Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp1lr | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp1lr | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 765 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜓) | |
2 | 1 | 3ad2ant1 1131 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: lspsolvlem 20319 dmatcrng 21559 scmatcrng 21578 1marepvsma1 21640 mdetunilem7 21675 mat2pmatghm 21787 pmatcollpwscmatlem2 21847 mp2pm2mplem4 21866 ax5seg 27209 measinblem 32088 btwnconn1lem13 34328 athgt 37397 llnle 37459 lplnle 37481 lhpexle1 37949 lhpat3 37987 tendoicl 38737 cdlemk55b 38901 pellex 40573 ssfiunibd 42738 mullimc 43047 mullimcf 43054 icccncfext 43318 etransclem32 43697 |
Copyright terms: Public domain | W3C validator |