MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp1lr Structured version   Visualization version   GIF version

Theorem simp1lr 1234
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp1lr ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃𝜏) → 𝜓)

Proof of Theorem simp1lr
StepHypRef Expression
1 simplr 767 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜓)
213ad2ant1 1130 1 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃𝜏) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 395  df-3an 1086
This theorem is referenced by:  lspsolvlem  21125  dmatcrng  22498  scmatcrng  22517  1marepvsma1  22579  mdetunilem7  22614  mat2pmatghm  22726  pmatcollpwscmatlem2  22786  mp2pm2mplem4  22805  ax5seg  28875  measinblem  34055  btwnconn1lem13  35925  athgt  39157  llnle  39219  lplnle  39241  lhpexle1  39709  lhpat3  39747  tendoicl  40497  cdlemk55b  40661  pellex  42510  ssfiunibd  44942  mullimc  45255  mullimcf  45262  icccncfext  45526  etransclem32  45905  uhgrimisgrgriclem  47495
  Copyright terms: Public domain W3C validator