Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atcvrlln2 Structured version   Visualization version   GIF version

Theorem atcvrlln2 39048
Description: An atom under a line is covered by it. (Contributed by NM, 2-Jul-2012.)
Hypotheses
Ref Expression
atcvrlln2.l ≀ = (leβ€˜πΎ)
atcvrlln2.c 𝐢 = ( β‹– β€˜πΎ)
atcvrlln2.a 𝐴 = (Atomsβ€˜πΎ)
atcvrlln2.n 𝑁 = (LLinesβ€˜πΎ)
Assertion
Ref Expression
atcvrlln2 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁) ∧ 𝑃 ≀ 𝑋) β†’ 𝑃𝐢𝑋)

Proof of Theorem atcvrlln2
Dummy variables π‘Ÿ π‘ž are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl3 1190 . . 3 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁) ∧ 𝑃 ≀ 𝑋) β†’ 𝑋 ∈ 𝑁)
2 simpl1 1188 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁) ∧ 𝑃 ≀ 𝑋) β†’ 𝐾 ∈ HL)
3 eqid 2725 . . . . . 6 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
4 atcvrlln2.n . . . . . 6 𝑁 = (LLinesβ€˜πΎ)
53, 4llnbase 39038 . . . . 5 (𝑋 ∈ 𝑁 β†’ 𝑋 ∈ (Baseβ€˜πΎ))
61, 5syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁) ∧ 𝑃 ≀ 𝑋) β†’ 𝑋 ∈ (Baseβ€˜πΎ))
7 eqid 2725 . . . . 5 (joinβ€˜πΎ) = (joinβ€˜πΎ)
8 atcvrlln2.a . . . . 5 𝐴 = (Atomsβ€˜πΎ)
93, 7, 8, 4islln3 39039 . . . 4 ((𝐾 ∈ HL ∧ 𝑋 ∈ (Baseβ€˜πΎ)) β†’ (𝑋 ∈ 𝑁 ↔ βˆƒπ‘ž ∈ 𝐴 βˆƒπ‘Ÿ ∈ 𝐴 (π‘ž β‰  π‘Ÿ ∧ 𝑋 = (π‘ž(joinβ€˜πΎ)π‘Ÿ))))
102, 6, 9syl2anc 582 . . 3 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁) ∧ 𝑃 ≀ 𝑋) β†’ (𝑋 ∈ 𝑁 ↔ βˆƒπ‘ž ∈ 𝐴 βˆƒπ‘Ÿ ∈ 𝐴 (π‘ž β‰  π‘Ÿ ∧ 𝑋 = (π‘ž(joinβ€˜πΎ)π‘Ÿ))))
111, 10mpbid 231 . 2 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁) ∧ 𝑃 ≀ 𝑋) β†’ βˆƒπ‘ž ∈ 𝐴 βˆƒπ‘Ÿ ∈ 𝐴 (π‘ž β‰  π‘Ÿ ∧ 𝑋 = (π‘ž(joinβ€˜πΎ)π‘Ÿ)))
12 simp1l1 1263 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁) ∧ 𝑃 ≀ 𝑋) ∧ (π‘ž ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴) ∧ (π‘ž β‰  π‘Ÿ ∧ 𝑋 = (π‘ž(joinβ€˜πΎ)π‘Ÿ))) β†’ 𝐾 ∈ HL)
13 simp1l2 1264 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁) ∧ 𝑃 ≀ 𝑋) ∧ (π‘ž ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴) ∧ (π‘ž β‰  π‘Ÿ ∧ 𝑋 = (π‘ž(joinβ€˜πΎ)π‘Ÿ))) β†’ 𝑃 ∈ 𝐴)
14 simp2l 1196 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁) ∧ 𝑃 ≀ 𝑋) ∧ (π‘ž ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴) ∧ (π‘ž β‰  π‘Ÿ ∧ 𝑋 = (π‘ž(joinβ€˜πΎ)π‘Ÿ))) β†’ π‘ž ∈ 𝐴)
15 simp2r 1197 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁) ∧ 𝑃 ≀ 𝑋) ∧ (π‘ž ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴) ∧ (π‘ž β‰  π‘Ÿ ∧ 𝑋 = (π‘ž(joinβ€˜πΎ)π‘Ÿ))) β†’ π‘Ÿ ∈ 𝐴)
16 simp3l 1198 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁) ∧ 𝑃 ≀ 𝑋) ∧ (π‘ž ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴) ∧ (π‘ž β‰  π‘Ÿ ∧ 𝑋 = (π‘ž(joinβ€˜πΎ)π‘Ÿ))) β†’ π‘ž β‰  π‘Ÿ)
17 simp1r 1195 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁) ∧ 𝑃 ≀ 𝑋) ∧ (π‘ž ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴) ∧ (π‘ž β‰  π‘Ÿ ∧ 𝑋 = (π‘ž(joinβ€˜πΎ)π‘Ÿ))) β†’ 𝑃 ≀ 𝑋)
18 simp3r 1199 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁) ∧ 𝑃 ≀ 𝑋) ∧ (π‘ž ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴) ∧ (π‘ž β‰  π‘Ÿ ∧ 𝑋 = (π‘ž(joinβ€˜πΎ)π‘Ÿ))) β†’ 𝑋 = (π‘ž(joinβ€˜πΎ)π‘Ÿ))
1917, 18breqtrd 5169 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁) ∧ 𝑃 ≀ 𝑋) ∧ (π‘ž ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴) ∧ (π‘ž β‰  π‘Ÿ ∧ 𝑋 = (π‘ž(joinβ€˜πΎ)π‘Ÿ))) β†’ 𝑃 ≀ (π‘ž(joinβ€˜πΎ)π‘Ÿ))
20 atcvrlln2.l . . . . . . 7 ≀ = (leβ€˜πΎ)
21 atcvrlln2.c . . . . . . 7 𝐢 = ( β‹– β€˜πΎ)
2220, 7, 21, 8atcvrj2 38962 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ π‘ž ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴) ∧ (π‘ž β‰  π‘Ÿ ∧ 𝑃 ≀ (π‘ž(joinβ€˜πΎ)π‘Ÿ))) β†’ 𝑃𝐢(π‘ž(joinβ€˜πΎ)π‘Ÿ))
2312, 13, 14, 15, 16, 19, 22syl132anc 1385 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁) ∧ 𝑃 ≀ 𝑋) ∧ (π‘ž ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴) ∧ (π‘ž β‰  π‘Ÿ ∧ 𝑋 = (π‘ž(joinβ€˜πΎ)π‘Ÿ))) β†’ 𝑃𝐢(π‘ž(joinβ€˜πΎ)π‘Ÿ))
2423, 18breqtrrd 5171 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁) ∧ 𝑃 ≀ 𝑋) ∧ (π‘ž ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴) ∧ (π‘ž β‰  π‘Ÿ ∧ 𝑋 = (π‘ž(joinβ€˜πΎ)π‘Ÿ))) β†’ 𝑃𝐢𝑋)
25243exp 1116 . . 3 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁) ∧ 𝑃 ≀ 𝑋) β†’ ((π‘ž ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴) β†’ ((π‘ž β‰  π‘Ÿ ∧ 𝑋 = (π‘ž(joinβ€˜πΎ)π‘Ÿ)) β†’ 𝑃𝐢𝑋)))
2625rexlimdvv 3201 . 2 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁) ∧ 𝑃 ≀ 𝑋) β†’ (βˆƒπ‘ž ∈ 𝐴 βˆƒπ‘Ÿ ∈ 𝐴 (π‘ž β‰  π‘Ÿ ∧ 𝑋 = (π‘ž(joinβ€˜πΎ)π‘Ÿ)) β†’ 𝑃𝐢𝑋))
2711, 26mpd 15 1 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁) ∧ 𝑃 ≀ 𝑋) β†’ 𝑃𝐢𝑋)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2930  βˆƒwrex 3060   class class class wbr 5143  β€˜cfv 6543  (class class class)co 7416  Basecbs 17179  lecple 17239  joincjn 18302   β‹– ccvr 38790  Atomscatm 38791  HLchlt 38878  LLinesclln 39020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7372  df-ov 7419  df-oprab 7420  df-proset 18286  df-poset 18304  df-plt 18321  df-lub 18337  df-glb 18338  df-join 18339  df-meet 18340  df-p0 18416  df-lat 18423  df-clat 18490  df-oposet 38704  df-ol 38706  df-oml 38707  df-covers 38794  df-ats 38795  df-atl 38826  df-cvlat 38850  df-hlat 38879  df-llines 39027
This theorem is referenced by:  llnexatN  39050  llncmp  39051  2llnmat  39053  2llnmj  39089
  Copyright terms: Public domain W3C validator