MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp1lr Structured version   Visualization version   GIF version

Theorem simp1lr 1238
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp1lr ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃𝜏) → 𝜓)

Proof of Theorem simp1lr
StepHypRef Expression
1 simplr 768 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜓)
213ad2ant1 1134 1 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃𝜏) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398  df-3an 1090
This theorem is referenced by:  lspsolvlem  20755  dmatcrng  22004  scmatcrng  22023  1marepvsma1  22085  mdetunilem7  22120  mat2pmatghm  22232  pmatcollpwscmatlem2  22292  mp2pm2mplem4  22311  ax5seg  28196  measinblem  33218  btwnconn1lem13  35071  athgt  38327  llnle  38389  lplnle  38411  lhpexle1  38879  lhpat3  38917  tendoicl  39667  cdlemk55b  39831  pellex  41573  ssfiunibd  44019  mullimc  44332  mullimcf  44339  icccncfext  44603  etransclem32  44982
  Copyright terms: Public domain W3C validator