Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atcvrlln2 Structured version   Visualization version   GIF version

Theorem atcvrlln2 38378
Description: An atom under a line is covered by it. (Contributed by NM, 2-Jul-2012.)
Hypotheses
Ref Expression
atcvrlln2.l = (le‘𝐾)
atcvrlln2.c 𝐶 = ( ⋖ ‘𝐾)
atcvrlln2.a 𝐴 = (Atoms‘𝐾)
atcvrlln2.n 𝑁 = (LLines‘𝐾)
Assertion
Ref Expression
atcvrlln2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) → 𝑃𝐶𝑋)

Proof of Theorem atcvrlln2
Dummy variables 𝑟 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl3 1193 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) → 𝑋𝑁)
2 simpl1 1191 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) → 𝐾 ∈ HL)
3 eqid 2732 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
4 atcvrlln2.n . . . . . 6 𝑁 = (LLines‘𝐾)
53, 4llnbase 38368 . . . . 5 (𝑋𝑁𝑋 ∈ (Base‘𝐾))
61, 5syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) → 𝑋 ∈ (Base‘𝐾))
7 eqid 2732 . . . . 5 (join‘𝐾) = (join‘𝐾)
8 atcvrlln2.a . . . . 5 𝐴 = (Atoms‘𝐾)
93, 7, 8, 4islln3 38369 . . . 4 ((𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾)) → (𝑋𝑁 ↔ ∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟))))
102, 6, 9syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) → (𝑋𝑁 ↔ ∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟))))
111, 10mpbid 231 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) → ∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟)))
12 simp1l1 1266 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) ∧ (𝑞𝐴𝑟𝐴) ∧ (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟))) → 𝐾 ∈ HL)
13 simp1l2 1267 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) ∧ (𝑞𝐴𝑟𝐴) ∧ (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟))) → 𝑃𝐴)
14 simp2l 1199 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) ∧ (𝑞𝐴𝑟𝐴) ∧ (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟))) → 𝑞𝐴)
15 simp2r 1200 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) ∧ (𝑞𝐴𝑟𝐴) ∧ (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟))) → 𝑟𝐴)
16 simp3l 1201 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) ∧ (𝑞𝐴𝑟𝐴) ∧ (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟))) → 𝑞𝑟)
17 simp1r 1198 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) ∧ (𝑞𝐴𝑟𝐴) ∧ (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟))) → 𝑃 𝑋)
18 simp3r 1202 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) ∧ (𝑞𝐴𝑟𝐴) ∧ (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟))) → 𝑋 = (𝑞(join‘𝐾)𝑟))
1917, 18breqtrd 5173 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) ∧ (𝑞𝐴𝑟𝐴) ∧ (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟))) → 𝑃 (𝑞(join‘𝐾)𝑟))
20 atcvrlln2.l . . . . . . 7 = (le‘𝐾)
21 atcvrlln2.c . . . . . . 7 𝐶 = ( ⋖ ‘𝐾)
2220, 7, 21, 8atcvrj2 38292 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑞𝐴𝑟𝐴) ∧ (𝑞𝑟𝑃 (𝑞(join‘𝐾)𝑟))) → 𝑃𝐶(𝑞(join‘𝐾)𝑟))
2312, 13, 14, 15, 16, 19, 22syl132anc 1388 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) ∧ (𝑞𝐴𝑟𝐴) ∧ (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟))) → 𝑃𝐶(𝑞(join‘𝐾)𝑟))
2423, 18breqtrrd 5175 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) ∧ (𝑞𝐴𝑟𝐴) ∧ (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟))) → 𝑃𝐶𝑋)
25243exp 1119 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) → ((𝑞𝐴𝑟𝐴) → ((𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟)) → 𝑃𝐶𝑋)))
2625rexlimdvv 3210 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) → (∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟)) → 𝑃𝐶𝑋))
2711, 26mpd 15 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) → 𝑃𝐶𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2940  wrex 3070   class class class wbr 5147  cfv 6540  (class class class)co 7405  Basecbs 17140  lecple 17200  joincjn 18260  ccvr 38120  Atomscatm 38121  HLchlt 38208  LLinesclln 38350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-proset 18244  df-poset 18262  df-plt 18279  df-lub 18295  df-glb 18296  df-join 18297  df-meet 18298  df-p0 18374  df-lat 18381  df-clat 18448  df-oposet 38034  df-ol 38036  df-oml 38037  df-covers 38124  df-ats 38125  df-atl 38156  df-cvlat 38180  df-hlat 38209  df-llines 38357
This theorem is referenced by:  llnexatN  38380  llncmp  38381  2llnmat  38383  2llnmj  38419
  Copyright terms: Public domain W3C validator