Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atcvrlln Structured version   Visualization version   GIF version

Theorem atcvrlln 39692
Description: An element covering an atom is a lattice line and vice-versa. (Contributed by NM, 18-Jun-2012.)
Hypotheses
Ref Expression
atcvrlln.b 𝐵 = (Base‘𝐾)
atcvrlln.c 𝐶 = ( ⋖ ‘𝐾)
atcvrlln.a 𝐴 = (Atoms‘𝐾)
atcvrlln.n 𝑁 = (LLines‘𝐾)
Assertion
Ref Expression
atcvrlln (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → (𝑋𝐴𝑌𝑁))

Proof of Theorem atcvrlln
Dummy variables 𝑞 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll1 1213 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑋𝐴) → 𝐾 ∈ HL)
2 simpll3 1215 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑋𝐴) → 𝑌𝐵)
3 simpr 484 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑋𝐴) → 𝑋𝐴)
4 simplr 768 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑋𝐴) → 𝑋𝐶𝑌)
5 atcvrlln.b . . . 4 𝐵 = (Base‘𝐾)
6 atcvrlln.c . . . 4 𝐶 = ( ⋖ ‘𝐾)
7 atcvrlln.a . . . 4 𝐴 = (Atoms‘𝐾)
8 atcvrlln.n . . . 4 𝑁 = (LLines‘𝐾)
95, 6, 7, 8llni 39680 . . 3 (((𝐾 ∈ HL ∧ 𝑌𝐵𝑋𝐴) ∧ 𝑋𝐶𝑌) → 𝑌𝑁)
101, 2, 3, 4, 9syl31anc 1375 . 2 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑋𝐴) → 𝑌𝑁)
11 simpr 484 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑁) → 𝑌𝑁)
12 simpll1 1213 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑁) → 𝐾 ∈ HL)
13 simpll3 1215 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑁) → 𝑌𝐵)
14 eqid 2733 . . . . . 6 (join‘𝐾) = (join‘𝐾)
155, 14, 7, 8islln3 39682 . . . . 5 ((𝐾 ∈ HL ∧ 𝑌𝐵) → (𝑌𝑁 ↔ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))))
1612, 13, 15syl2anc 584 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑁) → (𝑌𝑁 ↔ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))))
1711, 16mpbid 232 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑁) → ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞)))
18 simp1l1 1267 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑝𝐴𝑞𝐴) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝐾 ∈ HL)
19 simp1l2 1268 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑝𝐴𝑞𝐴) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝑋𝐵)
20 simp2l 1200 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑝𝐴𝑞𝐴) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝑝𝐴)
21 simp2r 1201 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑝𝐴𝑞𝐴) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝑞𝐴)
22 simp3l 1202 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑝𝐴𝑞𝐴) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝑝𝑞)
23 simp1r 1199 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑝𝐴𝑞𝐴) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝑋𝐶𝑌)
24 simp3r 1203 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑝𝐴𝑞𝐴) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝑌 = (𝑝(join‘𝐾)𝑞))
2523, 24breqtrd 5121 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑝𝐴𝑞𝐴) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝑋𝐶(𝑝(join‘𝐾)𝑞))
265, 14, 6, 7cvrat2 39601 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑝𝐴𝑞𝐴) ∧ (𝑝𝑞𝑋𝐶(𝑝(join‘𝐾)𝑞))) → 𝑋𝐴)
2718, 19, 20, 21, 22, 25, 26syl132anc 1390 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑝𝐴𝑞𝐴) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝑋𝐴)
28273exp 1119 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → ((𝑝𝐴𝑞𝐴) → ((𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞)) → 𝑋𝐴)))
2928rexlimdvv 3189 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → (∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞)) → 𝑋𝐴))
3029adantr 480 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑁) → (∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞)) → 𝑋𝐴))
3117, 30mpd 15 . 2 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑁) → 𝑋𝐴)
3210, 31impbida 800 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → (𝑋𝐴𝑌𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wrex 3057   class class class wbr 5095  cfv 6489  (class class class)co 7355  Basecbs 17127  joincjn 18225  ccvr 39434  Atomscatm 39435  HLchlt 39522  LLinesclln 39663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-proset 18208  df-poset 18227  df-plt 18242  df-lub 18258  df-glb 18259  df-join 18260  df-meet 18261  df-p0 18337  df-lat 18346  df-clat 18413  df-oposet 39348  df-ol 39350  df-oml 39351  df-covers 39438  df-ats 39439  df-atl 39470  df-cvlat 39494  df-hlat 39523  df-llines 39670
This theorem is referenced by:  llncvrlpln  39730  2llnmj  39732  2llnm2N  39740
  Copyright terms: Public domain W3C validator