Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atcvrlln Structured version   Visualization version   GIF version

Theorem atcvrlln 38012
Description: An element covering an atom is a lattice line and vice-versa. (Contributed by NM, 18-Jun-2012.)
Hypotheses
Ref Expression
atcvrlln.b 𝐡 = (Baseβ€˜πΎ)
atcvrlln.c 𝐢 = ( β‹– β€˜πΎ)
atcvrlln.a 𝐴 = (Atomsβ€˜πΎ)
atcvrlln.n 𝑁 = (LLinesβ€˜πΎ)
Assertion
Ref Expression
atcvrlln (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ π‘‹πΆπ‘Œ) β†’ (𝑋 ∈ 𝐴 ↔ π‘Œ ∈ 𝑁))

Proof of Theorem atcvrlln
Dummy variables π‘ž 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll1 1213 . . 3 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ π‘‹πΆπ‘Œ) ∧ 𝑋 ∈ 𝐴) β†’ 𝐾 ∈ HL)
2 simpll3 1215 . . 3 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ π‘‹πΆπ‘Œ) ∧ 𝑋 ∈ 𝐴) β†’ π‘Œ ∈ 𝐡)
3 simpr 486 . . 3 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ π‘‹πΆπ‘Œ) ∧ 𝑋 ∈ 𝐴) β†’ 𝑋 ∈ 𝐴)
4 simplr 768 . . 3 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ π‘‹πΆπ‘Œ) ∧ 𝑋 ∈ 𝐴) β†’ π‘‹πΆπ‘Œ)
5 atcvrlln.b . . . 4 𝐡 = (Baseβ€˜πΎ)
6 atcvrlln.c . . . 4 𝐢 = ( β‹– β€˜πΎ)
7 atcvrlln.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
8 atcvrlln.n . . . 4 𝑁 = (LLinesβ€˜πΎ)
95, 6, 7, 8llni 38000 . . 3 (((𝐾 ∈ HL ∧ π‘Œ ∈ 𝐡 ∧ 𝑋 ∈ 𝐴) ∧ π‘‹πΆπ‘Œ) β†’ π‘Œ ∈ 𝑁)
101, 2, 3, 4, 9syl31anc 1374 . 2 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ π‘‹πΆπ‘Œ) ∧ 𝑋 ∈ 𝐴) β†’ π‘Œ ∈ 𝑁)
11 simpr 486 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ π‘‹πΆπ‘Œ) ∧ π‘Œ ∈ 𝑁) β†’ π‘Œ ∈ 𝑁)
12 simpll1 1213 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ π‘‹πΆπ‘Œ) ∧ π‘Œ ∈ 𝑁) β†’ 𝐾 ∈ HL)
13 simpll3 1215 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ π‘‹πΆπ‘Œ) ∧ π‘Œ ∈ 𝑁) β†’ π‘Œ ∈ 𝐡)
14 eqid 2737 . . . . . 6 (joinβ€˜πΎ) = (joinβ€˜πΎ)
155, 14, 7, 8islln3 38002 . . . . 5 ((𝐾 ∈ HL ∧ π‘Œ ∈ 𝐡) β†’ (π‘Œ ∈ 𝑁 ↔ βˆƒπ‘ ∈ 𝐴 βˆƒπ‘ž ∈ 𝐴 (𝑝 β‰  π‘ž ∧ π‘Œ = (𝑝(joinβ€˜πΎ)π‘ž))))
1612, 13, 15syl2anc 585 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ π‘‹πΆπ‘Œ) ∧ π‘Œ ∈ 𝑁) β†’ (π‘Œ ∈ 𝑁 ↔ βˆƒπ‘ ∈ 𝐴 βˆƒπ‘ž ∈ 𝐴 (𝑝 β‰  π‘ž ∧ π‘Œ = (𝑝(joinβ€˜πΎ)π‘ž))))
1711, 16mpbid 231 . . 3 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ π‘‹πΆπ‘Œ) ∧ π‘Œ ∈ 𝑁) β†’ βˆƒπ‘ ∈ 𝐴 βˆƒπ‘ž ∈ 𝐴 (𝑝 β‰  π‘ž ∧ π‘Œ = (𝑝(joinβ€˜πΎ)π‘ž)))
18 simp1l1 1267 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ π‘‹πΆπ‘Œ) ∧ (𝑝 ∈ 𝐴 ∧ π‘ž ∈ 𝐴) ∧ (𝑝 β‰  π‘ž ∧ π‘Œ = (𝑝(joinβ€˜πΎ)π‘ž))) β†’ 𝐾 ∈ HL)
19 simp1l2 1268 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ π‘‹πΆπ‘Œ) ∧ (𝑝 ∈ 𝐴 ∧ π‘ž ∈ 𝐴) ∧ (𝑝 β‰  π‘ž ∧ π‘Œ = (𝑝(joinβ€˜πΎ)π‘ž))) β†’ 𝑋 ∈ 𝐡)
20 simp2l 1200 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ π‘‹πΆπ‘Œ) ∧ (𝑝 ∈ 𝐴 ∧ π‘ž ∈ 𝐴) ∧ (𝑝 β‰  π‘ž ∧ π‘Œ = (𝑝(joinβ€˜πΎ)π‘ž))) β†’ 𝑝 ∈ 𝐴)
21 simp2r 1201 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ π‘‹πΆπ‘Œ) ∧ (𝑝 ∈ 𝐴 ∧ π‘ž ∈ 𝐴) ∧ (𝑝 β‰  π‘ž ∧ π‘Œ = (𝑝(joinβ€˜πΎ)π‘ž))) β†’ π‘ž ∈ 𝐴)
22 simp3l 1202 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ π‘‹πΆπ‘Œ) ∧ (𝑝 ∈ 𝐴 ∧ π‘ž ∈ 𝐴) ∧ (𝑝 β‰  π‘ž ∧ π‘Œ = (𝑝(joinβ€˜πΎ)π‘ž))) β†’ 𝑝 β‰  π‘ž)
23 simp1r 1199 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ π‘‹πΆπ‘Œ) ∧ (𝑝 ∈ 𝐴 ∧ π‘ž ∈ 𝐴) ∧ (𝑝 β‰  π‘ž ∧ π‘Œ = (𝑝(joinβ€˜πΎ)π‘ž))) β†’ π‘‹πΆπ‘Œ)
24 simp3r 1203 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ π‘‹πΆπ‘Œ) ∧ (𝑝 ∈ 𝐴 ∧ π‘ž ∈ 𝐴) ∧ (𝑝 β‰  π‘ž ∧ π‘Œ = (𝑝(joinβ€˜πΎ)π‘ž))) β†’ π‘Œ = (𝑝(joinβ€˜πΎ)π‘ž))
2523, 24breqtrd 5136 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ π‘‹πΆπ‘Œ) ∧ (𝑝 ∈ 𝐴 ∧ π‘ž ∈ 𝐴) ∧ (𝑝 β‰  π‘ž ∧ π‘Œ = (𝑝(joinβ€˜πΎ)π‘ž))) β†’ 𝑋𝐢(𝑝(joinβ€˜πΎ)π‘ž))
265, 14, 6, 7cvrat2 37921 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑝 ∈ 𝐴 ∧ π‘ž ∈ 𝐴) ∧ (𝑝 β‰  π‘ž ∧ 𝑋𝐢(𝑝(joinβ€˜πΎ)π‘ž))) β†’ 𝑋 ∈ 𝐴)
2718, 19, 20, 21, 22, 25, 26syl132anc 1389 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ π‘‹πΆπ‘Œ) ∧ (𝑝 ∈ 𝐴 ∧ π‘ž ∈ 𝐴) ∧ (𝑝 β‰  π‘ž ∧ π‘Œ = (𝑝(joinβ€˜πΎ)π‘ž))) β†’ 𝑋 ∈ 𝐴)
28273exp 1120 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ π‘‹πΆπ‘Œ) β†’ ((𝑝 ∈ 𝐴 ∧ π‘ž ∈ 𝐴) β†’ ((𝑝 β‰  π‘ž ∧ π‘Œ = (𝑝(joinβ€˜πΎ)π‘ž)) β†’ 𝑋 ∈ 𝐴)))
2928rexlimdvv 3205 . . . 4 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ π‘‹πΆπ‘Œ) β†’ (βˆƒπ‘ ∈ 𝐴 βˆƒπ‘ž ∈ 𝐴 (𝑝 β‰  π‘ž ∧ π‘Œ = (𝑝(joinβ€˜πΎ)π‘ž)) β†’ 𝑋 ∈ 𝐴))
3029adantr 482 . . 3 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ π‘‹πΆπ‘Œ) ∧ π‘Œ ∈ 𝑁) β†’ (βˆƒπ‘ ∈ 𝐴 βˆƒπ‘ž ∈ 𝐴 (𝑝 β‰  π‘ž ∧ π‘Œ = (𝑝(joinβ€˜πΎ)π‘ž)) β†’ 𝑋 ∈ 𝐴))
3117, 30mpd 15 . 2 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ π‘‹πΆπ‘Œ) ∧ π‘Œ ∈ 𝑁) β†’ 𝑋 ∈ 𝐴)
3210, 31impbida 800 1 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ π‘‹πΆπ‘Œ) β†’ (𝑋 ∈ 𝐴 ↔ π‘Œ ∈ 𝑁))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   β‰  wne 2944  βˆƒwrex 3074   class class class wbr 5110  β€˜cfv 6501  (class class class)co 7362  Basecbs 17090  joincjn 18207   β‹– ccvr 37753  Atomscatm 37754  HLchlt 37841  LLinesclln 37983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-proset 18191  df-poset 18209  df-plt 18226  df-lub 18242  df-glb 18243  df-join 18244  df-meet 18245  df-p0 18321  df-lat 18328  df-clat 18395  df-oposet 37667  df-ol 37669  df-oml 37670  df-covers 37757  df-ats 37758  df-atl 37789  df-cvlat 37813  df-hlat 37842  df-llines 37990
This theorem is referenced by:  llncvrlpln  38050  2llnmj  38052  2llnm2N  38060
  Copyright terms: Public domain W3C validator