| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp1lr | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp1lr | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 768 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜓) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: lspsolvlem 21103 dmatcrng 22440 scmatcrng 22459 1marepvsma1 22521 mdetunilem7 22556 mat2pmatghm 22668 pmatcollpwscmatlem2 22728 mp2pm2mplem4 22747 ax5seg 28917 measinblem 34251 btwnconn1lem13 36117 athgt 39475 llnle 39537 lplnle 39559 lhpexle1 40027 lhpat3 40065 tendoicl 40815 cdlemk55b 40979 pellex 42858 ssfiunibd 45338 mullimc 45645 mullimcf 45652 icccncfext 45916 etransclem32 46295 uhgrimisgrgriclem 47943 |
| Copyright terms: Public domain | W3C validator |