Proof of Theorem lhpat3
Step | Hyp | Ref
| Expression |
1 | | simpl3r 1227 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑆 ≤ 𝑊) → 𝑆 ≤ (𝑃 ∨ 𝑄)) |
2 | | simpr 484 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑆 ≤ 𝑊) → 𝑆 ≤ 𝑊) |
3 | | simp1ll 1234 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄))) → 𝐾 ∈ HL) |
4 | 3 | hllatd 37305 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄))) → 𝐾 ∈ Lat) |
5 | | simp2r 1198 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄))) → 𝑆 ∈ 𝐴) |
6 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(Base‘𝐾) =
(Base‘𝐾) |
7 | | lhpat.a |
. . . . . . . . . . 11
⊢ 𝐴 = (Atoms‘𝐾) |
8 | 6, 7 | atbase 37230 |
. . . . . . . . . 10
⊢ (𝑆 ∈ 𝐴 → 𝑆 ∈ (Base‘𝐾)) |
9 | 5, 8 | syl 17 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄))) → 𝑆 ∈ (Base‘𝐾)) |
10 | | simp1rl 1236 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄))) → 𝑃 ∈ 𝐴) |
11 | | simp2l 1197 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄))) → 𝑄 ∈ 𝐴) |
12 | | lhpat.j |
. . . . . . . . . . 11
⊢ ∨ =
(join‘𝐾) |
13 | 6, 12, 7 | hlatjcl 37308 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
14 | 3, 10, 11, 13 | syl3anc 1369 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄))) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
15 | | simp1lr 1235 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄))) → 𝑊 ∈ 𝐻) |
16 | | lhpat.h |
. . . . . . . . . . 11
⊢ 𝐻 = (LHyp‘𝐾) |
17 | 6, 16 | lhpbase 37939 |
. . . . . . . . . 10
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
18 | 15, 17 | syl 17 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄))) → 𝑊 ∈ (Base‘𝐾)) |
19 | | lhpat.l |
. . . . . . . . . 10
⊢ ≤ =
(le‘𝐾) |
20 | | lhpat.m |
. . . . . . . . . 10
⊢ ∧ =
(meet‘𝐾) |
21 | 6, 19, 20 | latlem12 18099 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ 𝑊) ↔ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∧ 𝑊))) |
22 | 4, 9, 14, 18, 21 | syl13anc 1370 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄))) → ((𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ 𝑊) ↔ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∧ 𝑊))) |
23 | 22 | adantr 480 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑆 ≤ 𝑊) → ((𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ 𝑊) ↔ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∧ 𝑊))) |
24 | 1, 2, 23 | mpbi2and 708 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑆 ≤ 𝑊) → 𝑆 ≤ ((𝑃 ∨ 𝑄) ∧ 𝑊)) |
25 | | lhpat2.r |
. . . . . 6
⊢ 𝑅 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
26 | 24, 25 | breqtrrdi 5112 |
. . . . 5
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑆 ≤ 𝑊) → 𝑆 ≤ 𝑅) |
27 | 3 | adantr 480 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑆 ≤ 𝑊) → 𝐾 ∈ HL) |
28 | | hlatl 37301 |
. . . . . . 7
⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
29 | 27, 28 | syl 17 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑆 ≤ 𝑊) → 𝐾 ∈ AtLat) |
30 | | simpl2r 1225 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑆 ≤ 𝑊) → 𝑆 ∈ 𝐴) |
31 | | simpl1l 1222 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑆 ≤ 𝑊) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
32 | | simpl1r 1223 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑆 ≤ 𝑊) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
33 | | simpl2l 1224 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑆 ≤ 𝑊) → 𝑄 ∈ 𝐴) |
34 | | simpl3l 1226 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑆 ≤ 𝑊) → 𝑃 ≠ 𝑄) |
35 | 19, 12, 20, 7, 16, 25 | lhpat2 37986 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → 𝑅 ∈ 𝐴) |
36 | 31, 32, 33, 34, 35 | syl112anc 1372 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑆 ≤ 𝑊) → 𝑅 ∈ 𝐴) |
37 | 19, 7 | atcmp 37252 |
. . . . . 6
⊢ ((𝐾 ∈ AtLat ∧ 𝑆 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → (𝑆 ≤ 𝑅 ↔ 𝑆 = 𝑅)) |
38 | 29, 30, 36, 37 | syl3anc 1369 |
. . . . 5
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑆 ≤ 𝑊) → (𝑆 ≤ 𝑅 ↔ 𝑆 = 𝑅)) |
39 | 26, 38 | mpbid 231 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄))) ∧ 𝑆 ≤ 𝑊) → 𝑆 = 𝑅) |
40 | 39 | ex 412 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄))) → (𝑆 ≤ 𝑊 → 𝑆 = 𝑅)) |
41 | 6, 19, 20 | latmle2 18098 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ≤ 𝑊) |
42 | 4, 14, 18, 41 | syl3anc 1369 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄))) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ≤ 𝑊) |
43 | 25, 42 | eqbrtrid 5105 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄))) → 𝑅 ≤ 𝑊) |
44 | | breq1 5073 |
. . . 4
⊢ (𝑆 = 𝑅 → (𝑆 ≤ 𝑊 ↔ 𝑅 ≤ 𝑊)) |
45 | 43, 44 | syl5ibrcom 246 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄))) → (𝑆 = 𝑅 → 𝑆 ≤ 𝑊)) |
46 | 40, 45 | impbid 211 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄))) → (𝑆 ≤ 𝑊 ↔ 𝑆 = 𝑅)) |
47 | 46 | necon3bbid 2980 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄))) → (¬ 𝑆 ≤ 𝑊 ↔ 𝑆 ≠ 𝑅)) |