| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp1lr | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp1lr | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 768 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜓) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: lspsolvlem 21052 dmatcrng 22389 scmatcrng 22408 1marepvsma1 22470 mdetunilem7 22505 mat2pmatghm 22617 pmatcollpwscmatlem2 22677 mp2pm2mplem4 22696 ax5seg 28865 measinblem 34210 btwnconn1lem13 36087 athgt 39450 llnle 39512 lplnle 39534 lhpexle1 40002 lhpat3 40040 tendoicl 40790 cdlemk55b 40954 pellex 42823 ssfiunibd 45307 mullimc 45614 mullimcf 45621 icccncfext 45885 etransclem32 46264 uhgrimisgrgriclem 47930 |
| Copyright terms: Public domain | W3C validator |