, 5, 6 | pmatcollpw2lem 22693 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑛 ∈ ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)))) finSupp (0g‘𝐶)) |
| 39 | 2, 3, 8, 9, 11, 13, 37, 38 | matgsum 22353 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝐶 Σg (𝑛 ∈ ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)))))) |
| 40 | 7, 39 | eqtr4d 2771 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑀 = (𝐶 Σg (𝑛 ∈ ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ↦ cmpt 5174 ‘cfv 6486 (class class class)co 7352 ∈ cmpo 7354 Fincfn 8875 ℕ0cn0 12388 Basecbs 17122 ·𝑠 cvsca 17167 0gc0g 17345 Σg cgsu 17346 .gcmg 18982 mulGrpcmgp 20060 Ringcrg 20153 var1cv1 22089 Poly1cpl1 22090 Mat cmat 22323 decompPMat cdecpmat 22678 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-ot 4584 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-ofr 7617 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-pm 8759 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9253 df-sup 9333 df-oi 9403 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-uz 12739 df-fz 13410 df-fzo 13557 df-seq 13911 df-hash 14240 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-sca 17179 df-vsca 17180 df-ip 17181 df-tset 17182 df-ple 17183 df-ds 17185 df-hom 17187 df-cco 17188 df-0g 17347 df-gsum 17348 df-prds 17353 df-pws 17355 df-mre 17490 df-mrc 17491 df-acs 17493 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-mhm 18693 df-submnd 18694 df-grp 18851 df-minusg 18852 df-sbg 18853 df-mulg 18983 df-subg 19038 df-ghm 19127 df-cntz 19231 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-srg 20107 df-ring 20155 df-subrng 20463 df-subrg 20487 df-lmod 20797 df-lss 20867 df-sra 21109 df-rgmod 21110 df-dsmm 21671 df-frlm 21686 df-psr 21848 df-mvr 21849 df-mpl 21850 df-opsr 21852 df-psr1 22093 df-vr1 22094 df-ply1 22095 df-coe1 22096 df-mat 22324 df-decpmat 22679 |
| This theorem is referenced by: pmatcollpw 22697 |
| Copyright terms: Public domain | W3C validator |