Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atcvrlln2 Structured version   Visualization version   GIF version

Theorem atcvrlln2 35407
Description: An atom under a line is covered by it. (Contributed by NM, 2-Jul-2012.)
Hypotheses
Ref Expression
atcvrlln2.l = (le‘𝐾)
atcvrlln2.c 𝐶 = ( ⋖ ‘𝐾)
atcvrlln2.a 𝐴 = (Atoms‘𝐾)
atcvrlln2.n 𝑁 = (LLines‘𝐾)
Assertion
Ref Expression
atcvrlln2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) → 𝑃𝐶𝑋)

Proof of Theorem atcvrlln2
Dummy variables 𝑟 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl3 1246 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) → 𝑋𝑁)
2 simpl1 1242 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) → 𝐾 ∈ HL)
3 eqid 2765 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
4 atcvrlln2.n . . . . . 6 𝑁 = (LLines‘𝐾)
53, 4llnbase 35397 . . . . 5 (𝑋𝑁𝑋 ∈ (Base‘𝐾))
61, 5syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) → 𝑋 ∈ (Base‘𝐾))
7 eqid 2765 . . . . 5 (join‘𝐾) = (join‘𝐾)
8 atcvrlln2.a . . . . 5 𝐴 = (Atoms‘𝐾)
93, 7, 8, 4islln3 35398 . . . 4 ((𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾)) → (𝑋𝑁 ↔ ∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟))))
102, 6, 9syl2anc 579 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) → (𝑋𝑁 ↔ ∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟))))
111, 10mpbid 223 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) → ∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟)))
12 simp1l1 1365 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) ∧ (𝑞𝐴𝑟𝐴) ∧ (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟))) → 𝐾 ∈ HL)
13 simp1l2 1366 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) ∧ (𝑞𝐴𝑟𝐴) ∧ (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟))) → 𝑃𝐴)
14 simp2l 1256 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) ∧ (𝑞𝐴𝑟𝐴) ∧ (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟))) → 𝑞𝐴)
15 simp2r 1257 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) ∧ (𝑞𝐴𝑟𝐴) ∧ (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟))) → 𝑟𝐴)
16 simp3l 1258 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) ∧ (𝑞𝐴𝑟𝐴) ∧ (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟))) → 𝑞𝑟)
17 simp1r 1255 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) ∧ (𝑞𝐴𝑟𝐴) ∧ (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟))) → 𝑃 𝑋)
18 simp3r 1259 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) ∧ (𝑞𝐴𝑟𝐴) ∧ (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟))) → 𝑋 = (𝑞(join‘𝐾)𝑟))
1917, 18breqtrd 4835 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) ∧ (𝑞𝐴𝑟𝐴) ∧ (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟))) → 𝑃 (𝑞(join‘𝐾)𝑟))
20 atcvrlln2.l . . . . . . 7 = (le‘𝐾)
21 atcvrlln2.c . . . . . . 7 𝐶 = ( ⋖ ‘𝐾)
2220, 7, 21, 8atcvrj2 35321 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑞𝐴𝑟𝐴) ∧ (𝑞𝑟𝑃 (𝑞(join‘𝐾)𝑟))) → 𝑃𝐶(𝑞(join‘𝐾)𝑟))
2312, 13, 14, 15, 16, 19, 22syl132anc 1507 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) ∧ (𝑞𝐴𝑟𝐴) ∧ (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟))) → 𝑃𝐶(𝑞(join‘𝐾)𝑟))
2423, 18breqtrrd 4837 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) ∧ (𝑞𝐴𝑟𝐴) ∧ (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟))) → 𝑃𝐶𝑋)
25243exp 1148 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) → ((𝑞𝐴𝑟𝐴) → ((𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟)) → 𝑃𝐶𝑋)))
2625rexlimdvv 3184 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) → (∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟)) → 𝑃𝐶𝑋))
2711, 26mpd 15 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) → 𝑃𝐶𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wne 2937  wrex 3056   class class class wbr 4809  cfv 6068  (class class class)co 6842  Basecbs 16132  lecple 16223  joincjn 17212  ccvr 35150  Atomscatm 35151  HLchlt 35238  LLinesclln 35379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-proset 17196  df-poset 17214  df-plt 17226  df-lub 17242  df-glb 17243  df-join 17244  df-meet 17245  df-p0 17307  df-lat 17314  df-clat 17376  df-oposet 35064  df-ol 35066  df-oml 35067  df-covers 35154  df-ats 35155  df-atl 35186  df-cvlat 35210  df-hlat 35239  df-llines 35386
This theorem is referenced by:  llnexatN  35409  llncmp  35410  2llnmat  35412  2llnmj  35448
  Copyright terms: Public domain W3C validator