| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp1lr | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp1lr | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 768 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜓) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: lspsolvlem 21059 dmatcrng 22396 scmatcrng 22415 1marepvsma1 22477 mdetunilem7 22512 mat2pmatghm 22624 pmatcollpwscmatlem2 22684 mp2pm2mplem4 22703 ax5seg 28872 measinblem 34217 btwnconn1lem13 36094 athgt 39457 llnle 39519 lplnle 39541 lhpexle1 40009 lhpat3 40047 tendoicl 40797 cdlemk55b 40961 pellex 42830 ssfiunibd 45314 mullimc 45621 mullimcf 45628 icccncfext 45892 etransclem32 46271 uhgrimisgrgriclem 47934 |
| Copyright terms: Public domain | W3C validator |