| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp1lr | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp1lr | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 768 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜓) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: lspsolvlem 21067 dmatcrng 22405 scmatcrng 22424 1marepvsma1 22486 mdetunilem7 22521 mat2pmatghm 22633 pmatcollpwscmatlem2 22693 mp2pm2mplem4 22712 ax5seg 28901 measinblem 34186 btwnconn1lem13 36072 athgt 39435 llnle 39497 lplnle 39519 lhpexle1 39987 lhpat3 40025 tendoicl 40775 cdlemk55b 40939 pellex 42808 ssfiunibd 45291 mullimc 45598 mullimcf 45605 icccncfext 45869 etransclem32 46248 uhgrimisgrgriclem 47914 |
| Copyright terms: Public domain | W3C validator |