Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atcvrlln Structured version   Visualization version   GIF version

Theorem atcvrlln 39539
Description: An element covering an atom is a lattice line and vice-versa. (Contributed by NM, 18-Jun-2012.)
Hypotheses
Ref Expression
atcvrlln.b 𝐵 = (Base‘𝐾)
atcvrlln.c 𝐶 = ( ⋖ ‘𝐾)
atcvrlln.a 𝐴 = (Atoms‘𝐾)
atcvrlln.n 𝑁 = (LLines‘𝐾)
Assertion
Ref Expression
atcvrlln (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → (𝑋𝐴𝑌𝑁))

Proof of Theorem atcvrlln
Dummy variables 𝑞 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll1 1213 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑋𝐴) → 𝐾 ∈ HL)
2 simpll3 1215 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑋𝐴) → 𝑌𝐵)
3 simpr 484 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑋𝐴) → 𝑋𝐴)
4 simplr 768 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑋𝐴) → 𝑋𝐶𝑌)
5 atcvrlln.b . . . 4 𝐵 = (Base‘𝐾)
6 atcvrlln.c . . . 4 𝐶 = ( ⋖ ‘𝐾)
7 atcvrlln.a . . . 4 𝐴 = (Atoms‘𝐾)
8 atcvrlln.n . . . 4 𝑁 = (LLines‘𝐾)
95, 6, 7, 8llni 39527 . . 3 (((𝐾 ∈ HL ∧ 𝑌𝐵𝑋𝐴) ∧ 𝑋𝐶𝑌) → 𝑌𝑁)
101, 2, 3, 4, 9syl31anc 1375 . 2 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑋𝐴) → 𝑌𝑁)
11 simpr 484 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑁) → 𝑌𝑁)
12 simpll1 1213 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑁) → 𝐾 ∈ HL)
13 simpll3 1215 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑁) → 𝑌𝐵)
14 eqid 2735 . . . . . 6 (join‘𝐾) = (join‘𝐾)
155, 14, 7, 8islln3 39529 . . . . 5 ((𝐾 ∈ HL ∧ 𝑌𝐵) → (𝑌𝑁 ↔ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))))
1612, 13, 15syl2anc 584 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑁) → (𝑌𝑁 ↔ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))))
1711, 16mpbid 232 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑁) → ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞)))
18 simp1l1 1267 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑝𝐴𝑞𝐴) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝐾 ∈ HL)
19 simp1l2 1268 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑝𝐴𝑞𝐴) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝑋𝐵)
20 simp2l 1200 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑝𝐴𝑞𝐴) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝑝𝐴)
21 simp2r 1201 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑝𝐴𝑞𝐴) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝑞𝐴)
22 simp3l 1202 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑝𝐴𝑞𝐴) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝑝𝑞)
23 simp1r 1199 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑝𝐴𝑞𝐴) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝑋𝐶𝑌)
24 simp3r 1203 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑝𝐴𝑞𝐴) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝑌 = (𝑝(join‘𝐾)𝑞))
2523, 24breqtrd 5145 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑝𝐴𝑞𝐴) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝑋𝐶(𝑝(join‘𝐾)𝑞))
265, 14, 6, 7cvrat2 39448 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑝𝐴𝑞𝐴) ∧ (𝑝𝑞𝑋𝐶(𝑝(join‘𝐾)𝑞))) → 𝑋𝐴)
2718, 19, 20, 21, 22, 25, 26syl132anc 1390 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑝𝐴𝑞𝐴) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝑋𝐴)
28273exp 1119 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → ((𝑝𝐴𝑞𝐴) → ((𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞)) → 𝑋𝐴)))
2928rexlimdvv 3197 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → (∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞)) → 𝑋𝐴))
3029adantr 480 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑁) → (∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞)) → 𝑋𝐴))
3117, 30mpd 15 . 2 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑁) → 𝑋𝐴)
3210, 31impbida 800 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → (𝑋𝐴𝑌𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wrex 3060   class class class wbr 5119  cfv 6531  (class class class)co 7405  Basecbs 17228  joincjn 18323  ccvr 39280  Atomscatm 39281  HLchlt 39368  LLinesclln 39510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-proset 18306  df-poset 18325  df-plt 18340  df-lub 18356  df-glb 18357  df-join 18358  df-meet 18359  df-p0 18435  df-lat 18442  df-clat 18509  df-oposet 39194  df-ol 39196  df-oml 39197  df-covers 39284  df-ats 39285  df-atl 39316  df-cvlat 39340  df-hlat 39369  df-llines 39517
This theorem is referenced by:  llncvrlpln  39577  2llnmj  39579  2llnm2N  39587
  Copyright terms: Public domain W3C validator