| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | lspsolv.w | . . . . 5
⊢ (𝜑 → 𝑊 ∈ LMod) | 
| 2 |  | lspsolv.q | . . . . . . 7
⊢ 𝑄 = {𝑧 ∈ 𝑉 ∣ ∃𝑟 ∈ 𝐵 (𝑧 + (𝑟 · 𝑌)) ∈ (𝑁‘𝐴)} | 
| 3 | 2 | ssrab3 4081 | . . . . . 6
⊢ 𝑄 ⊆ 𝑉 | 
| 4 | 3 | a1i 11 | . . . . 5
⊢ (𝜑 → 𝑄 ⊆ 𝑉) | 
| 5 |  | lspsolv.ss | . . . . . . . 8
⊢ (𝜑 → 𝐴 ⊆ 𝑉) | 
| 6 | 1 | adantr 480 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝑊 ∈ LMod) | 
| 7 |  | lspsolv.f | . . . . . . . . . . 11
⊢ 𝐹 = (Scalar‘𝑊) | 
| 8 |  | lspsolv.b | . . . . . . . . . . 11
⊢ 𝐵 = (Base‘𝐹) | 
| 9 |  | eqid 2736 | . . . . . . . . . . 11
⊢
(0g‘𝐹) = (0g‘𝐹) | 
| 10 | 7, 8, 9 | lmod0cl 20887 | . . . . . . . . . 10
⊢ (𝑊 ∈ LMod →
(0g‘𝐹)
∈ 𝐵) | 
| 11 | 6, 10 | syl 17 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (0g‘𝐹) ∈ 𝐵) | 
| 12 |  | lspsolv.y | . . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑌 ∈ 𝑉) | 
| 13 |  | lspsolv.v | . . . . . . . . . . . . . . 15
⊢ 𝑉 = (Base‘𝑊) | 
| 14 |  | lspsolv.t | . . . . . . . . . . . . . . 15
⊢  · = (
·𝑠 ‘𝑊) | 
| 15 |  | eqid 2736 | . . . . . . . . . . . . . . 15
⊢
(0g‘𝑊) = (0g‘𝑊) | 
| 16 | 13, 7, 14, 9, 15 | lmod0vs 20894 | . . . . . . . . . . . . . 14
⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → ((0g‘𝐹) · 𝑌) = (0g‘𝑊)) | 
| 17 | 1, 12, 16 | syl2anc 584 | . . . . . . . . . . . . 13
⊢ (𝜑 →
((0g‘𝐹)
·
𝑌) =
(0g‘𝑊)) | 
| 18 | 17 | adantr 480 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → ((0g‘𝐹) · 𝑌) = (0g‘𝑊)) | 
| 19 | 18 | oveq2d 7448 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝑧 +
((0g‘𝐹)
·
𝑌)) = (𝑧 + (0g‘𝑊))) | 
| 20 | 5 | sselda 3982 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ 𝑉) | 
| 21 |  | lspsolv.p | . . . . . . . . . . . . 13
⊢  + =
(+g‘𝑊) | 
| 22 | 13, 21, 15 | lmod0vrid 20892 | . . . . . . . . . . . 12
⊢ ((𝑊 ∈ LMod ∧ 𝑧 ∈ 𝑉) → (𝑧 + (0g‘𝑊)) = 𝑧) | 
| 23 | 6, 20, 22 | syl2anc 584 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝑧 + (0g‘𝑊)) = 𝑧) | 
| 24 | 19, 23 | eqtrd 2776 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝑧 +
((0g‘𝐹)
·
𝑌)) = 𝑧) | 
| 25 |  | lspsolv.n | . . . . . . . . . . . . 13
⊢ 𝑁 = (LSpan‘𝑊) | 
| 26 | 13, 25 | lspssid 20984 | . . . . . . . . . . . 12
⊢ ((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑉) → 𝐴 ⊆ (𝑁‘𝐴)) | 
| 27 | 1, 5, 26 | syl2anc 584 | . . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ⊆ (𝑁‘𝐴)) | 
| 28 | 27 | sselda 3982 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ (𝑁‘𝐴)) | 
| 29 | 24, 28 | eqeltrd 2840 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝑧 +
((0g‘𝐹)
·
𝑌)) ∈ (𝑁‘𝐴)) | 
| 30 |  | oveq1 7439 | . . . . . . . . . . . 12
⊢ (𝑟 = (0g‘𝐹) → (𝑟 · 𝑌) = ((0g‘𝐹) · 𝑌)) | 
| 31 | 30 | oveq2d 7448 | . . . . . . . . . . 11
⊢ (𝑟 = (0g‘𝐹) → (𝑧 + (𝑟 · 𝑌)) = (𝑧 +
((0g‘𝐹)
·
𝑌))) | 
| 32 | 31 | eleq1d 2825 | . . . . . . . . . 10
⊢ (𝑟 = (0g‘𝐹) → ((𝑧 + (𝑟 · 𝑌)) ∈ (𝑁‘𝐴) ↔ (𝑧 +
((0g‘𝐹)
·
𝑌)) ∈ (𝑁‘𝐴))) | 
| 33 | 32 | rspcev 3621 | . . . . . . . . 9
⊢
(((0g‘𝐹) ∈ 𝐵 ∧ (𝑧 +
((0g‘𝐹)
·
𝑌)) ∈ (𝑁‘𝐴)) → ∃𝑟 ∈ 𝐵 (𝑧 + (𝑟 · 𝑌)) ∈ (𝑁‘𝐴)) | 
| 34 | 11, 29, 33 | syl2anc 584 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → ∃𝑟 ∈ 𝐵 (𝑧 + (𝑟 · 𝑌)) ∈ (𝑁‘𝐴)) | 
| 35 | 5, 34 | ssrabdv 4073 | . . . . . . 7
⊢ (𝜑 → 𝐴 ⊆ {𝑧 ∈ 𝑉 ∣ ∃𝑟 ∈ 𝐵 (𝑧 + (𝑟 · 𝑌)) ∈ (𝑁‘𝐴)}) | 
| 36 | 35, 2 | sseqtrrdi 4024 | . . . . . 6
⊢ (𝜑 → 𝐴 ⊆ 𝑄) | 
| 37 | 7 | lmodfgrp 20868 | . . . . . . . . . . 11
⊢ (𝑊 ∈ LMod → 𝐹 ∈ Grp) | 
| 38 | 1, 37 | syl 17 | . . . . . . . . . 10
⊢ (𝜑 → 𝐹 ∈ Grp) | 
| 39 |  | eqid 2736 | . . . . . . . . . . . 12
⊢
(1r‘𝐹) = (1r‘𝐹) | 
| 40 | 7, 8, 39 | lmod1cl 20888 | . . . . . . . . . . 11
⊢ (𝑊 ∈ LMod →
(1r‘𝐹)
∈ 𝐵) | 
| 41 | 1, 40 | syl 17 | . . . . . . . . . 10
⊢ (𝜑 → (1r‘𝐹) ∈ 𝐵) | 
| 42 |  | eqid 2736 | . . . . . . . . . . 11
⊢
(invg‘𝐹) = (invg‘𝐹) | 
| 43 | 8, 42 | grpinvcl 19006 | . . . . . . . . . 10
⊢ ((𝐹 ∈ Grp ∧
(1r‘𝐹)
∈ 𝐵) →
((invg‘𝐹)‘(1r‘𝐹)) ∈ 𝐵) | 
| 44 | 38, 41, 43 | syl2anc 584 | . . . . . . . . 9
⊢ (𝜑 →
((invg‘𝐹)‘(1r‘𝐹)) ∈ 𝐵) | 
| 45 |  | eqid 2736 | . . . . . . . . . . . . . 14
⊢
(invg‘𝑊) = (invg‘𝑊) | 
| 46 | 13, 45, 7, 14, 39, 42 | lmodvneg1 20904 | . . . . . . . . . . . . 13
⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (((invg‘𝐹)‘(1r‘𝐹)) · 𝑌) = ((invg‘𝑊)‘𝑌)) | 
| 47 | 1, 12, 46 | syl2anc 584 | . . . . . . . . . . . 12
⊢ (𝜑 →
(((invg‘𝐹)‘(1r‘𝐹)) · 𝑌) = ((invg‘𝑊)‘𝑌)) | 
| 48 | 47 | oveq2d 7448 | . . . . . . . . . . 11
⊢ (𝜑 → (𝑌 +
(((invg‘𝐹)‘(1r‘𝐹)) · 𝑌)) = (𝑌 +
((invg‘𝑊)‘𝑌))) | 
| 49 |  | lmodgrp 20866 | . . . . . . . . . . . . 13
⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | 
| 50 | 1, 49 | syl 17 | . . . . . . . . . . . 12
⊢ (𝜑 → 𝑊 ∈ Grp) | 
| 51 | 13, 21, 15, 45 | grprinv 19009 | . . . . . . . . . . . 12
⊢ ((𝑊 ∈ Grp ∧ 𝑌 ∈ 𝑉) → (𝑌 +
((invg‘𝑊)‘𝑌)) = (0g‘𝑊)) | 
| 52 | 50, 12, 51 | syl2anc 584 | . . . . . . . . . . 11
⊢ (𝜑 → (𝑌 +
((invg‘𝑊)‘𝑌)) = (0g‘𝑊)) | 
| 53 | 48, 52 | eqtrd 2776 | . . . . . . . . . 10
⊢ (𝜑 → (𝑌 +
(((invg‘𝐹)‘(1r‘𝐹)) · 𝑌)) = (0g‘𝑊)) | 
| 54 |  | lspsolv.s | . . . . . . . . . . . . 13
⊢ 𝑆 = (LSubSp‘𝑊) | 
| 55 | 13, 54, 25 | lspcl 20975 | . . . . . . . . . . . 12
⊢ ((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑉) → (𝑁‘𝐴) ∈ 𝑆) | 
| 56 | 1, 5, 55 | syl2anc 584 | . . . . . . . . . . 11
⊢ (𝜑 → (𝑁‘𝐴) ∈ 𝑆) | 
| 57 | 15, 54 | lss0cl 20946 | . . . . . . . . . . 11
⊢ ((𝑊 ∈ LMod ∧ (𝑁‘𝐴) ∈ 𝑆) → (0g‘𝑊) ∈ (𝑁‘𝐴)) | 
| 58 | 1, 56, 57 | syl2anc 584 | . . . . . . . . . 10
⊢ (𝜑 → (0g‘𝑊) ∈ (𝑁‘𝐴)) | 
| 59 | 53, 58 | eqeltrd 2840 | . . . . . . . . 9
⊢ (𝜑 → (𝑌 +
(((invg‘𝐹)‘(1r‘𝐹)) · 𝑌)) ∈ (𝑁‘𝐴)) | 
| 60 |  | oveq1 7439 | . . . . . . . . . . . 12
⊢ (𝑟 = ((invg‘𝐹)‘(1r‘𝐹)) → (𝑟 · 𝑌) = (((invg‘𝐹)‘(1r‘𝐹)) · 𝑌)) | 
| 61 | 60 | oveq2d 7448 | . . . . . . . . . . 11
⊢ (𝑟 = ((invg‘𝐹)‘(1r‘𝐹)) → (𝑌 + (𝑟 · 𝑌)) = (𝑌 +
(((invg‘𝐹)‘(1r‘𝐹)) · 𝑌))) | 
| 62 | 61 | eleq1d 2825 | . . . . . . . . . 10
⊢ (𝑟 = ((invg‘𝐹)‘(1r‘𝐹)) → ((𝑌 + (𝑟 · 𝑌)) ∈ (𝑁‘𝐴) ↔ (𝑌 +
(((invg‘𝐹)‘(1r‘𝐹)) · 𝑌)) ∈ (𝑁‘𝐴))) | 
| 63 | 62 | rspcev 3621 | . . . . . . . . 9
⊢
((((invg‘𝐹)‘(1r‘𝐹)) ∈ 𝐵 ∧ (𝑌 +
(((invg‘𝐹)‘(1r‘𝐹)) · 𝑌)) ∈ (𝑁‘𝐴)) → ∃𝑟 ∈ 𝐵 (𝑌 + (𝑟 · 𝑌)) ∈ (𝑁‘𝐴)) | 
| 64 | 44, 59, 63 | syl2anc 584 | . . . . . . . 8
⊢ (𝜑 → ∃𝑟 ∈ 𝐵 (𝑌 + (𝑟 · 𝑌)) ∈ (𝑁‘𝐴)) | 
| 65 |  | oveq1 7439 | . . . . . . . . . . 11
⊢ (𝑧 = 𝑌 → (𝑧 + (𝑟 · 𝑌)) = (𝑌 + (𝑟 · 𝑌))) | 
| 66 | 65 | eleq1d 2825 | . . . . . . . . . 10
⊢ (𝑧 = 𝑌 → ((𝑧 + (𝑟 · 𝑌)) ∈ (𝑁‘𝐴) ↔ (𝑌 + (𝑟 · 𝑌)) ∈ (𝑁‘𝐴))) | 
| 67 | 66 | rexbidv 3178 | . . . . . . . . 9
⊢ (𝑧 = 𝑌 → (∃𝑟 ∈ 𝐵 (𝑧 + (𝑟 · 𝑌)) ∈ (𝑁‘𝐴) ↔ ∃𝑟 ∈ 𝐵 (𝑌 + (𝑟 · 𝑌)) ∈ (𝑁‘𝐴))) | 
| 68 | 67, 2 | elrab2 3694 | . . . . . . . 8
⊢ (𝑌 ∈ 𝑄 ↔ (𝑌 ∈ 𝑉 ∧ ∃𝑟 ∈ 𝐵 (𝑌 + (𝑟 · 𝑌)) ∈ (𝑁‘𝐴))) | 
| 69 | 12, 64, 68 | sylanbrc 583 | . . . . . . 7
⊢ (𝜑 → 𝑌 ∈ 𝑄) | 
| 70 | 69 | snssd 4808 | . . . . . 6
⊢ (𝜑 → {𝑌} ⊆ 𝑄) | 
| 71 | 36, 70 | unssd 4191 | . . . . 5
⊢ (𝜑 → (𝐴 ∪ {𝑌}) ⊆ 𝑄) | 
| 72 | 13, 25 | lspss 20983 | . . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝑄 ⊆ 𝑉 ∧ (𝐴 ∪ {𝑌}) ⊆ 𝑄) → (𝑁‘(𝐴 ∪ {𝑌})) ⊆ (𝑁‘𝑄)) | 
| 73 | 1, 4, 71, 72 | syl3anc 1372 | . . . 4
⊢ (𝜑 → (𝑁‘(𝐴 ∪ {𝑌})) ⊆ (𝑁‘𝑄)) | 
| 74 | 7 | a1i 11 | . . . . . 6
⊢ (𝜑 → 𝐹 = (Scalar‘𝑊)) | 
| 75 | 8 | a1i 11 | . . . . . 6
⊢ (𝜑 → 𝐵 = (Base‘𝐹)) | 
| 76 | 13 | a1i 11 | . . . . . 6
⊢ (𝜑 → 𝑉 = (Base‘𝑊)) | 
| 77 | 21 | a1i 11 | . . . . . 6
⊢ (𝜑 → + =
(+g‘𝑊)) | 
| 78 | 14 | a1i 11 | . . . . . 6
⊢ (𝜑 → · = (
·𝑠 ‘𝑊)) | 
| 79 | 54 | a1i 11 | . . . . . 6
⊢ (𝜑 → 𝑆 = (LSubSp‘𝑊)) | 
| 80 | 69 | ne0d 4341 | . . . . . 6
⊢ (𝜑 → 𝑄 ≠ ∅) | 
| 81 |  | oveq1 7439 | . . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝑥 → (𝑧 + (𝑟 · 𝑌)) = (𝑥 + (𝑟 · 𝑌))) | 
| 82 | 81 | eleq1d 2825 | . . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑥 → ((𝑧 + (𝑟 · 𝑌)) ∈ (𝑁‘𝐴) ↔ (𝑥 + (𝑟 · 𝑌)) ∈ (𝑁‘𝐴))) | 
| 83 | 82 | rexbidv 3178 | . . . . . . . . . . . . 13
⊢ (𝑧 = 𝑥 → (∃𝑟 ∈ 𝐵 (𝑧 + (𝑟 · 𝑌)) ∈ (𝑁‘𝐴) ↔ ∃𝑟 ∈ 𝐵 (𝑥 + (𝑟 · 𝑌)) ∈ (𝑁‘𝐴))) | 
| 84 |  | oveq1 7439 | . . . . . . . . . . . . . . . 16
⊢ (𝑟 = 𝑠 → (𝑟 · 𝑌) = (𝑠 · 𝑌)) | 
| 85 | 84 | oveq2d 7448 | . . . . . . . . . . . . . . 15
⊢ (𝑟 = 𝑠 → (𝑥 + (𝑟 · 𝑌)) = (𝑥 + (𝑠 · 𝑌))) | 
| 86 | 85 | eleq1d 2825 | . . . . . . . . . . . . . 14
⊢ (𝑟 = 𝑠 → ((𝑥 + (𝑟 · 𝑌)) ∈ (𝑁‘𝐴) ↔ (𝑥 + (𝑠 · 𝑌)) ∈ (𝑁‘𝐴))) | 
| 87 | 86 | cbvrexvw 3237 | . . . . . . . . . . . . 13
⊢
(∃𝑟 ∈
𝐵 (𝑥 + (𝑟 · 𝑌)) ∈ (𝑁‘𝐴) ↔ ∃𝑠 ∈ 𝐵 (𝑥 + (𝑠 · 𝑌)) ∈ (𝑁‘𝐴)) | 
| 88 | 83, 87 | bitrdi 287 | . . . . . . . . . . . 12
⊢ (𝑧 = 𝑥 → (∃𝑟 ∈ 𝐵 (𝑧 + (𝑟 · 𝑌)) ∈ (𝑁‘𝐴) ↔ ∃𝑠 ∈ 𝐵 (𝑥 + (𝑠 · 𝑌)) ∈ (𝑁‘𝐴))) | 
| 89 | 88, 2 | elrab2 3694 | . . . . . . . . . . 11
⊢ (𝑥 ∈ 𝑄 ↔ (𝑥 ∈ 𝑉 ∧ ∃𝑠 ∈ 𝐵 (𝑥 + (𝑠 · 𝑌)) ∈ (𝑁‘𝐴))) | 
| 90 |  | oveq1 7439 | . . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝑦 → (𝑧 + (𝑟 · 𝑌)) = (𝑦 + (𝑟 · 𝑌))) | 
| 91 | 90 | eleq1d 2825 | . . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑦 → ((𝑧 + (𝑟 · 𝑌)) ∈ (𝑁‘𝐴) ↔ (𝑦 + (𝑟 · 𝑌)) ∈ (𝑁‘𝐴))) | 
| 92 | 91 | rexbidv 3178 | . . . . . . . . . . . . 13
⊢ (𝑧 = 𝑦 → (∃𝑟 ∈ 𝐵 (𝑧 + (𝑟 · 𝑌)) ∈ (𝑁‘𝐴) ↔ ∃𝑟 ∈ 𝐵 (𝑦 + (𝑟 · 𝑌)) ∈ (𝑁‘𝐴))) | 
| 93 |  | oveq1 7439 | . . . . . . . . . . . . . . . 16
⊢ (𝑟 = 𝑡 → (𝑟 · 𝑌) = (𝑡 · 𝑌)) | 
| 94 | 93 | oveq2d 7448 | . . . . . . . . . . . . . . 15
⊢ (𝑟 = 𝑡 → (𝑦 + (𝑟 · 𝑌)) = (𝑦 + (𝑡 · 𝑌))) | 
| 95 | 94 | eleq1d 2825 | . . . . . . . . . . . . . 14
⊢ (𝑟 = 𝑡 → ((𝑦 + (𝑟 · 𝑌)) ∈ (𝑁‘𝐴) ↔ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁‘𝐴))) | 
| 96 | 95 | cbvrexvw 3237 | . . . . . . . . . . . . 13
⊢
(∃𝑟 ∈
𝐵 (𝑦 + (𝑟 · 𝑌)) ∈ (𝑁‘𝐴) ↔ ∃𝑡 ∈ 𝐵 (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁‘𝐴)) | 
| 97 | 92, 96 | bitrdi 287 | . . . . . . . . . . . 12
⊢ (𝑧 = 𝑦 → (∃𝑟 ∈ 𝐵 (𝑧 + (𝑟 · 𝑌)) ∈ (𝑁‘𝐴) ↔ ∃𝑡 ∈ 𝐵 (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁‘𝐴))) | 
| 98 | 97, 2 | elrab2 3694 | . . . . . . . . . . 11
⊢ (𝑦 ∈ 𝑄 ↔ (𝑦 ∈ 𝑉 ∧ ∃𝑡 ∈ 𝐵 (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁‘𝐴))) | 
| 99 | 89, 98 | anbi12i 628 | . . . . . . . . . 10
⊢ ((𝑥 ∈ 𝑄 ∧ 𝑦 ∈ 𝑄) ↔ ((𝑥 ∈ 𝑉 ∧ ∃𝑠 ∈ 𝐵 (𝑥 + (𝑠 · 𝑌)) ∈ (𝑁‘𝐴)) ∧ (𝑦 ∈ 𝑉 ∧ ∃𝑡 ∈ 𝐵 (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁‘𝐴)))) | 
| 100 |  | an4 656 | . . . . . . . . . 10
⊢ (((𝑥 ∈ 𝑉 ∧ ∃𝑠 ∈ 𝐵 (𝑥 + (𝑠 · 𝑌)) ∈ (𝑁‘𝐴)) ∧ (𝑦 ∈ 𝑉 ∧ ∃𝑡 ∈ 𝐵 (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁‘𝐴))) ↔ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ (∃𝑠 ∈ 𝐵 (𝑥 + (𝑠 · 𝑌)) ∈ (𝑁‘𝐴) ∧ ∃𝑡 ∈ 𝐵 (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁‘𝐴)))) | 
| 101 | 99, 100 | bitri 275 | . . . . . . . . 9
⊢ ((𝑥 ∈ 𝑄 ∧ 𝑦 ∈ 𝑄) ↔ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ (∃𝑠 ∈ 𝐵 (𝑥 + (𝑠 · 𝑌)) ∈ (𝑁‘𝐴) ∧ ∃𝑡 ∈ 𝐵 (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁‘𝐴)))) | 
| 102 |  | reeanv 3228 | . . . . . . . . . . 11
⊢
(∃𝑠 ∈
𝐵 ∃𝑡 ∈ 𝐵 ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁‘𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁‘𝐴)) ↔ (∃𝑠 ∈ 𝐵 (𝑥 + (𝑠 · 𝑌)) ∈ (𝑁‘𝐴) ∧ ∃𝑡 ∈ 𝐵 (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁‘𝐴))) | 
| 103 |  | simp1ll 1236 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) ∧ (𝑠 ∈ 𝐵 ∧ 𝑡 ∈ 𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁‘𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁‘𝐴))) → 𝜑) | 
| 104 | 103, 1 | syl 17 | . . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) ∧ (𝑠 ∈ 𝐵 ∧ 𝑡 ∈ 𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁‘𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁‘𝐴))) → 𝑊 ∈ LMod) | 
| 105 |  | simp1lr 1237 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) ∧ (𝑠 ∈ 𝐵 ∧ 𝑡 ∈ 𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁‘𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁‘𝐴))) → 𝑎 ∈ 𝐵) | 
| 106 |  | simp1rl 1238 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) ∧ (𝑠 ∈ 𝐵 ∧ 𝑡 ∈ 𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁‘𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁‘𝐴))) → 𝑥 ∈ 𝑉) | 
| 107 | 13, 7, 14, 8 | lmodvscl 20877 | . . . . . . . . . . . . . . . 16
⊢ ((𝑊 ∈ LMod ∧ 𝑎 ∈ 𝐵 ∧ 𝑥 ∈ 𝑉) → (𝑎 · 𝑥) ∈ 𝑉) | 
| 108 | 104, 105,
106, 107 | syl3anc 1372 | . . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) ∧ (𝑠 ∈ 𝐵 ∧ 𝑡 ∈ 𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁‘𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁‘𝐴))) → (𝑎 · 𝑥) ∈ 𝑉) | 
| 109 |  | simp1rr 1239 | . . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) ∧ (𝑠 ∈ 𝐵 ∧ 𝑡 ∈ 𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁‘𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁‘𝐴))) → 𝑦 ∈ 𝑉) | 
| 110 | 13, 21 | lmodvacl 20874 | . . . . . . . . . . . . . . 15
⊢ ((𝑊 ∈ LMod ∧ (𝑎 · 𝑥) ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → ((𝑎 · 𝑥) + 𝑦) ∈ 𝑉) | 
| 111 | 104, 108,
109, 110 | syl3anc 1372 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) ∧ (𝑠 ∈ 𝐵 ∧ 𝑡 ∈ 𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁‘𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁‘𝐴))) → ((𝑎 · 𝑥) + 𝑦) ∈ 𝑉) | 
| 112 |  | simp2l 1199 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) ∧ (𝑠 ∈ 𝐵 ∧ 𝑡 ∈ 𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁‘𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁‘𝐴))) → 𝑠 ∈ 𝐵) | 
| 113 |  | eqid 2736 | . . . . . . . . . . . . . . . . . 18
⊢
(.r‘𝐹) = (.r‘𝐹) | 
| 114 | 7, 8, 113 | lmodmcl 20872 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑊 ∈ LMod ∧ 𝑎 ∈ 𝐵 ∧ 𝑠 ∈ 𝐵) → (𝑎(.r‘𝐹)𝑠) ∈ 𝐵) | 
| 115 | 104, 105,
112, 114 | syl3anc 1372 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) ∧ (𝑠 ∈ 𝐵 ∧ 𝑡 ∈ 𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁‘𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁‘𝐴))) → (𝑎(.r‘𝐹)𝑠) ∈ 𝐵) | 
| 116 |  | simp2r 1200 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) ∧ (𝑠 ∈ 𝐵 ∧ 𝑡 ∈ 𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁‘𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁‘𝐴))) → 𝑡 ∈ 𝐵) | 
| 117 |  | eqid 2736 | . . . . . . . . . . . . . . . . 17
⊢
(+g‘𝐹) = (+g‘𝐹) | 
| 118 | 7, 8, 117 | lmodacl 20871 | . . . . . . . . . . . . . . . 16
⊢ ((𝑊 ∈ LMod ∧ (𝑎(.r‘𝐹)𝑠) ∈ 𝐵 ∧ 𝑡 ∈ 𝐵) → ((𝑎(.r‘𝐹)𝑠)(+g‘𝐹)𝑡) ∈ 𝐵) | 
| 119 | 104, 115,
116, 118 | syl3anc 1372 | . . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) ∧ (𝑠 ∈ 𝐵 ∧ 𝑡 ∈ 𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁‘𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁‘𝐴))) → ((𝑎(.r‘𝐹)𝑠)(+g‘𝐹)𝑡) ∈ 𝐵) | 
| 120 | 103, 12 | syl 17 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) ∧ (𝑠 ∈ 𝐵 ∧ 𝑡 ∈ 𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁‘𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁‘𝐴))) → 𝑌 ∈ 𝑉) | 
| 121 | 13, 7, 14, 8 | lmodvscl 20877 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑊 ∈ LMod ∧ 𝑠 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) → (𝑠 · 𝑌) ∈ 𝑉) | 
| 122 | 104, 112,
120, 121 | syl3anc 1372 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) ∧ (𝑠 ∈ 𝐵 ∧ 𝑡 ∈ 𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁‘𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁‘𝐴))) → (𝑠 · 𝑌) ∈ 𝑉) | 
| 123 | 13, 7, 14, 8 | lmodvscl 20877 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑊 ∈ LMod ∧ 𝑎 ∈ 𝐵 ∧ (𝑠 · 𝑌) ∈ 𝑉) → (𝑎 · (𝑠 · 𝑌)) ∈ 𝑉) | 
| 124 | 104, 105,
122, 123 | syl3anc 1372 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) ∧ (𝑠 ∈ 𝐵 ∧ 𝑡 ∈ 𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁‘𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁‘𝐴))) → (𝑎 · (𝑠 · 𝑌)) ∈ 𝑉) | 
| 125 | 13, 7, 14, 8 | lmodvscl 20877 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑊 ∈ LMod ∧ 𝑡 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) → (𝑡 · 𝑌) ∈ 𝑉) | 
| 126 | 104, 116,
120, 125 | syl3anc 1372 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) ∧ (𝑠 ∈ 𝐵 ∧ 𝑡 ∈ 𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁‘𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁‘𝐴))) → (𝑡 · 𝑌) ∈ 𝑉) | 
| 127 | 13, 21 | lmod4 20911 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑊 ∈ LMod ∧ ((𝑎 · 𝑥) ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ ((𝑎 · (𝑠 · 𝑌)) ∈ 𝑉 ∧ (𝑡 · 𝑌) ∈ 𝑉)) → (((𝑎 · 𝑥) + 𝑦) + ((𝑎 · (𝑠 · 𝑌)) + (𝑡 · 𝑌))) = (((𝑎 · 𝑥) + (𝑎 · (𝑠 · 𝑌))) + (𝑦 + (𝑡 · 𝑌)))) | 
| 128 | 104, 108,
109, 124, 126, 127 | syl122anc 1380 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) ∧ (𝑠 ∈ 𝐵 ∧ 𝑡 ∈ 𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁‘𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁‘𝐴))) → (((𝑎 · 𝑥) + 𝑦) + ((𝑎 · (𝑠 · 𝑌)) + (𝑡 · 𝑌))) = (((𝑎 · 𝑥) + (𝑎 · (𝑠 · 𝑌))) + (𝑦 + (𝑡 · 𝑌)))) | 
| 129 | 13, 21, 7, 14, 8, 117 | lmodvsdir 20885 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑊 ∈ LMod ∧ ((𝑎(.r‘𝐹)𝑠) ∈ 𝐵 ∧ 𝑡 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉)) → (((𝑎(.r‘𝐹)𝑠)(+g‘𝐹)𝑡) · 𝑌) = (((𝑎(.r‘𝐹)𝑠) · 𝑌) + (𝑡 · 𝑌))) | 
| 130 | 104, 115,
116, 120, 129 | syl13anc 1373 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) ∧ (𝑠 ∈ 𝐵 ∧ 𝑡 ∈ 𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁‘𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁‘𝐴))) → (((𝑎(.r‘𝐹)𝑠)(+g‘𝐹)𝑡) · 𝑌) = (((𝑎(.r‘𝐹)𝑠) · 𝑌) + (𝑡 · 𝑌))) | 
| 131 | 13, 7, 14, 8, 113 | lmodvsass 20886 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑊 ∈ LMod ∧ (𝑎 ∈ 𝐵 ∧ 𝑠 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉)) → ((𝑎(.r‘𝐹)𝑠) · 𝑌) = (𝑎 · (𝑠 · 𝑌))) | 
| 132 | 104, 105,
112, 120, 131 | syl13anc 1373 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) ∧ (𝑠 ∈ 𝐵 ∧ 𝑡 ∈ 𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁‘𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁‘𝐴))) → ((𝑎(.r‘𝐹)𝑠) · 𝑌) = (𝑎 · (𝑠 · 𝑌))) | 
| 133 | 132 | oveq1d 7447 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) ∧ (𝑠 ∈ 𝐵 ∧ 𝑡 ∈ 𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁‘𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁‘𝐴))) → (((𝑎(.r‘𝐹)𝑠) · 𝑌) + (𝑡 · 𝑌)) = ((𝑎 · (𝑠 · 𝑌)) + (𝑡 · 𝑌))) | 
| 134 | 130, 133 | eqtrd 2776 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) ∧ (𝑠 ∈ 𝐵 ∧ 𝑡 ∈ 𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁‘𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁‘𝐴))) → (((𝑎(.r‘𝐹)𝑠)(+g‘𝐹)𝑡) · 𝑌) = ((𝑎 · (𝑠 · 𝑌)) + (𝑡 · 𝑌))) | 
| 135 | 134 | oveq2d 7448 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) ∧ (𝑠 ∈ 𝐵 ∧ 𝑡 ∈ 𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁‘𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁‘𝐴))) → (((𝑎 · 𝑥) + 𝑦) + (((𝑎(.r‘𝐹)𝑠)(+g‘𝐹)𝑡) · 𝑌)) = (((𝑎 · 𝑥) + 𝑦) + ((𝑎 · (𝑠 · 𝑌)) + (𝑡 · 𝑌)))) | 
| 136 | 13, 21, 7, 14, 8 | lmodvsdi 20884 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑊 ∈ LMod ∧ (𝑎 ∈ 𝐵 ∧ 𝑥 ∈ 𝑉 ∧ (𝑠 · 𝑌) ∈ 𝑉)) → (𝑎 · (𝑥 + (𝑠 · 𝑌))) = ((𝑎 · 𝑥) + (𝑎 · (𝑠 · 𝑌)))) | 
| 137 | 104, 105,
106, 122, 136 | syl13anc 1373 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) ∧ (𝑠 ∈ 𝐵 ∧ 𝑡 ∈ 𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁‘𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁‘𝐴))) → (𝑎 · (𝑥 + (𝑠 · 𝑌))) = ((𝑎 · 𝑥) + (𝑎 · (𝑠 · 𝑌)))) | 
| 138 | 137 | oveq1d 7447 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) ∧ (𝑠 ∈ 𝐵 ∧ 𝑡 ∈ 𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁‘𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁‘𝐴))) → ((𝑎 · (𝑥 + (𝑠 · 𝑌))) + (𝑦 + (𝑡 · 𝑌))) = (((𝑎 · 𝑥) + (𝑎 · (𝑠 · 𝑌))) + (𝑦 + (𝑡 · 𝑌)))) | 
| 139 | 128, 135,
138 | 3eqtr4d 2786 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) ∧ (𝑠 ∈ 𝐵 ∧ 𝑡 ∈ 𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁‘𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁‘𝐴))) → (((𝑎 · 𝑥) + 𝑦) + (((𝑎(.r‘𝐹)𝑠)(+g‘𝐹)𝑡) · 𝑌)) = ((𝑎 · (𝑥 + (𝑠 · 𝑌))) + (𝑦 + (𝑡 · 𝑌)))) | 
| 140 | 103, 56 | syl 17 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) ∧ (𝑠 ∈ 𝐵 ∧ 𝑡 ∈ 𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁‘𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁‘𝐴))) → (𝑁‘𝐴) ∈ 𝑆) | 
| 141 |  | simp3l 1201 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) ∧ (𝑠 ∈ 𝐵 ∧ 𝑡 ∈ 𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁‘𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁‘𝐴))) → (𝑥 + (𝑠 · 𝑌)) ∈ (𝑁‘𝐴)) | 
| 142 |  | simp3r 1202 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) ∧ (𝑠 ∈ 𝐵 ∧ 𝑡 ∈ 𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁‘𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁‘𝐴))) → (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁‘𝐴)) | 
| 143 | 7, 8, 21, 14, 54 | lsscl 20941 | . . . . . . . . . . . . . . . . 17
⊢ (((𝑁‘𝐴) ∈ 𝑆 ∧ (𝑎 ∈ 𝐵 ∧ (𝑥 + (𝑠 · 𝑌)) ∈ (𝑁‘𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁‘𝐴))) → ((𝑎 · (𝑥 + (𝑠 · 𝑌))) + (𝑦 + (𝑡 · 𝑌))) ∈ (𝑁‘𝐴)) | 
| 144 | 140, 105,
141, 142, 143 | syl13anc 1373 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) ∧ (𝑠 ∈ 𝐵 ∧ 𝑡 ∈ 𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁‘𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁‘𝐴))) → ((𝑎 · (𝑥 + (𝑠 · 𝑌))) + (𝑦 + (𝑡 · 𝑌))) ∈ (𝑁‘𝐴)) | 
| 145 | 139, 144 | eqeltrd 2840 | . . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) ∧ (𝑠 ∈ 𝐵 ∧ 𝑡 ∈ 𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁‘𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁‘𝐴))) → (((𝑎 · 𝑥) + 𝑦) + (((𝑎(.r‘𝐹)𝑠)(+g‘𝐹)𝑡) · 𝑌)) ∈ (𝑁‘𝐴)) | 
| 146 |  | oveq1 7439 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑟 = ((𝑎(.r‘𝐹)𝑠)(+g‘𝐹)𝑡) → (𝑟 · 𝑌) = (((𝑎(.r‘𝐹)𝑠)(+g‘𝐹)𝑡) · 𝑌)) | 
| 147 | 146 | oveq2d 7448 | . . . . . . . . . . . . . . . . 17
⊢ (𝑟 = ((𝑎(.r‘𝐹)𝑠)(+g‘𝐹)𝑡) → (((𝑎 · 𝑥) + 𝑦) + (𝑟 · 𝑌)) = (((𝑎 · 𝑥) + 𝑦) + (((𝑎(.r‘𝐹)𝑠)(+g‘𝐹)𝑡) · 𝑌))) | 
| 148 | 147 | eleq1d 2825 | . . . . . . . . . . . . . . . 16
⊢ (𝑟 = ((𝑎(.r‘𝐹)𝑠)(+g‘𝐹)𝑡) → ((((𝑎 · 𝑥) + 𝑦) + (𝑟 · 𝑌)) ∈ (𝑁‘𝐴) ↔ (((𝑎 · 𝑥) + 𝑦) + (((𝑎(.r‘𝐹)𝑠)(+g‘𝐹)𝑡) · 𝑌)) ∈ (𝑁‘𝐴))) | 
| 149 | 148 | rspcev 3621 | . . . . . . . . . . . . . . 15
⊢ ((((𝑎(.r‘𝐹)𝑠)(+g‘𝐹)𝑡) ∈ 𝐵 ∧ (((𝑎 · 𝑥) + 𝑦) + (((𝑎(.r‘𝐹)𝑠)(+g‘𝐹)𝑡) · 𝑌)) ∈ (𝑁‘𝐴)) → ∃𝑟 ∈ 𝐵 (((𝑎 · 𝑥) + 𝑦) + (𝑟 · 𝑌)) ∈ (𝑁‘𝐴)) | 
| 150 | 119, 145,
149 | syl2anc 584 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) ∧ (𝑠 ∈ 𝐵 ∧ 𝑡 ∈ 𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁‘𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁‘𝐴))) → ∃𝑟 ∈ 𝐵 (((𝑎 · 𝑥) + 𝑦) + (𝑟 · 𝑌)) ∈ (𝑁‘𝐴)) | 
| 151 |  | oveq1 7439 | . . . . . . . . . . . . . . . . 17
⊢ (𝑧 = ((𝑎 · 𝑥) + 𝑦) → (𝑧 + (𝑟 · 𝑌)) = (((𝑎 · 𝑥) + 𝑦) + (𝑟 · 𝑌))) | 
| 152 | 151 | eleq1d 2825 | . . . . . . . . . . . . . . . 16
⊢ (𝑧 = ((𝑎 · 𝑥) + 𝑦) → ((𝑧 + (𝑟 · 𝑌)) ∈ (𝑁‘𝐴) ↔ (((𝑎 · 𝑥) + 𝑦) + (𝑟 · 𝑌)) ∈ (𝑁‘𝐴))) | 
| 153 | 152 | rexbidv 3178 | . . . . . . . . . . . . . . 15
⊢ (𝑧 = ((𝑎 · 𝑥) + 𝑦) → (∃𝑟 ∈ 𝐵 (𝑧 + (𝑟 · 𝑌)) ∈ (𝑁‘𝐴) ↔ ∃𝑟 ∈ 𝐵 (((𝑎 · 𝑥) + 𝑦) + (𝑟 · 𝑌)) ∈ (𝑁‘𝐴))) | 
| 154 | 153, 2 | elrab2 3694 | . . . . . . . . . . . . . 14
⊢ (((𝑎 · 𝑥) + 𝑦) ∈ 𝑄 ↔ (((𝑎 · 𝑥) + 𝑦) ∈ 𝑉 ∧ ∃𝑟 ∈ 𝐵 (((𝑎 · 𝑥) + 𝑦) + (𝑟 · 𝑌)) ∈ (𝑁‘𝐴))) | 
| 155 | 111, 150,
154 | sylanbrc 583 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) ∧ (𝑠 ∈ 𝐵 ∧ 𝑡 ∈ 𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁‘𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁‘𝐴))) → ((𝑎 · 𝑥) + 𝑦) ∈ 𝑄) | 
| 156 | 155 | 3exp 1119 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → ((𝑠 ∈ 𝐵 ∧ 𝑡 ∈ 𝐵) → (((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁‘𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁‘𝐴)) → ((𝑎 · 𝑥) + 𝑦) ∈ 𝑄))) | 
| 157 | 156 | rexlimdvv 3211 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (∃𝑠 ∈ 𝐵 ∃𝑡 ∈ 𝐵 ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁‘𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁‘𝐴)) → ((𝑎 · 𝑥) + 𝑦) ∈ 𝑄)) | 
| 158 | 102, 157 | biimtrrid 243 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → ((∃𝑠 ∈ 𝐵 (𝑥 + (𝑠 · 𝑌)) ∈ (𝑁‘𝐴) ∧ ∃𝑡 ∈ 𝐵 (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁‘𝐴)) → ((𝑎 · 𝑥) + 𝑦) ∈ 𝑄)) | 
| 159 | 158 | expimpd 453 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ (∃𝑠 ∈ 𝐵 (𝑥 + (𝑠 · 𝑌)) ∈ (𝑁‘𝐴) ∧ ∃𝑡 ∈ 𝐵 (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁‘𝐴))) → ((𝑎 · 𝑥) + 𝑦) ∈ 𝑄)) | 
| 160 | 101, 159 | biimtrid 242 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((𝑥 ∈ 𝑄 ∧ 𝑦 ∈ 𝑄) → ((𝑎 · 𝑥) + 𝑦) ∈ 𝑄)) | 
| 161 | 160 | exp4b 430 | . . . . . . 7
⊢ (𝜑 → (𝑎 ∈ 𝐵 → (𝑥 ∈ 𝑄 → (𝑦 ∈ 𝑄 → ((𝑎 · 𝑥) + 𝑦) ∈ 𝑄)))) | 
| 162 | 161 | 3imp2 1349 | . . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑥 ∈ 𝑄 ∧ 𝑦 ∈ 𝑄)) → ((𝑎 · 𝑥) + 𝑦) ∈ 𝑄) | 
| 163 | 74, 75, 76, 77, 78, 79, 4, 80, 162 | islssd 20934 | . . . . 5
⊢ (𝜑 → 𝑄 ∈ 𝑆) | 
| 164 | 54, 25 | lspid 20981 | . . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝑄 ∈ 𝑆) → (𝑁‘𝑄) = 𝑄) | 
| 165 | 1, 163, 164 | syl2anc 584 | . . . 4
⊢ (𝜑 → (𝑁‘𝑄) = 𝑄) | 
| 166 | 73, 165 | sseqtrd 4019 | . . 3
⊢ (𝜑 → (𝑁‘(𝐴 ∪ {𝑌})) ⊆ 𝑄) | 
| 167 |  | lspsolv.x | . . 3
⊢ (𝜑 → 𝑋 ∈ (𝑁‘(𝐴 ∪ {𝑌}))) | 
| 168 | 166, 167 | sseldd 3983 | . 2
⊢ (𝜑 → 𝑋 ∈ 𝑄) | 
| 169 |  | oveq1 7439 | . . . . . 6
⊢ (𝑧 = 𝑋 → (𝑧 + (𝑟 · 𝑌)) = (𝑋 + (𝑟 · 𝑌))) | 
| 170 | 169 | eleq1d 2825 | . . . . 5
⊢ (𝑧 = 𝑋 → ((𝑧 + (𝑟 · 𝑌)) ∈ (𝑁‘𝐴) ↔ (𝑋 + (𝑟 · 𝑌)) ∈ (𝑁‘𝐴))) | 
| 171 | 170 | rexbidv 3178 | . . . 4
⊢ (𝑧 = 𝑋 → (∃𝑟 ∈ 𝐵 (𝑧 + (𝑟 · 𝑌)) ∈ (𝑁‘𝐴) ↔ ∃𝑟 ∈ 𝐵 (𝑋 + (𝑟 · 𝑌)) ∈ (𝑁‘𝐴))) | 
| 172 | 171, 2 | elrab2 3694 | . . 3
⊢ (𝑋 ∈ 𝑄 ↔ (𝑋 ∈ 𝑉 ∧ ∃𝑟 ∈ 𝐵 (𝑋 + (𝑟 · 𝑌)) ∈ (𝑁‘𝐴))) | 
| 173 | 172 | simprbi 496 | . 2
⊢ (𝑋 ∈ 𝑄 → ∃𝑟 ∈ 𝐵 (𝑋 + (𝑟 · 𝑌)) ∈ (𝑁‘𝐴)) | 
| 174 | 168, 173 | syl 17 | 1
⊢ (𝜑 → ∃𝑟 ∈ 𝐵 (𝑋 + (𝑟 · 𝑌)) ∈ (𝑁‘𝐴)) |