| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp1lr | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp1lr | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 769 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜓) | |
| 2 | 1 | 3ad2ant1 1134 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
| This theorem is referenced by: lspsolvlem 21144 dmatcrng 22508 scmatcrng 22527 1marepvsma1 22589 mdetunilem7 22624 mat2pmatghm 22736 pmatcollpwscmatlem2 22796 mp2pm2mplem4 22815 ax5seg 28953 measinblem 34221 btwnconn1lem13 36100 athgt 39458 llnle 39520 lplnle 39542 lhpexle1 40010 lhpat3 40048 tendoicl 40798 cdlemk55b 40962 pellex 42846 ssfiunibd 45321 mullimc 45631 mullimcf 45638 icccncfext 45902 etransclem32 46281 uhgrimisgrgriclem 47898 |
| Copyright terms: Public domain | W3C validator |