Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpat3 Structured version   Visualization version   GIF version

Theorem lhpat3 37987
Description: There is only one atom under both 𝑃 𝑄 and co-atom 𝑊. (Contributed by NM, 21-Nov-2012.)
Hypotheses
Ref Expression
lhpat.l = (le‘𝐾)
lhpat.j = (join‘𝐾)
lhpat.m = (meet‘𝐾)
lhpat.a 𝐴 = (Atoms‘𝐾)
lhpat.h 𝐻 = (LHyp‘𝐾)
lhpat2.r 𝑅 = ((𝑃 𝑄) 𝑊)
Assertion
Ref Expression
lhpat3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) → (¬ 𝑆 𝑊𝑆𝑅))

Proof of Theorem lhpat3
StepHypRef Expression
1 simpl3r 1227 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) ∧ 𝑆 𝑊) → 𝑆 (𝑃 𝑄))
2 simpr 484 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) ∧ 𝑆 𝑊) → 𝑆 𝑊)
3 simp1ll 1234 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) → 𝐾 ∈ HL)
43hllatd 37305 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) → 𝐾 ∈ Lat)
5 simp2r 1198 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) → 𝑆𝐴)
6 eqid 2738 . . . . . . . . . . 11 (Base‘𝐾) = (Base‘𝐾)
7 lhpat.a . . . . . . . . . . 11 𝐴 = (Atoms‘𝐾)
86, 7atbase 37230 . . . . . . . . . 10 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
95, 8syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) → 𝑆 ∈ (Base‘𝐾))
10 simp1rl 1236 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) → 𝑃𝐴)
11 simp2l 1197 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) → 𝑄𝐴)
12 lhpat.j . . . . . . . . . . 11 = (join‘𝐾)
136, 12, 7hlatjcl 37308 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
143, 10, 11, 13syl3anc 1369 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) → (𝑃 𝑄) ∈ (Base‘𝐾))
15 simp1lr 1235 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) → 𝑊𝐻)
16 lhpat.h . . . . . . . . . . 11 𝐻 = (LHyp‘𝐾)
176, 16lhpbase 37939 . . . . . . . . . 10 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
1815, 17syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) → 𝑊 ∈ (Base‘𝐾))
19 lhpat.l . . . . . . . . . 10 = (le‘𝐾)
20 lhpat.m . . . . . . . . . 10 = (meet‘𝐾)
216, 19, 20latlem12 18099 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑆 (𝑃 𝑄) ∧ 𝑆 𝑊) ↔ 𝑆 ((𝑃 𝑄) 𝑊)))
224, 9, 14, 18, 21syl13anc 1370 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) → ((𝑆 (𝑃 𝑄) ∧ 𝑆 𝑊) ↔ 𝑆 ((𝑃 𝑄) 𝑊)))
2322adantr 480 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) ∧ 𝑆 𝑊) → ((𝑆 (𝑃 𝑄) ∧ 𝑆 𝑊) ↔ 𝑆 ((𝑃 𝑄) 𝑊)))
241, 2, 23mpbi2and 708 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) ∧ 𝑆 𝑊) → 𝑆 ((𝑃 𝑄) 𝑊))
25 lhpat2.r . . . . . 6 𝑅 = ((𝑃 𝑄) 𝑊)
2624, 25breqtrrdi 5112 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) ∧ 𝑆 𝑊) → 𝑆 𝑅)
273adantr 480 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) ∧ 𝑆 𝑊) → 𝐾 ∈ HL)
28 hlatl 37301 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
2927, 28syl 17 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) ∧ 𝑆 𝑊) → 𝐾 ∈ AtLat)
30 simpl2r 1225 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) ∧ 𝑆 𝑊) → 𝑆𝐴)
31 simpl1l 1222 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) ∧ 𝑆 𝑊) → (𝐾 ∈ HL ∧ 𝑊𝐻))
32 simpl1r 1223 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) ∧ 𝑆 𝑊) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
33 simpl2l 1224 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) ∧ 𝑆 𝑊) → 𝑄𝐴)
34 simpl3l 1226 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) ∧ 𝑆 𝑊) → 𝑃𝑄)
3519, 12, 20, 7, 16, 25lhpat2 37986 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → 𝑅𝐴)
3631, 32, 33, 34, 35syl112anc 1372 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) ∧ 𝑆 𝑊) → 𝑅𝐴)
3719, 7atcmp 37252 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑆𝐴𝑅𝐴) → (𝑆 𝑅𝑆 = 𝑅))
3829, 30, 36, 37syl3anc 1369 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) ∧ 𝑆 𝑊) → (𝑆 𝑅𝑆 = 𝑅))
3926, 38mpbid 231 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) ∧ 𝑆 𝑊) → 𝑆 = 𝑅)
4039ex 412 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) → (𝑆 𝑊𝑆 = 𝑅))
416, 19, 20latmle2 18098 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑊) 𝑊)
424, 14, 18, 41syl3anc 1369 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) → ((𝑃 𝑄) 𝑊) 𝑊)
4325, 42eqbrtrid 5105 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) → 𝑅 𝑊)
44 breq1 5073 . . . 4 (𝑆 = 𝑅 → (𝑆 𝑊𝑅 𝑊))
4543, 44syl5ibrcom 246 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) → (𝑆 = 𝑅𝑆 𝑊))
4640, 45impbid 211 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) → (𝑆 𝑊𝑆 = 𝑅))
4746necon3bbid 2980 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) → (¬ 𝑆 𝑊𝑆𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  cfv 6418  (class class class)co 7255  Basecbs 16840  lecple 16895  joincjn 17944  meetcmee 17945  Latclat 18064  Atomscatm 37204  AtLatcal 37205  HLchlt 37291  LHypclh 37925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-p1 18059  df-lat 18065  df-clat 18132  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292  df-lhyp 37929
This theorem is referenced by:  4atexlemntlpq  38009  4atexlemnclw  38011
  Copyright terms: Public domain W3C validator