Step | Hyp | Ref
| Expression |
1 | | simpl3 1191 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁) ∧ 𝑃 ≤ 𝑋) → 𝑋 ∈ 𝑁) |
2 | | simpl1 1189 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁) ∧ 𝑃 ≤ 𝑋) → 𝐾 ∈ HL) |
3 | | eqid 2759 |
. . . . . 6
⊢
(Base‘𝐾) =
(Base‘𝐾) |
4 | | atcvrlln2.n |
. . . . . 6
⊢ 𝑁 = (LLines‘𝐾) |
5 | 3, 4 | llnbase 37075 |
. . . . 5
⊢ (𝑋 ∈ 𝑁 → 𝑋 ∈ (Base‘𝐾)) |
6 | 1, 5 | syl 17 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁) ∧ 𝑃 ≤ 𝑋) → 𝑋 ∈ (Base‘𝐾)) |
7 | | eqid 2759 |
. . . . 5
⊢
(join‘𝐾) =
(join‘𝐾) |
8 | | atcvrlln2.a |
. . . . 5
⊢ 𝐴 = (Atoms‘𝐾) |
9 | 3, 7, 8, 4 | islln3 37076 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾)) → (𝑋 ∈ 𝑁 ↔ ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 (𝑞 ≠ 𝑟 ∧ 𝑋 = (𝑞(join‘𝐾)𝑟)))) |
10 | 2, 6, 9 | syl2anc 588 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁) ∧ 𝑃 ≤ 𝑋) → (𝑋 ∈ 𝑁 ↔ ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 (𝑞 ≠ 𝑟 ∧ 𝑋 = (𝑞(join‘𝐾)𝑟)))) |
11 | 1, 10 | mpbid 235 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁) ∧ 𝑃 ≤ 𝑋) → ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 (𝑞 ≠ 𝑟 ∧ 𝑋 = (𝑞(join‘𝐾)𝑟))) |
12 | | simp1l1 1264 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁) ∧ 𝑃 ≤ 𝑋) ∧ (𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ (𝑞 ≠ 𝑟 ∧ 𝑋 = (𝑞(join‘𝐾)𝑟))) → 𝐾 ∈ HL) |
13 | | simp1l2 1265 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁) ∧ 𝑃 ≤ 𝑋) ∧ (𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ (𝑞 ≠ 𝑟 ∧ 𝑋 = (𝑞(join‘𝐾)𝑟))) → 𝑃 ∈ 𝐴) |
14 | | simp2l 1197 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁) ∧ 𝑃 ≤ 𝑋) ∧ (𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ (𝑞 ≠ 𝑟 ∧ 𝑋 = (𝑞(join‘𝐾)𝑟))) → 𝑞 ∈ 𝐴) |
15 | | simp2r 1198 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁) ∧ 𝑃 ≤ 𝑋) ∧ (𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ (𝑞 ≠ 𝑟 ∧ 𝑋 = (𝑞(join‘𝐾)𝑟))) → 𝑟 ∈ 𝐴) |
16 | | simp3l 1199 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁) ∧ 𝑃 ≤ 𝑋) ∧ (𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ (𝑞 ≠ 𝑟 ∧ 𝑋 = (𝑞(join‘𝐾)𝑟))) → 𝑞 ≠ 𝑟) |
17 | | simp1r 1196 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁) ∧ 𝑃 ≤ 𝑋) ∧ (𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ (𝑞 ≠ 𝑟 ∧ 𝑋 = (𝑞(join‘𝐾)𝑟))) → 𝑃 ≤ 𝑋) |
18 | | simp3r 1200 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁) ∧ 𝑃 ≤ 𝑋) ∧ (𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ (𝑞 ≠ 𝑟 ∧ 𝑋 = (𝑞(join‘𝐾)𝑟))) → 𝑋 = (𝑞(join‘𝐾)𝑟)) |
19 | 17, 18 | breqtrd 5056 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁) ∧ 𝑃 ≤ 𝑋) ∧ (𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ (𝑞 ≠ 𝑟 ∧ 𝑋 = (𝑞(join‘𝐾)𝑟))) → 𝑃 ≤ (𝑞(join‘𝐾)𝑟)) |
20 | | atcvrlln2.l |
. . . . . . 7
⊢ ≤ =
(le‘𝐾) |
21 | | atcvrlln2.c |
. . . . . . 7
⊢ 𝐶 = ( ⋖ ‘𝐾) |
22 | 20, 7, 21, 8 | atcvrj2 36999 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ (𝑞 ≠ 𝑟 ∧ 𝑃 ≤ (𝑞(join‘𝐾)𝑟))) → 𝑃𝐶(𝑞(join‘𝐾)𝑟)) |
23 | 12, 13, 14, 15, 16, 19, 22 | syl132anc 1386 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁) ∧ 𝑃 ≤ 𝑋) ∧ (𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ (𝑞 ≠ 𝑟 ∧ 𝑋 = (𝑞(join‘𝐾)𝑟))) → 𝑃𝐶(𝑞(join‘𝐾)𝑟)) |
24 | 23, 18 | breqtrrd 5058 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁) ∧ 𝑃 ≤ 𝑋) ∧ (𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ (𝑞 ≠ 𝑟 ∧ 𝑋 = (𝑞(join‘𝐾)𝑟))) → 𝑃𝐶𝑋) |
25 | 24 | 3exp 1117 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁) ∧ 𝑃 ≤ 𝑋) → ((𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) → ((𝑞 ≠ 𝑟 ∧ 𝑋 = (𝑞(join‘𝐾)𝑟)) → 𝑃𝐶𝑋))) |
26 | 25 | rexlimdvv 3218 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁) ∧ 𝑃 ≤ 𝑋) → (∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 (𝑞 ≠ 𝑟 ∧ 𝑋 = (𝑞(join‘𝐾)𝑟)) → 𝑃𝐶𝑋)) |
27 | 11, 26 | mpd 15 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁) ∧ 𝑃 ≤ 𝑋) → 𝑃𝐶𝑋) |