MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsolvlem Structured version   Visualization version   GIF version

Theorem lspsolvlem 20179
Description: Lemma for lspsolv 20180. (Contributed by Mario Carneiro, 25-Jun-2014.)
Hypotheses
Ref Expression
lspsolv.v 𝑉 = (Base‘𝑊)
lspsolv.s 𝑆 = (LSubSp‘𝑊)
lspsolv.n 𝑁 = (LSpan‘𝑊)
lspsolv.f 𝐹 = (Scalar‘𝑊)
lspsolv.b 𝐵 = (Base‘𝐹)
lspsolv.p + = (+g𝑊)
lspsolv.t · = ( ·𝑠𝑊)
lspsolv.q 𝑄 = {𝑧𝑉 ∣ ∃𝑟𝐵 (𝑧 + (𝑟 · 𝑌)) ∈ (𝑁𝐴)}
lspsolv.w (𝜑𝑊 ∈ LMod)
lspsolv.ss (𝜑𝐴𝑉)
lspsolv.y (𝜑𝑌𝑉)
lspsolv.x (𝜑𝑋 ∈ (𝑁‘(𝐴 ∪ {𝑌})))
Assertion
Ref Expression
lspsolvlem (𝜑 → ∃𝑟𝐵 (𝑋 + (𝑟 · 𝑌)) ∈ (𝑁𝐴))
Distinct variable groups:   𝑧,𝑟,𝐴   𝐵,𝑟,𝑧   𝑁,𝑟,𝑧   𝜑,𝑧   𝐹,𝑟   𝑆,𝑟   𝑉,𝑟,𝑧   𝑊,𝑟,𝑧   + ,𝑟,𝑧   · ,𝑟,𝑧   𝑋,𝑟,𝑧   𝑌,𝑟,𝑧
Allowed substitution hints:   𝜑(𝑟)   𝑄(𝑧,𝑟)   𝑆(𝑧)   𝐹(𝑧)

Proof of Theorem lspsolvlem
Dummy variables 𝑠 𝑡 𝑥 𝑦 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lspsolv.w . . . . 5 (𝜑𝑊 ∈ LMod)
2 lspsolv.q . . . . . . 7 𝑄 = {𝑧𝑉 ∣ ∃𝑟𝐵 (𝑧 + (𝑟 · 𝑌)) ∈ (𝑁𝐴)}
32ssrab3 3995 . . . . . 6 𝑄𝑉
43a1i 11 . . . . 5 (𝜑𝑄𝑉)
5 lspsolv.ss . . . . . . . 8 (𝜑𝐴𝑉)
61adantr 484 . . . . . . . . . 10 ((𝜑𝑧𝐴) → 𝑊 ∈ LMod)
7 lspsolv.f . . . . . . . . . . 11 𝐹 = (Scalar‘𝑊)
8 lspsolv.b . . . . . . . . . . 11 𝐵 = (Base‘𝐹)
9 eqid 2737 . . . . . . . . . . 11 (0g𝐹) = (0g𝐹)
107, 8, 9lmod0cl 19925 . . . . . . . . . 10 (𝑊 ∈ LMod → (0g𝐹) ∈ 𝐵)
116, 10syl 17 . . . . . . . . 9 ((𝜑𝑧𝐴) → (0g𝐹) ∈ 𝐵)
12 lspsolv.y . . . . . . . . . . . . . 14 (𝜑𝑌𝑉)
13 lspsolv.v . . . . . . . . . . . . . . 15 𝑉 = (Base‘𝑊)
14 lspsolv.t . . . . . . . . . . . . . . 15 · = ( ·𝑠𝑊)
15 eqid 2737 . . . . . . . . . . . . . . 15 (0g𝑊) = (0g𝑊)
1613, 7, 14, 9, 15lmod0vs 19932 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → ((0g𝐹) · 𝑌) = (0g𝑊))
171, 12, 16syl2anc 587 . . . . . . . . . . . . 13 (𝜑 → ((0g𝐹) · 𝑌) = (0g𝑊))
1817adantr 484 . . . . . . . . . . . 12 ((𝜑𝑧𝐴) → ((0g𝐹) · 𝑌) = (0g𝑊))
1918oveq2d 7229 . . . . . . . . . . 11 ((𝜑𝑧𝐴) → (𝑧 + ((0g𝐹) · 𝑌)) = (𝑧 + (0g𝑊)))
205sselda 3901 . . . . . . . . . . . 12 ((𝜑𝑧𝐴) → 𝑧𝑉)
21 lspsolv.p . . . . . . . . . . . . 13 + = (+g𝑊)
2213, 21, 15lmod0vrid 19930 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝑧𝑉) → (𝑧 + (0g𝑊)) = 𝑧)
236, 20, 22syl2anc 587 . . . . . . . . . . 11 ((𝜑𝑧𝐴) → (𝑧 + (0g𝑊)) = 𝑧)
2419, 23eqtrd 2777 . . . . . . . . . 10 ((𝜑𝑧𝐴) → (𝑧 + ((0g𝐹) · 𝑌)) = 𝑧)
25 lspsolv.n . . . . . . . . . . . . 13 𝑁 = (LSpan‘𝑊)
2613, 25lspssid 20022 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝐴𝑉) → 𝐴 ⊆ (𝑁𝐴))
271, 5, 26syl2anc 587 . . . . . . . . . . 11 (𝜑𝐴 ⊆ (𝑁𝐴))
2827sselda 3901 . . . . . . . . . 10 ((𝜑𝑧𝐴) → 𝑧 ∈ (𝑁𝐴))
2924, 28eqeltrd 2838 . . . . . . . . 9 ((𝜑𝑧𝐴) → (𝑧 + ((0g𝐹) · 𝑌)) ∈ (𝑁𝐴))
30 oveq1 7220 . . . . . . . . . . . 12 (𝑟 = (0g𝐹) → (𝑟 · 𝑌) = ((0g𝐹) · 𝑌))
3130oveq2d 7229 . . . . . . . . . . 11 (𝑟 = (0g𝐹) → (𝑧 + (𝑟 · 𝑌)) = (𝑧 + ((0g𝐹) · 𝑌)))
3231eleq1d 2822 . . . . . . . . . 10 (𝑟 = (0g𝐹) → ((𝑧 + (𝑟 · 𝑌)) ∈ (𝑁𝐴) ↔ (𝑧 + ((0g𝐹) · 𝑌)) ∈ (𝑁𝐴)))
3332rspcev 3537 . . . . . . . . 9 (((0g𝐹) ∈ 𝐵 ∧ (𝑧 + ((0g𝐹) · 𝑌)) ∈ (𝑁𝐴)) → ∃𝑟𝐵 (𝑧 + (𝑟 · 𝑌)) ∈ (𝑁𝐴))
3411, 29, 33syl2anc 587 . . . . . . . 8 ((𝜑𝑧𝐴) → ∃𝑟𝐵 (𝑧 + (𝑟 · 𝑌)) ∈ (𝑁𝐴))
355, 34ssrabdv 3987 . . . . . . 7 (𝜑𝐴 ⊆ {𝑧𝑉 ∣ ∃𝑟𝐵 (𝑧 + (𝑟 · 𝑌)) ∈ (𝑁𝐴)})
3635, 2sseqtrrdi 3952 . . . . . 6 (𝜑𝐴𝑄)
377lmodfgrp 19908 . . . . . . . . . . 11 (𝑊 ∈ LMod → 𝐹 ∈ Grp)
381, 37syl 17 . . . . . . . . . 10 (𝜑𝐹 ∈ Grp)
39 eqid 2737 . . . . . . . . . . . 12 (1r𝐹) = (1r𝐹)
407, 8, 39lmod1cl 19926 . . . . . . . . . . 11 (𝑊 ∈ LMod → (1r𝐹) ∈ 𝐵)
411, 40syl 17 . . . . . . . . . 10 (𝜑 → (1r𝐹) ∈ 𝐵)
42 eqid 2737 . . . . . . . . . . 11 (invg𝐹) = (invg𝐹)
438, 42grpinvcl 18415 . . . . . . . . . 10 ((𝐹 ∈ Grp ∧ (1r𝐹) ∈ 𝐵) → ((invg𝐹)‘(1r𝐹)) ∈ 𝐵)
4438, 41, 43syl2anc 587 . . . . . . . . 9 (𝜑 → ((invg𝐹)‘(1r𝐹)) ∈ 𝐵)
45 eqid 2737 . . . . . . . . . . . . . 14 (invg𝑊) = (invg𝑊)
4613, 45, 7, 14, 39, 42lmodvneg1 19942 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (((invg𝐹)‘(1r𝐹)) · 𝑌) = ((invg𝑊)‘𝑌))
471, 12, 46syl2anc 587 . . . . . . . . . . . 12 (𝜑 → (((invg𝐹)‘(1r𝐹)) · 𝑌) = ((invg𝑊)‘𝑌))
4847oveq2d 7229 . . . . . . . . . . 11 (𝜑 → (𝑌 + (((invg𝐹)‘(1r𝐹)) · 𝑌)) = (𝑌 + ((invg𝑊)‘𝑌)))
49 lmodgrp 19906 . . . . . . . . . . . . 13 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
501, 49syl 17 . . . . . . . . . . . 12 (𝜑𝑊 ∈ Grp)
5113, 21, 15, 45grprinv 18417 . . . . . . . . . . . 12 ((𝑊 ∈ Grp ∧ 𝑌𝑉) → (𝑌 + ((invg𝑊)‘𝑌)) = (0g𝑊))
5250, 12, 51syl2anc 587 . . . . . . . . . . 11 (𝜑 → (𝑌 + ((invg𝑊)‘𝑌)) = (0g𝑊))
5348, 52eqtrd 2777 . . . . . . . . . 10 (𝜑 → (𝑌 + (((invg𝐹)‘(1r𝐹)) · 𝑌)) = (0g𝑊))
54 lspsolv.s . . . . . . . . . . . . 13 𝑆 = (LSubSp‘𝑊)
5513, 54, 25lspcl 20013 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝐴𝑉) → (𝑁𝐴) ∈ 𝑆)
561, 5, 55syl2anc 587 . . . . . . . . . . 11 (𝜑 → (𝑁𝐴) ∈ 𝑆)
5715, 54lss0cl 19983 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ (𝑁𝐴) ∈ 𝑆) → (0g𝑊) ∈ (𝑁𝐴))
581, 56, 57syl2anc 587 . . . . . . . . . 10 (𝜑 → (0g𝑊) ∈ (𝑁𝐴))
5953, 58eqeltrd 2838 . . . . . . . . 9 (𝜑 → (𝑌 + (((invg𝐹)‘(1r𝐹)) · 𝑌)) ∈ (𝑁𝐴))
60 oveq1 7220 . . . . . . . . . . . 12 (𝑟 = ((invg𝐹)‘(1r𝐹)) → (𝑟 · 𝑌) = (((invg𝐹)‘(1r𝐹)) · 𝑌))
6160oveq2d 7229 . . . . . . . . . . 11 (𝑟 = ((invg𝐹)‘(1r𝐹)) → (𝑌 + (𝑟 · 𝑌)) = (𝑌 + (((invg𝐹)‘(1r𝐹)) · 𝑌)))
6261eleq1d 2822 . . . . . . . . . 10 (𝑟 = ((invg𝐹)‘(1r𝐹)) → ((𝑌 + (𝑟 · 𝑌)) ∈ (𝑁𝐴) ↔ (𝑌 + (((invg𝐹)‘(1r𝐹)) · 𝑌)) ∈ (𝑁𝐴)))
6362rspcev 3537 . . . . . . . . 9 ((((invg𝐹)‘(1r𝐹)) ∈ 𝐵 ∧ (𝑌 + (((invg𝐹)‘(1r𝐹)) · 𝑌)) ∈ (𝑁𝐴)) → ∃𝑟𝐵 (𝑌 + (𝑟 · 𝑌)) ∈ (𝑁𝐴))
6444, 59, 63syl2anc 587 . . . . . . . 8 (𝜑 → ∃𝑟𝐵 (𝑌 + (𝑟 · 𝑌)) ∈ (𝑁𝐴))
65 oveq1 7220 . . . . . . . . . . 11 (𝑧 = 𝑌 → (𝑧 + (𝑟 · 𝑌)) = (𝑌 + (𝑟 · 𝑌)))
6665eleq1d 2822 . . . . . . . . . 10 (𝑧 = 𝑌 → ((𝑧 + (𝑟 · 𝑌)) ∈ (𝑁𝐴) ↔ (𝑌 + (𝑟 · 𝑌)) ∈ (𝑁𝐴)))
6766rexbidv 3216 . . . . . . . . 9 (𝑧 = 𝑌 → (∃𝑟𝐵 (𝑧 + (𝑟 · 𝑌)) ∈ (𝑁𝐴) ↔ ∃𝑟𝐵 (𝑌 + (𝑟 · 𝑌)) ∈ (𝑁𝐴)))
6867, 2elrab2 3605 . . . . . . . 8 (𝑌𝑄 ↔ (𝑌𝑉 ∧ ∃𝑟𝐵 (𝑌 + (𝑟 · 𝑌)) ∈ (𝑁𝐴)))
6912, 64, 68sylanbrc 586 . . . . . . 7 (𝜑𝑌𝑄)
7069snssd 4722 . . . . . 6 (𝜑 → {𝑌} ⊆ 𝑄)
7136, 70unssd 4100 . . . . 5 (𝜑 → (𝐴 ∪ {𝑌}) ⊆ 𝑄)
7213, 25lspss 20021 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑄𝑉 ∧ (𝐴 ∪ {𝑌}) ⊆ 𝑄) → (𝑁‘(𝐴 ∪ {𝑌})) ⊆ (𝑁𝑄))
731, 4, 71, 72syl3anc 1373 . . . 4 (𝜑 → (𝑁‘(𝐴 ∪ {𝑌})) ⊆ (𝑁𝑄))
747a1i 11 . . . . . 6 (𝜑𝐹 = (Scalar‘𝑊))
758a1i 11 . . . . . 6 (𝜑𝐵 = (Base‘𝐹))
7613a1i 11 . . . . . 6 (𝜑𝑉 = (Base‘𝑊))
7721a1i 11 . . . . . 6 (𝜑+ = (+g𝑊))
7814a1i 11 . . . . . 6 (𝜑· = ( ·𝑠𝑊))
7954a1i 11 . . . . . 6 (𝜑𝑆 = (LSubSp‘𝑊))
8069ne0d 4250 . . . . . 6 (𝜑𝑄 ≠ ∅)
81 oveq1 7220 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥 → (𝑧 + (𝑟 · 𝑌)) = (𝑥 + (𝑟 · 𝑌)))
8281eleq1d 2822 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → ((𝑧 + (𝑟 · 𝑌)) ∈ (𝑁𝐴) ↔ (𝑥 + (𝑟 · 𝑌)) ∈ (𝑁𝐴)))
8382rexbidv 3216 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → (∃𝑟𝐵 (𝑧 + (𝑟 · 𝑌)) ∈ (𝑁𝐴) ↔ ∃𝑟𝐵 (𝑥 + (𝑟 · 𝑌)) ∈ (𝑁𝐴)))
84 oveq1 7220 . . . . . . . . . . . . . . . 16 (𝑟 = 𝑠 → (𝑟 · 𝑌) = (𝑠 · 𝑌))
8584oveq2d 7229 . . . . . . . . . . . . . . 15 (𝑟 = 𝑠 → (𝑥 + (𝑟 · 𝑌)) = (𝑥 + (𝑠 · 𝑌)))
8685eleq1d 2822 . . . . . . . . . . . . . 14 (𝑟 = 𝑠 → ((𝑥 + (𝑟 · 𝑌)) ∈ (𝑁𝐴) ↔ (𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴)))
8786cbvrexvw 3359 . . . . . . . . . . . . 13 (∃𝑟𝐵 (𝑥 + (𝑟 · 𝑌)) ∈ (𝑁𝐴) ↔ ∃𝑠𝐵 (𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴))
8883, 87bitrdi 290 . . . . . . . . . . . 12 (𝑧 = 𝑥 → (∃𝑟𝐵 (𝑧 + (𝑟 · 𝑌)) ∈ (𝑁𝐴) ↔ ∃𝑠𝐵 (𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴)))
8988, 2elrab2 3605 . . . . . . . . . . 11 (𝑥𝑄 ↔ (𝑥𝑉 ∧ ∃𝑠𝐵 (𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴)))
90 oveq1 7220 . . . . . . . . . . . . . . 15 (𝑧 = 𝑦 → (𝑧 + (𝑟 · 𝑌)) = (𝑦 + (𝑟 · 𝑌)))
9190eleq1d 2822 . . . . . . . . . . . . . 14 (𝑧 = 𝑦 → ((𝑧 + (𝑟 · 𝑌)) ∈ (𝑁𝐴) ↔ (𝑦 + (𝑟 · 𝑌)) ∈ (𝑁𝐴)))
9291rexbidv 3216 . . . . . . . . . . . . 13 (𝑧 = 𝑦 → (∃𝑟𝐵 (𝑧 + (𝑟 · 𝑌)) ∈ (𝑁𝐴) ↔ ∃𝑟𝐵 (𝑦 + (𝑟 · 𝑌)) ∈ (𝑁𝐴)))
93 oveq1 7220 . . . . . . . . . . . . . . . 16 (𝑟 = 𝑡 → (𝑟 · 𝑌) = (𝑡 · 𝑌))
9493oveq2d 7229 . . . . . . . . . . . . . . 15 (𝑟 = 𝑡 → (𝑦 + (𝑟 · 𝑌)) = (𝑦 + (𝑡 · 𝑌)))
9594eleq1d 2822 . . . . . . . . . . . . . 14 (𝑟 = 𝑡 → ((𝑦 + (𝑟 · 𝑌)) ∈ (𝑁𝐴) ↔ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴)))
9695cbvrexvw 3359 . . . . . . . . . . . . 13 (∃𝑟𝐵 (𝑦 + (𝑟 · 𝑌)) ∈ (𝑁𝐴) ↔ ∃𝑡𝐵 (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))
9792, 96bitrdi 290 . . . . . . . . . . . 12 (𝑧 = 𝑦 → (∃𝑟𝐵 (𝑧 + (𝑟 · 𝑌)) ∈ (𝑁𝐴) ↔ ∃𝑡𝐵 (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴)))
9897, 2elrab2 3605 . . . . . . . . . . 11 (𝑦𝑄 ↔ (𝑦𝑉 ∧ ∃𝑡𝐵 (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴)))
9989, 98anbi12i 630 . . . . . . . . . 10 ((𝑥𝑄𝑦𝑄) ↔ ((𝑥𝑉 ∧ ∃𝑠𝐵 (𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴)) ∧ (𝑦𝑉 ∧ ∃𝑡𝐵 (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))))
100 an4 656 . . . . . . . . . 10 (((𝑥𝑉 ∧ ∃𝑠𝐵 (𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴)) ∧ (𝑦𝑉 ∧ ∃𝑡𝐵 (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) ↔ ((𝑥𝑉𝑦𝑉) ∧ (∃𝑠𝐵 (𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ ∃𝑡𝐵 (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))))
10199, 100bitri 278 . . . . . . . . 9 ((𝑥𝑄𝑦𝑄) ↔ ((𝑥𝑉𝑦𝑉) ∧ (∃𝑠𝐵 (𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ ∃𝑡𝐵 (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))))
102 reeanv 3279 . . . . . . . . . . 11 (∃𝑠𝐵𝑡𝐵 ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴)) ↔ (∃𝑠𝐵 (𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ ∃𝑡𝐵 (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴)))
103 simp1ll 1238 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → 𝜑)
104103, 1syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → 𝑊 ∈ LMod)
105 simp1lr 1239 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → 𝑎𝐵)
106 simp1rl 1240 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → 𝑥𝑉)
10713, 7, 14, 8lmodvscl 19916 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ 𝑎𝐵𝑥𝑉) → (𝑎 · 𝑥) ∈ 𝑉)
108104, 105, 106, 107syl3anc 1373 . . . . . . . . . . . . . . 15 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → (𝑎 · 𝑥) ∈ 𝑉)
109 simp1rr 1241 . . . . . . . . . . . . . . 15 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → 𝑦𝑉)
11013, 21lmodvacl 19913 . . . . . . . . . . . . . . 15 ((𝑊 ∈ LMod ∧ (𝑎 · 𝑥) ∈ 𝑉𝑦𝑉) → ((𝑎 · 𝑥) + 𝑦) ∈ 𝑉)
111104, 108, 109, 110syl3anc 1373 . . . . . . . . . . . . . 14 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → ((𝑎 · 𝑥) + 𝑦) ∈ 𝑉)
112 simp2l 1201 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → 𝑠𝐵)
113 eqid 2737 . . . . . . . . . . . . . . . . . 18 (.r𝐹) = (.r𝐹)
1147, 8, 113lmodmcl 19911 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ LMod ∧ 𝑎𝐵𝑠𝐵) → (𝑎(.r𝐹)𝑠) ∈ 𝐵)
115104, 105, 112, 114syl3anc 1373 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → (𝑎(.r𝐹)𝑠) ∈ 𝐵)
116 simp2r 1202 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → 𝑡𝐵)
117 eqid 2737 . . . . . . . . . . . . . . . . 17 (+g𝐹) = (+g𝐹)
1187, 8, 117lmodacl 19910 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ (𝑎(.r𝐹)𝑠) ∈ 𝐵𝑡𝐵) → ((𝑎(.r𝐹)𝑠)(+g𝐹)𝑡) ∈ 𝐵)
119104, 115, 116, 118syl3anc 1373 . . . . . . . . . . . . . . 15 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → ((𝑎(.r𝐹)𝑠)(+g𝐹)𝑡) ∈ 𝐵)
120103, 12syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → 𝑌𝑉)
12113, 7, 14, 8lmodvscl 19916 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ LMod ∧ 𝑠𝐵𝑌𝑉) → (𝑠 · 𝑌) ∈ 𝑉)
122104, 112, 120, 121syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → (𝑠 · 𝑌) ∈ 𝑉)
12313, 7, 14, 8lmodvscl 19916 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ LMod ∧ 𝑎𝐵 ∧ (𝑠 · 𝑌) ∈ 𝑉) → (𝑎 · (𝑠 · 𝑌)) ∈ 𝑉)
124104, 105, 122, 123syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → (𝑎 · (𝑠 · 𝑌)) ∈ 𝑉)
12513, 7, 14, 8lmodvscl 19916 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ LMod ∧ 𝑡𝐵𝑌𝑉) → (𝑡 · 𝑌) ∈ 𝑉)
126104, 116, 120, 125syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → (𝑡 · 𝑌) ∈ 𝑉)
12713, 21lmod4 19949 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ LMod ∧ ((𝑎 · 𝑥) ∈ 𝑉𝑦𝑉) ∧ ((𝑎 · (𝑠 · 𝑌)) ∈ 𝑉 ∧ (𝑡 · 𝑌) ∈ 𝑉)) → (((𝑎 · 𝑥) + 𝑦) + ((𝑎 · (𝑠 · 𝑌)) + (𝑡 · 𝑌))) = (((𝑎 · 𝑥) + (𝑎 · (𝑠 · 𝑌))) + (𝑦 + (𝑡 · 𝑌))))
128104, 108, 109, 124, 126, 127syl122anc 1381 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → (((𝑎 · 𝑥) + 𝑦) + ((𝑎 · (𝑠 · 𝑌)) + (𝑡 · 𝑌))) = (((𝑎 · 𝑥) + (𝑎 · (𝑠 · 𝑌))) + (𝑦 + (𝑡 · 𝑌))))
12913, 21, 7, 14, 8, 117lmodvsdir 19923 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ LMod ∧ ((𝑎(.r𝐹)𝑠) ∈ 𝐵𝑡𝐵𝑌𝑉)) → (((𝑎(.r𝐹)𝑠)(+g𝐹)𝑡) · 𝑌) = (((𝑎(.r𝐹)𝑠) · 𝑌) + (𝑡 · 𝑌)))
130104, 115, 116, 120, 129syl13anc 1374 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → (((𝑎(.r𝐹)𝑠)(+g𝐹)𝑡) · 𝑌) = (((𝑎(.r𝐹)𝑠) · 𝑌) + (𝑡 · 𝑌)))
13113, 7, 14, 8, 113lmodvsass 19924 . . . . . . . . . . . . . . . . . . . . 21 ((𝑊 ∈ LMod ∧ (𝑎𝐵𝑠𝐵𝑌𝑉)) → ((𝑎(.r𝐹)𝑠) · 𝑌) = (𝑎 · (𝑠 · 𝑌)))
132104, 105, 112, 120, 131syl13anc 1374 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → ((𝑎(.r𝐹)𝑠) · 𝑌) = (𝑎 · (𝑠 · 𝑌)))
133132oveq1d 7228 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → (((𝑎(.r𝐹)𝑠) · 𝑌) + (𝑡 · 𝑌)) = ((𝑎 · (𝑠 · 𝑌)) + (𝑡 · 𝑌)))
134130, 133eqtrd 2777 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → (((𝑎(.r𝐹)𝑠)(+g𝐹)𝑡) · 𝑌) = ((𝑎 · (𝑠 · 𝑌)) + (𝑡 · 𝑌)))
135134oveq2d 7229 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → (((𝑎 · 𝑥) + 𝑦) + (((𝑎(.r𝐹)𝑠)(+g𝐹)𝑡) · 𝑌)) = (((𝑎 · 𝑥) + 𝑦) + ((𝑎 · (𝑠 · 𝑌)) + (𝑡 · 𝑌))))
13613, 21, 7, 14, 8lmodvsdi 19922 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ LMod ∧ (𝑎𝐵𝑥𝑉 ∧ (𝑠 · 𝑌) ∈ 𝑉)) → (𝑎 · (𝑥 + (𝑠 · 𝑌))) = ((𝑎 · 𝑥) + (𝑎 · (𝑠 · 𝑌))))
137104, 105, 106, 122, 136syl13anc 1374 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → (𝑎 · (𝑥 + (𝑠 · 𝑌))) = ((𝑎 · 𝑥) + (𝑎 · (𝑠 · 𝑌))))
138137oveq1d 7228 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → ((𝑎 · (𝑥 + (𝑠 · 𝑌))) + (𝑦 + (𝑡 · 𝑌))) = (((𝑎 · 𝑥) + (𝑎 · (𝑠 · 𝑌))) + (𝑦 + (𝑡 · 𝑌))))
139128, 135, 1383eqtr4d 2787 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → (((𝑎 · 𝑥) + 𝑦) + (((𝑎(.r𝐹)𝑠)(+g𝐹)𝑡) · 𝑌)) = ((𝑎 · (𝑥 + (𝑠 · 𝑌))) + (𝑦 + (𝑡 · 𝑌))))
140103, 56syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → (𝑁𝐴) ∈ 𝑆)
141 simp3l 1203 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → (𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴))
142 simp3r 1204 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))
1437, 8, 21, 14, 54lsscl 19979 . . . . . . . . . . . . . . . . 17 (((𝑁𝐴) ∈ 𝑆 ∧ (𝑎𝐵 ∧ (𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → ((𝑎 · (𝑥 + (𝑠 · 𝑌))) + (𝑦 + (𝑡 · 𝑌))) ∈ (𝑁𝐴))
144140, 105, 141, 142, 143syl13anc 1374 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → ((𝑎 · (𝑥 + (𝑠 · 𝑌))) + (𝑦 + (𝑡 · 𝑌))) ∈ (𝑁𝐴))
145139, 144eqeltrd 2838 . . . . . . . . . . . . . . 15 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → (((𝑎 · 𝑥) + 𝑦) + (((𝑎(.r𝐹)𝑠)(+g𝐹)𝑡) · 𝑌)) ∈ (𝑁𝐴))
146 oveq1 7220 . . . . . . . . . . . . . . . . . 18 (𝑟 = ((𝑎(.r𝐹)𝑠)(+g𝐹)𝑡) → (𝑟 · 𝑌) = (((𝑎(.r𝐹)𝑠)(+g𝐹)𝑡) · 𝑌))
147146oveq2d 7229 . . . . . . . . . . . . . . . . 17 (𝑟 = ((𝑎(.r𝐹)𝑠)(+g𝐹)𝑡) → (((𝑎 · 𝑥) + 𝑦) + (𝑟 · 𝑌)) = (((𝑎 · 𝑥) + 𝑦) + (((𝑎(.r𝐹)𝑠)(+g𝐹)𝑡) · 𝑌)))
148147eleq1d 2822 . . . . . . . . . . . . . . . 16 (𝑟 = ((𝑎(.r𝐹)𝑠)(+g𝐹)𝑡) → ((((𝑎 · 𝑥) + 𝑦) + (𝑟 · 𝑌)) ∈ (𝑁𝐴) ↔ (((𝑎 · 𝑥) + 𝑦) + (((𝑎(.r𝐹)𝑠)(+g𝐹)𝑡) · 𝑌)) ∈ (𝑁𝐴)))
149148rspcev 3537 . . . . . . . . . . . . . . 15 ((((𝑎(.r𝐹)𝑠)(+g𝐹)𝑡) ∈ 𝐵 ∧ (((𝑎 · 𝑥) + 𝑦) + (((𝑎(.r𝐹)𝑠)(+g𝐹)𝑡) · 𝑌)) ∈ (𝑁𝐴)) → ∃𝑟𝐵 (((𝑎 · 𝑥) + 𝑦) + (𝑟 · 𝑌)) ∈ (𝑁𝐴))
150119, 145, 149syl2anc 587 . . . . . . . . . . . . . 14 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → ∃𝑟𝐵 (((𝑎 · 𝑥) + 𝑦) + (𝑟 · 𝑌)) ∈ (𝑁𝐴))
151 oveq1 7220 . . . . . . . . . . . . . . . . 17 (𝑧 = ((𝑎 · 𝑥) + 𝑦) → (𝑧 + (𝑟 · 𝑌)) = (((𝑎 · 𝑥) + 𝑦) + (𝑟 · 𝑌)))
152151eleq1d 2822 . . . . . . . . . . . . . . . 16 (𝑧 = ((𝑎 · 𝑥) + 𝑦) → ((𝑧 + (𝑟 · 𝑌)) ∈ (𝑁𝐴) ↔ (((𝑎 · 𝑥) + 𝑦) + (𝑟 · 𝑌)) ∈ (𝑁𝐴)))
153152rexbidv 3216 . . . . . . . . . . . . . . 15 (𝑧 = ((𝑎 · 𝑥) + 𝑦) → (∃𝑟𝐵 (𝑧 + (𝑟 · 𝑌)) ∈ (𝑁𝐴) ↔ ∃𝑟𝐵 (((𝑎 · 𝑥) + 𝑦) + (𝑟 · 𝑌)) ∈ (𝑁𝐴)))
154153, 2elrab2 3605 . . . . . . . . . . . . . 14 (((𝑎 · 𝑥) + 𝑦) ∈ 𝑄 ↔ (((𝑎 · 𝑥) + 𝑦) ∈ 𝑉 ∧ ∃𝑟𝐵 (((𝑎 · 𝑥) + 𝑦) + (𝑟 · 𝑌)) ∈ (𝑁𝐴)))
155111, 150, 154sylanbrc 586 . . . . . . . . . . . . 13 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → ((𝑎 · 𝑥) + 𝑦) ∈ 𝑄)
1561553exp 1121 . . . . . . . . . . . 12 (((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) → ((𝑠𝐵𝑡𝐵) → (((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴)) → ((𝑎 · 𝑥) + 𝑦) ∈ 𝑄)))
157156rexlimdvv 3212 . . . . . . . . . . 11 (((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) → (∃𝑠𝐵𝑡𝐵 ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴)) → ((𝑎 · 𝑥) + 𝑦) ∈ 𝑄))
158102, 157syl5bir 246 . . . . . . . . . 10 (((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) → ((∃𝑠𝐵 (𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ ∃𝑡𝐵 (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴)) → ((𝑎 · 𝑥) + 𝑦) ∈ 𝑄))
159158expimpd 457 . . . . . . . . 9 ((𝜑𝑎𝐵) → (((𝑥𝑉𝑦𝑉) ∧ (∃𝑠𝐵 (𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ ∃𝑡𝐵 (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → ((𝑎 · 𝑥) + 𝑦) ∈ 𝑄))
160101, 159syl5bi 245 . . . . . . . 8 ((𝜑𝑎𝐵) → ((𝑥𝑄𝑦𝑄) → ((𝑎 · 𝑥) + 𝑦) ∈ 𝑄))
161160exp4b 434 . . . . . . 7 (𝜑 → (𝑎𝐵 → (𝑥𝑄 → (𝑦𝑄 → ((𝑎 · 𝑥) + 𝑦) ∈ 𝑄))))
1621613imp2 1351 . . . . . 6 ((𝜑 ∧ (𝑎𝐵𝑥𝑄𝑦𝑄)) → ((𝑎 · 𝑥) + 𝑦) ∈ 𝑄)
16374, 75, 76, 77, 78, 79, 4, 80, 162islssd 19972 . . . . 5 (𝜑𝑄𝑆)
16454, 25lspid 20019 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑄𝑆) → (𝑁𝑄) = 𝑄)
1651, 163, 164syl2anc 587 . . . 4 (𝜑 → (𝑁𝑄) = 𝑄)
16673, 165sseqtrd 3941 . . 3 (𝜑 → (𝑁‘(𝐴 ∪ {𝑌})) ⊆ 𝑄)
167 lspsolv.x . . 3 (𝜑𝑋 ∈ (𝑁‘(𝐴 ∪ {𝑌})))
168166, 167sseldd 3902 . 2 (𝜑𝑋𝑄)
169 oveq1 7220 . . . . . 6 (𝑧 = 𝑋 → (𝑧 + (𝑟 · 𝑌)) = (𝑋 + (𝑟 · 𝑌)))
170169eleq1d 2822 . . . . 5 (𝑧 = 𝑋 → ((𝑧 + (𝑟 · 𝑌)) ∈ (𝑁𝐴) ↔ (𝑋 + (𝑟 · 𝑌)) ∈ (𝑁𝐴)))
171170rexbidv 3216 . . . 4 (𝑧 = 𝑋 → (∃𝑟𝐵 (𝑧 + (𝑟 · 𝑌)) ∈ (𝑁𝐴) ↔ ∃𝑟𝐵 (𝑋 + (𝑟 · 𝑌)) ∈ (𝑁𝐴)))
172171, 2elrab2 3605 . . 3 (𝑋𝑄 ↔ (𝑋𝑉 ∧ ∃𝑟𝐵 (𝑋 + (𝑟 · 𝑌)) ∈ (𝑁𝐴)))
173172simprbi 500 . 2 (𝑋𝑄 → ∃𝑟𝐵 (𝑋 + (𝑟 · 𝑌)) ∈ (𝑁𝐴))
174168, 173syl 17 1 (𝜑 → ∃𝑟𝐵 (𝑋 + (𝑟 · 𝑌)) ∈ (𝑁𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  wrex 3062  {crab 3065  cun 3864  wss 3866  {csn 4541  cfv 6380  (class class class)co 7213  Basecbs 16760  +gcplusg 16802  .rcmulr 16803  Scalarcsca 16805   ·𝑠 cvsca 16806  0gc0g 16944  Grpcgrp 18365  invgcminusg 18366  1rcur 19516  LModclmod 19899  LSubSpclss 19968  LSpanclspn 20008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-plusg 16815  df-0g 16946  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-grp 18368  df-minusg 18369  df-sbg 18370  df-cmn 19172  df-abl 19173  df-mgp 19505  df-ur 19517  df-ring 19564  df-lmod 19901  df-lss 19969  df-lsp 20009
This theorem is referenced by:  lspsolv  20180
  Copyright terms: Public domain W3C validator