Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpat3 Structured version   Visualization version   GIF version

Theorem lhpat3 36624
Description: There is only one atom under both 𝑃 𝑄 and co-atom 𝑊. (Contributed by NM, 21-Nov-2012.)
Hypotheses
Ref Expression
lhpat.l = (le‘𝐾)
lhpat.j = (join‘𝐾)
lhpat.m = (meet‘𝐾)
lhpat.a 𝐴 = (Atoms‘𝐾)
lhpat.h 𝐻 = (LHyp‘𝐾)
lhpat2.r 𝑅 = ((𝑃 𝑄) 𝑊)
Assertion
Ref Expression
lhpat3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) → (¬ 𝑆 𝑊𝑆𝑅))

Proof of Theorem lhpat3
StepHypRef Expression
1 simpl3r 1209 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) ∧ 𝑆 𝑊) → 𝑆 (𝑃 𝑄))
2 simpr 477 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) ∧ 𝑆 𝑊) → 𝑆 𝑊)
3 simp1ll 1216 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) → 𝐾 ∈ HL)
43hllatd 35942 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) → 𝐾 ∈ Lat)
5 simp2r 1180 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) → 𝑆𝐴)
6 eqid 2779 . . . . . . . . . . 11 (Base‘𝐾) = (Base‘𝐾)
7 lhpat.a . . . . . . . . . . 11 𝐴 = (Atoms‘𝐾)
86, 7atbase 35867 . . . . . . . . . 10 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
95, 8syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) → 𝑆 ∈ (Base‘𝐾))
10 simp1rl 1218 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) → 𝑃𝐴)
11 simp2l 1179 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) → 𝑄𝐴)
12 lhpat.j . . . . . . . . . . 11 = (join‘𝐾)
136, 12, 7hlatjcl 35945 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
143, 10, 11, 13syl3anc 1351 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) → (𝑃 𝑄) ∈ (Base‘𝐾))
15 simp1lr 1217 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) → 𝑊𝐻)
16 lhpat.h . . . . . . . . . . 11 𝐻 = (LHyp‘𝐾)
176, 16lhpbase 36576 . . . . . . . . . 10 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
1815, 17syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) → 𝑊 ∈ (Base‘𝐾))
19 lhpat.l . . . . . . . . . 10 = (le‘𝐾)
20 lhpat.m . . . . . . . . . 10 = (meet‘𝐾)
216, 19, 20latlem12 17546 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑆 (𝑃 𝑄) ∧ 𝑆 𝑊) ↔ 𝑆 ((𝑃 𝑄) 𝑊)))
224, 9, 14, 18, 21syl13anc 1352 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) → ((𝑆 (𝑃 𝑄) ∧ 𝑆 𝑊) ↔ 𝑆 ((𝑃 𝑄) 𝑊)))
2322adantr 473 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) ∧ 𝑆 𝑊) → ((𝑆 (𝑃 𝑄) ∧ 𝑆 𝑊) ↔ 𝑆 ((𝑃 𝑄) 𝑊)))
241, 2, 23mpbi2and 699 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) ∧ 𝑆 𝑊) → 𝑆 ((𝑃 𝑄) 𝑊))
25 lhpat2.r . . . . . 6 𝑅 = ((𝑃 𝑄) 𝑊)
2624, 25syl6breqr 4971 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) ∧ 𝑆 𝑊) → 𝑆 𝑅)
273adantr 473 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) ∧ 𝑆 𝑊) → 𝐾 ∈ HL)
28 hlatl 35938 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
2927, 28syl 17 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) ∧ 𝑆 𝑊) → 𝐾 ∈ AtLat)
30 simpl2r 1207 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) ∧ 𝑆 𝑊) → 𝑆𝐴)
31 simpl1l 1204 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) ∧ 𝑆 𝑊) → (𝐾 ∈ HL ∧ 𝑊𝐻))
32 simpl1r 1205 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) ∧ 𝑆 𝑊) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
33 simpl2l 1206 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) ∧ 𝑆 𝑊) → 𝑄𝐴)
34 simpl3l 1208 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) ∧ 𝑆 𝑊) → 𝑃𝑄)
3519, 12, 20, 7, 16, 25lhpat2 36623 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → 𝑅𝐴)
3631, 32, 33, 34, 35syl112anc 1354 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) ∧ 𝑆 𝑊) → 𝑅𝐴)
3719, 7atcmp 35889 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑆𝐴𝑅𝐴) → (𝑆 𝑅𝑆 = 𝑅))
3829, 30, 36, 37syl3anc 1351 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) ∧ 𝑆 𝑊) → (𝑆 𝑅𝑆 = 𝑅))
3926, 38mpbid 224 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) ∧ 𝑆 𝑊) → 𝑆 = 𝑅)
4039ex 405 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) → (𝑆 𝑊𝑆 = 𝑅))
416, 19, 20latmle2 17545 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑊) 𝑊)
424, 14, 18, 41syl3anc 1351 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) → ((𝑃 𝑄) 𝑊) 𝑊)
4325, 42syl5eqbr 4964 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) → 𝑅 𝑊)
44 breq1 4932 . . . 4 (𝑆 = 𝑅 → (𝑆 𝑊𝑅 𝑊))
4543, 44syl5ibrcom 239 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) → (𝑆 = 𝑅𝑆 𝑊))
4640, 45impbid 204 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) → (𝑆 𝑊𝑆 = 𝑅))
4746necon3bbid 3005 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) → (¬ 𝑆 𝑊𝑆𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2050  wne 2968   class class class wbr 4929  cfv 6188  (class class class)co 6976  Basecbs 16339  lecple 16428  joincjn 17412  meetcmee 17413  Latclat 17513  Atomscatm 35841  AtLatcal 35842  HLchlt 35928  LHypclh 36562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2751  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ne 2969  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3418  df-sbc 3683  df-csb 3788  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-nul 4180  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-op 4448  df-uni 4713  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-id 5312  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-riota 6937  df-ov 6979  df-oprab 6980  df-proset 17396  df-poset 17414  df-plt 17426  df-lub 17442  df-glb 17443  df-join 17444  df-meet 17445  df-p0 17507  df-p1 17508  df-lat 17514  df-clat 17576  df-oposet 35754  df-ol 35756  df-oml 35757  df-covers 35844  df-ats 35845  df-atl 35876  df-cvlat 35900  df-hlat 35929  df-lhyp 36566
This theorem is referenced by:  4atexlemntlpq  36646  4atexlemnclw  36648
  Copyright terms: Public domain W3C validator