Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpat3 Structured version   Visualization version   GIF version

Theorem lhpat3 40065
Description: There is only one atom under both 𝑃 𝑄 and co-atom 𝑊. (Contributed by NM, 21-Nov-2012.)
Hypotheses
Ref Expression
lhpat.l = (le‘𝐾)
lhpat.j = (join‘𝐾)
lhpat.m = (meet‘𝐾)
lhpat.a 𝐴 = (Atoms‘𝐾)
lhpat.h 𝐻 = (LHyp‘𝐾)
lhpat2.r 𝑅 = ((𝑃 𝑄) 𝑊)
Assertion
Ref Expression
lhpat3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) → (¬ 𝑆 𝑊𝑆𝑅))

Proof of Theorem lhpat3
StepHypRef Expression
1 simpl3r 1230 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) ∧ 𝑆 𝑊) → 𝑆 (𝑃 𝑄))
2 simpr 484 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) ∧ 𝑆 𝑊) → 𝑆 𝑊)
3 simp1ll 1237 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) → 𝐾 ∈ HL)
43hllatd 39382 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) → 𝐾 ∈ Lat)
5 simp2r 1201 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) → 𝑆𝐴)
6 eqid 2735 . . . . . . . . . . 11 (Base‘𝐾) = (Base‘𝐾)
7 lhpat.a . . . . . . . . . . 11 𝐴 = (Atoms‘𝐾)
86, 7atbase 39307 . . . . . . . . . 10 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
95, 8syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) → 𝑆 ∈ (Base‘𝐾))
10 simp1rl 1239 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) → 𝑃𝐴)
11 simp2l 1200 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) → 𝑄𝐴)
12 lhpat.j . . . . . . . . . . 11 = (join‘𝐾)
136, 12, 7hlatjcl 39385 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
143, 10, 11, 13syl3anc 1373 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) → (𝑃 𝑄) ∈ (Base‘𝐾))
15 simp1lr 1238 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) → 𝑊𝐻)
16 lhpat.h . . . . . . . . . . 11 𝐻 = (LHyp‘𝐾)
176, 16lhpbase 40017 . . . . . . . . . 10 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
1815, 17syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) → 𝑊 ∈ (Base‘𝐾))
19 lhpat.l . . . . . . . . . 10 = (le‘𝐾)
20 lhpat.m . . . . . . . . . 10 = (meet‘𝐾)
216, 19, 20latlem12 18476 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑆 (𝑃 𝑄) ∧ 𝑆 𝑊) ↔ 𝑆 ((𝑃 𝑄) 𝑊)))
224, 9, 14, 18, 21syl13anc 1374 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) → ((𝑆 (𝑃 𝑄) ∧ 𝑆 𝑊) ↔ 𝑆 ((𝑃 𝑄) 𝑊)))
2322adantr 480 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) ∧ 𝑆 𝑊) → ((𝑆 (𝑃 𝑄) ∧ 𝑆 𝑊) ↔ 𝑆 ((𝑃 𝑄) 𝑊)))
241, 2, 23mpbi2and 712 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) ∧ 𝑆 𝑊) → 𝑆 ((𝑃 𝑄) 𝑊))
25 lhpat2.r . . . . . 6 𝑅 = ((𝑃 𝑄) 𝑊)
2624, 25breqtrrdi 5161 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) ∧ 𝑆 𝑊) → 𝑆 𝑅)
273adantr 480 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) ∧ 𝑆 𝑊) → 𝐾 ∈ HL)
28 hlatl 39378 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
2927, 28syl 17 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) ∧ 𝑆 𝑊) → 𝐾 ∈ AtLat)
30 simpl2r 1228 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) ∧ 𝑆 𝑊) → 𝑆𝐴)
31 simpl1l 1225 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) ∧ 𝑆 𝑊) → (𝐾 ∈ HL ∧ 𝑊𝐻))
32 simpl1r 1226 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) ∧ 𝑆 𝑊) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
33 simpl2l 1227 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) ∧ 𝑆 𝑊) → 𝑄𝐴)
34 simpl3l 1229 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) ∧ 𝑆 𝑊) → 𝑃𝑄)
3519, 12, 20, 7, 16, 25lhpat2 40064 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → 𝑅𝐴)
3631, 32, 33, 34, 35syl112anc 1376 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) ∧ 𝑆 𝑊) → 𝑅𝐴)
3719, 7atcmp 39329 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑆𝐴𝑅𝐴) → (𝑆 𝑅𝑆 = 𝑅))
3829, 30, 36, 37syl3anc 1373 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) ∧ 𝑆 𝑊) → (𝑆 𝑅𝑆 = 𝑅))
3926, 38mpbid 232 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) ∧ 𝑆 𝑊) → 𝑆 = 𝑅)
4039ex 412 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) → (𝑆 𝑊𝑆 = 𝑅))
416, 19, 20latmle2 18475 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑊) 𝑊)
424, 14, 18, 41syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) → ((𝑃 𝑄) 𝑊) 𝑊)
4325, 42eqbrtrid 5154 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) → 𝑅 𝑊)
44 breq1 5122 . . . 4 (𝑆 = 𝑅 → (𝑆 𝑊𝑅 𝑊))
4543, 44syl5ibrcom 247 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) → (𝑆 = 𝑅𝑆 𝑊))
4640, 45impbid 212 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) → (𝑆 𝑊𝑆 = 𝑅))
4746necon3bbid 2969 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) → (¬ 𝑆 𝑊𝑆𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932   class class class wbr 5119  cfv 6531  (class class class)co 7405  Basecbs 17228  lecple 17278  joincjn 18323  meetcmee 18324  Latclat 18441  Atomscatm 39281  AtLatcal 39282  HLchlt 39368  LHypclh 40003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-proset 18306  df-poset 18325  df-plt 18340  df-lub 18356  df-glb 18357  df-join 18358  df-meet 18359  df-p0 18435  df-p1 18436  df-lat 18442  df-clat 18509  df-oposet 39194  df-ol 39196  df-oml 39197  df-covers 39284  df-ats 39285  df-atl 39316  df-cvlat 39340  df-hlat 39369  df-lhyp 40007
This theorem is referenced by:  4atexlemntlpq  40087  4atexlemnclw  40089
  Copyright terms: Public domain W3C validator