![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp1lr | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp1lr | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 768 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜓) | |
2 | 1 | 3ad2ant1 1133 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: lspsolvlem 21167 dmatcrng 22529 scmatcrng 22548 1marepvsma1 22610 mdetunilem7 22645 mat2pmatghm 22757 pmatcollpwscmatlem2 22817 mp2pm2mplem4 22836 ax5seg 28971 measinblem 34184 btwnconn1lem13 36063 athgt 39413 llnle 39475 lplnle 39497 lhpexle1 39965 lhpat3 40003 tendoicl 40753 cdlemk55b 40917 pellex 42791 ssfiunibd 45224 mullimc 45537 mullimcf 45544 icccncfext 45808 etransclem32 46187 uhgrimisgrgriclem 47782 |
Copyright terms: Public domain | W3C validator |