MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp1lr Structured version   Visualization version   GIF version

Theorem simp1lr 1238
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp1lr ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃𝜏) → 𝜓)

Proof of Theorem simp1lr
StepHypRef Expression
1 simplr 768 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜓)
213ad2ant1 1133 1 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃𝜏) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  lspsolvlem  21052  dmatcrng  22389  scmatcrng  22408  1marepvsma1  22470  mdetunilem7  22505  mat2pmatghm  22617  pmatcollpwscmatlem2  22677  mp2pm2mplem4  22696  ax5seg  28865  measinblem  34210  btwnconn1lem13  36087  athgt  39450  llnle  39512  lplnle  39534  lhpexle1  40002  lhpat3  40040  tendoicl  40790  cdlemk55b  40954  pellex  42823  ssfiunibd  45307  mullimc  45614  mullimcf  45621  icccncfext  45885  etransclem32  46264  uhgrimisgrgriclem  47930
  Copyright terms: Public domain W3C validator