MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp1lr Structured version   Visualization version   GIF version

Theorem simp1lr 1235
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp1lr ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃𝜏) → 𝜓)

Proof of Theorem simp1lr
StepHypRef Expression
1 simplr 765 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜓)
213ad2ant1 1131 1 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃𝜏) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 395  df-3an 1087
This theorem is referenced by:  lspsolvlem  20900  dmatcrng  22224  scmatcrng  22243  1marepvsma1  22305  mdetunilem7  22340  mat2pmatghm  22452  pmatcollpwscmatlem2  22512  mp2pm2mplem4  22531  ax5seg  28463  measinblem  33516  btwnconn1lem13  35375  athgt  38630  llnle  38692  lplnle  38714  lhpexle1  39182  lhpat3  39220  tendoicl  39970  cdlemk55b  40134  pellex  41875  ssfiunibd  44317  mullimc  44630  mullimcf  44637  icccncfext  44901  etransclem32  45280
  Copyright terms: Public domain W3C validator