| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp1lr | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp1lr | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 768 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜓) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: lspsolvlem 21072 dmatcrng 22410 scmatcrng 22429 1marepvsma1 22491 mdetunilem7 22526 mat2pmatghm 22638 pmatcollpwscmatlem2 22698 mp2pm2mplem4 22717 ax5seg 28909 measinblem 34223 btwnconn1lem13 36112 athgt 39474 llnle 39536 lplnle 39558 lhpexle1 40026 lhpat3 40064 tendoicl 40814 cdlemk55b 40978 pellex 42847 ssfiunibd 45329 mullimc 45635 mullimcf 45642 icccncfext 45904 etransclem32 46283 uhgrimisgrgriclem 47940 |
| Copyright terms: Public domain | W3C validator |