| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp1lr | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp1lr | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 768 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜓) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: lspsolvlem 21089 dmatcrng 22427 scmatcrng 22446 1marepvsma1 22508 mdetunilem7 22543 mat2pmatghm 22655 pmatcollpwscmatlem2 22715 mp2pm2mplem4 22734 ax5seg 28927 measinblem 34244 btwnconn1lem13 36154 athgt 39565 llnle 39627 lplnle 39649 lhpexle1 40117 lhpat3 40155 tendoicl 40905 cdlemk55b 41069 pellex 42942 ssfiunibd 45424 mullimc 45730 mullimcf 45737 icccncfext 45999 etransclem32 46378 uhgrimisgrgriclem 48044 |
| Copyright terms: Public domain | W3C validator |