![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp1lr | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp1lr | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 769 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜓) | |
2 | 1 | 3ad2ant1 1132 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: lspsolvlem 21161 dmatcrng 22523 scmatcrng 22542 1marepvsma1 22604 mdetunilem7 22639 mat2pmatghm 22751 pmatcollpwscmatlem2 22811 mp2pm2mplem4 22830 ax5seg 28967 measinblem 34200 btwnconn1lem13 36080 athgt 39438 llnle 39500 lplnle 39522 lhpexle1 39990 lhpat3 40028 tendoicl 40778 cdlemk55b 40942 pellex 42822 ssfiunibd 45259 mullimc 45571 mullimcf 45578 icccncfext 45842 etransclem32 46221 uhgrimisgrgriclem 47835 |
Copyright terms: Public domain | W3C validator |