Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atcvrlln Structured version   Visualization version   GIF version

Theorem atcvrlln 39514
Description: An element covering an atom is a lattice line and vice-versa. (Contributed by NM, 18-Jun-2012.)
Hypotheses
Ref Expression
atcvrlln.b 𝐵 = (Base‘𝐾)
atcvrlln.c 𝐶 = ( ⋖ ‘𝐾)
atcvrlln.a 𝐴 = (Atoms‘𝐾)
atcvrlln.n 𝑁 = (LLines‘𝐾)
Assertion
Ref Expression
atcvrlln (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → (𝑋𝐴𝑌𝑁))

Proof of Theorem atcvrlln
Dummy variables 𝑞 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll1 1213 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑋𝐴) → 𝐾 ∈ HL)
2 simpll3 1215 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑋𝐴) → 𝑌𝐵)
3 simpr 484 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑋𝐴) → 𝑋𝐴)
4 simplr 768 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑋𝐴) → 𝑋𝐶𝑌)
5 atcvrlln.b . . . 4 𝐵 = (Base‘𝐾)
6 atcvrlln.c . . . 4 𝐶 = ( ⋖ ‘𝐾)
7 atcvrlln.a . . . 4 𝐴 = (Atoms‘𝐾)
8 atcvrlln.n . . . 4 𝑁 = (LLines‘𝐾)
95, 6, 7, 8llni 39502 . . 3 (((𝐾 ∈ HL ∧ 𝑌𝐵𝑋𝐴) ∧ 𝑋𝐶𝑌) → 𝑌𝑁)
101, 2, 3, 4, 9syl31anc 1375 . 2 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑋𝐴) → 𝑌𝑁)
11 simpr 484 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑁) → 𝑌𝑁)
12 simpll1 1213 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑁) → 𝐾 ∈ HL)
13 simpll3 1215 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑁) → 𝑌𝐵)
14 eqid 2729 . . . . . 6 (join‘𝐾) = (join‘𝐾)
155, 14, 7, 8islln3 39504 . . . . 5 ((𝐾 ∈ HL ∧ 𝑌𝐵) → (𝑌𝑁 ↔ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))))
1612, 13, 15syl2anc 584 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑁) → (𝑌𝑁 ↔ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))))
1711, 16mpbid 232 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑁) → ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞)))
18 simp1l1 1267 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑝𝐴𝑞𝐴) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝐾 ∈ HL)
19 simp1l2 1268 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑝𝐴𝑞𝐴) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝑋𝐵)
20 simp2l 1200 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑝𝐴𝑞𝐴) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝑝𝐴)
21 simp2r 1201 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑝𝐴𝑞𝐴) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝑞𝐴)
22 simp3l 1202 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑝𝐴𝑞𝐴) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝑝𝑞)
23 simp1r 1199 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑝𝐴𝑞𝐴) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝑋𝐶𝑌)
24 simp3r 1203 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑝𝐴𝑞𝐴) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝑌 = (𝑝(join‘𝐾)𝑞))
2523, 24breqtrd 5133 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑝𝐴𝑞𝐴) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝑋𝐶(𝑝(join‘𝐾)𝑞))
265, 14, 6, 7cvrat2 39423 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑝𝐴𝑞𝐴) ∧ (𝑝𝑞𝑋𝐶(𝑝(join‘𝐾)𝑞))) → 𝑋𝐴)
2718, 19, 20, 21, 22, 25, 26syl132anc 1390 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑝𝐴𝑞𝐴) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝑋𝐴)
28273exp 1119 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → ((𝑝𝐴𝑞𝐴) → ((𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞)) → 𝑋𝐴)))
2928rexlimdvv 3193 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → (∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞)) → 𝑋𝐴))
3029adantr 480 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑁) → (∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞)) → 𝑋𝐴))
3117, 30mpd 15 . 2 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑁) → 𝑋𝐴)
3210, 31impbida 800 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → (𝑋𝐴𝑌𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  joincjn 18272  ccvr 39255  Atomscatm 39256  HLchlt 39343  LLinesclln 39485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-lat 18391  df-clat 18458  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-llines 39492
This theorem is referenced by:  llncvrlpln  39552  2llnmj  39554  2llnm2N  39562
  Copyright terms: Public domain W3C validator