Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp1lr | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp1lr | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 766 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜓) | |
2 | 1 | 3ad2ant1 1132 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: lspsolvlem 20484 dmatcrng 21731 scmatcrng 21750 1marepvsma1 21812 mdetunilem7 21847 mat2pmatghm 21959 pmatcollpwscmatlem2 22019 mp2pm2mplem4 22038 ax5seg 27439 measinblem 32324 btwnconn1lem13 34471 athgt 37696 llnle 37758 lplnle 37780 lhpexle1 38248 lhpat3 38286 tendoicl 39036 cdlemk55b 39200 pellex 40878 ssfiunibd 43102 mullimc 43412 mullimcf 43419 icccncfext 43683 etransclem32 44062 |
Copyright terms: Public domain | W3C validator |