Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem32 Structured version   Visualization version   GIF version

Theorem etransclem32 46295
Description: This is the proof for the last equation in the proof of the derivative calculated in [Juillerat] p. 12, just after equation *(6) . (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem32.s (𝜑𝑆 ∈ {ℝ, ℂ})
etransclem32.x (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
etransclem32.p (𝜑𝑃 ∈ ℕ)
etransclem32.m (𝜑𝑀 ∈ ℕ0)
etransclem32.f 𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
etransclem32.n (𝜑𝑁 ∈ ℕ0)
etransclem32.ngt (𝜑 → ((𝑀 · 𝑃) + (𝑃 − 1)) < 𝑁)
etransclem32.h 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
Assertion
Ref Expression
etransclem32 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥𝑋 ↦ 0))
Distinct variable groups:   𝑗,𝐻,𝑥   𝑗,𝑀,𝑥   𝑗,𝑁,𝑥   𝑃,𝑗,𝑥   𝑆,𝑗,𝑥   𝑗,𝑋,𝑥   𝜑,𝑗,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑗)

Proof of Theorem etransclem32
Dummy variables 𝐴 𝑐 𝑘 𝑛 𝑑 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 etransclem32.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
2 etransclem32.x . . 3 (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
3 etransclem32.p . . 3 (𝜑𝑃 ∈ ℕ)
4 etransclem32.m . . 3 (𝜑𝑀 ∈ ℕ0)
5 etransclem32.f . . 3 𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
6 etransclem32.n . . 3 (𝜑𝑁 ∈ ℕ0)
7 etransclem32.h . . 3 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
8 etransclem11 46274 . . 3 (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚}) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
91, 2, 3, 4, 5, 6, 7, 8etransclem30 46293 . 2 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥))))
10 simpr 484 . . . . . . . . . 10 ((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁))
118, 6etransclem12 46275 . . . . . . . . . . 11 (𝜑 → ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁) = {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
1211adantr 480 . . . . . . . . . 10 ((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁) = {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
1310, 12eleqtrd 2836 . . . . . . . . 9 ((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
1413adantlr 715 . . . . . . . 8 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
15 nfv 1914 . . . . . . . . . . . . . 14 𝑘(𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
16 nfre1 3267 . . . . . . . . . . . . . . 15 𝑘𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)
1716nfn 1857 . . . . . . . . . . . . . 14 𝑘 ¬ ∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)
1815, 17nfan 1899 . . . . . . . . . . . . 13 𝑘((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ¬ ∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘))
19 fzssre 45343 . . . . . . . . . . . . . . . . 17 (0...𝑁) ⊆ ℝ
20 rabid 3437 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} ↔ (𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∧ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁))
2120simplbi 497 . . . . . . . . . . . . . . . . . . . 20 (𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → 𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)))
22 elmapi 8863 . . . . . . . . . . . . . . . . . . . 20 (𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) → 𝑐:(0...𝑀)⟶(0...𝑁))
2321, 22syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → 𝑐:(0...𝑀)⟶(0...𝑁))
2423adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) → 𝑐:(0...𝑀)⟶(0...𝑁))
2524ffvelcdmda 7074 . . . . . . . . . . . . . . . . 17 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀)) → (𝑐𝑘) ∈ (0...𝑁))
2619, 25sselid 3956 . . . . . . . . . . . . . . . 16 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀)) → (𝑐𝑘) ∈ ℝ)
2726adantlr 715 . . . . . . . . . . . . . . 15 ((((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ¬ ∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) ∧ 𝑘 ∈ (0...𝑀)) → (𝑐𝑘) ∈ ℝ)
28 nnm1nn0 12542 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
293, 28syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑃 − 1) ∈ ℕ0)
3029nn0red 12563 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑃 − 1) ∈ ℝ)
313nnred 12255 . . . . . . . . . . . . . . . . 17 (𝜑𝑃 ∈ ℝ)
3230, 31ifcld 4547 . . . . . . . . . . . . . . . 16 (𝜑 → if(𝑘 = 0, (𝑃 − 1), 𝑃) ∈ ℝ)
3332ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ¬ ∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) ∧ 𝑘 ∈ (0...𝑀)) → if(𝑘 = 0, (𝑃 − 1), 𝑃) ∈ ℝ)
34 ralnex 3062 . . . . . . . . . . . . . . . . . 18 (∀𝑘 ∈ (0...𝑀) ¬ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘) ↔ ¬ ∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘))
3534biimpri 228 . . . . . . . . . . . . . . . . 17 (¬ ∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘) → ∀𝑘 ∈ (0...𝑀) ¬ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘))
3635r19.21bi 3234 . . . . . . . . . . . . . . . 16 ((¬ ∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘) ∧ 𝑘 ∈ (0...𝑀)) → ¬ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘))
3736adantll 714 . . . . . . . . . . . . . . 15 ((((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ¬ ∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) ∧ 𝑘 ∈ (0...𝑀)) → ¬ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘))
3827, 33, 37nltled 11385 . . . . . . . . . . . . . 14 ((((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ¬ ∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) ∧ 𝑘 ∈ (0...𝑀)) → (𝑐𝑘) ≤ if(𝑘 = 0, (𝑃 − 1), 𝑃))
3938ex 412 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ¬ ∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → (𝑘 ∈ (0...𝑀) → (𝑐𝑘) ≤ if(𝑘 = 0, (𝑃 − 1), 𝑃)))
4018, 39ralrimi 3240 . . . . . . . . . . . 12 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ¬ ∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → ∀𝑘 ∈ (0...𝑀)(𝑐𝑘) ≤ if(𝑘 = 0, (𝑃 − 1), 𝑃))
4120simprbi 496 . . . . . . . . . . . . . . 15 (𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁)
42 fveq2 6876 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑘 → (𝑐𝑗) = (𝑐𝑘))
4342cbvsumv 15712 . . . . . . . . . . . . . . 15 Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = Σ𝑘 ∈ (0...𝑀)(𝑐𝑘)
4441, 43eqtr3di 2785 . . . . . . . . . . . . . 14 (𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → 𝑁 = Σ𝑘 ∈ (0...𝑀)(𝑐𝑘))
4544ad2antlr 727 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ∀𝑘 ∈ (0...𝑀)(𝑐𝑘) ≤ if(𝑘 = 0, (𝑃 − 1), 𝑃)) → 𝑁 = Σ𝑘 ∈ (0...𝑀)(𝑐𝑘))
46 fveq2 6876 . . . . . . . . . . . . . . 15 (𝑘 = → (𝑐𝑘) = (𝑐))
4746cbvsumv 15712 . . . . . . . . . . . . . 14 Σ𝑘 ∈ (0...𝑀)(𝑐𝑘) = Σ ∈ (0...𝑀)(𝑐)
48 fzfid 13991 . . . . . . . . . . . . . . . 16 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ∀𝑘 ∈ (0...𝑀)(𝑐𝑘) ≤ if(𝑘 = 0, (𝑃 − 1), 𝑃)) → (0...𝑀) ∈ Fin)
4924ffvelcdmda 7074 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ∈ (0...𝑀)) → (𝑐) ∈ (0...𝑁))
5019, 49sselid 3956 . . . . . . . . . . . . . . . . 17 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ∈ (0...𝑀)) → (𝑐) ∈ ℝ)
5150adantlr 715 . . . . . . . . . . . . . . . 16 ((((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ∀𝑘 ∈ (0...𝑀)(𝑐𝑘) ≤ if(𝑘 = 0, (𝑃 − 1), 𝑃)) ∧ ∈ (0...𝑀)) → (𝑐) ∈ ℝ)
5230, 31ifcld 4547 . . . . . . . . . . . . . . . . 17 (𝜑 → if( = 0, (𝑃 − 1), 𝑃) ∈ ℝ)
5352ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ∀𝑘 ∈ (0...𝑀)(𝑐𝑘) ≤ if(𝑘 = 0, (𝑃 − 1), 𝑃)) ∧ ∈ (0...𝑀)) → if( = 0, (𝑃 − 1), 𝑃) ∈ ℝ)
54 eqeq1 2739 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = → (𝑘 = 0 ↔ = 0))
5554ifbid 4524 . . . . . . . . . . . . . . . . . . 19 (𝑘 = → if(𝑘 = 0, (𝑃 − 1), 𝑃) = if( = 0, (𝑃 − 1), 𝑃))
5646, 55breq12d 5132 . . . . . . . . . . . . . . . . . 18 (𝑘 = → ((𝑐𝑘) ≤ if(𝑘 = 0, (𝑃 − 1), 𝑃) ↔ (𝑐) ≤ if( = 0, (𝑃 − 1), 𝑃)))
5756rspccva 3600 . . . . . . . . . . . . . . . . 17 ((∀𝑘 ∈ (0...𝑀)(𝑐𝑘) ≤ if(𝑘 = 0, (𝑃 − 1), 𝑃) ∧ ∈ (0...𝑀)) → (𝑐) ≤ if( = 0, (𝑃 − 1), 𝑃))
5857adantll 714 . . . . . . . . . . . . . . . 16 ((((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ∀𝑘 ∈ (0...𝑀)(𝑐𝑘) ≤ if(𝑘 = 0, (𝑃 − 1), 𝑃)) ∧ ∈ (0...𝑀)) → (𝑐) ≤ if( = 0, (𝑃 − 1), 𝑃))
5948, 51, 53, 58fsumle 15815 . . . . . . . . . . . . . . 15 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ∀𝑘 ∈ (0...𝑀)(𝑐𝑘) ≤ if(𝑘 = 0, (𝑃 − 1), 𝑃)) → Σ ∈ (0...𝑀)(𝑐) ≤ Σ ∈ (0...𝑀)if( = 0, (𝑃 − 1), 𝑃))
60 nn0uz 12894 . . . . . . . . . . . . . . . . . . 19 0 = (ℤ‘0)
614, 60eleqtrdi 2844 . . . . . . . . . . . . . . . . . 18 (𝜑𝑀 ∈ (ℤ‘0))
623nnnn0d 12562 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑃 ∈ ℕ0)
6329, 62ifcld 4547 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → if( = 0, (𝑃 − 1), 𝑃) ∈ ℕ0)
6463adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∈ (0...𝑀)) → if( = 0, (𝑃 − 1), 𝑃) ∈ ℕ0)
6564nn0cnd 12564 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∈ (0...𝑀)) → if( = 0, (𝑃 − 1), 𝑃) ∈ ℂ)
66 iftrue 4506 . . . . . . . . . . . . . . . . . 18 ( = 0 → if( = 0, (𝑃 − 1), 𝑃) = (𝑃 − 1))
6761, 65, 66fsum1p 15769 . . . . . . . . . . . . . . . . 17 (𝜑 → Σ ∈ (0...𝑀)if( = 0, (𝑃 − 1), 𝑃) = ((𝑃 − 1) + Σ ∈ ((0 + 1)...𝑀)if( = 0, (𝑃 − 1), 𝑃)))
68 0p1e1 12362 . . . . . . . . . . . . . . . . . . . . . 22 (0 + 1) = 1
6968oveq1i 7415 . . . . . . . . . . . . . . . . . . . . 21 ((0 + 1)...𝑀) = (1...𝑀)
7069a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((0 + 1)...𝑀) = (1...𝑀))
7170sumeq1d 15716 . . . . . . . . . . . . . . . . . . 19 (𝜑 → Σ ∈ ((0 + 1)...𝑀)if( = 0, (𝑃 − 1), 𝑃) = Σ ∈ (1...𝑀)if( = 0, (𝑃 − 1), 𝑃))
72 0red 11238 . . . . . . . . . . . . . . . . . . . . . . . . 25 ( ∈ (1...𝑀) → 0 ∈ ℝ)
73 1red 11236 . . . . . . . . . . . . . . . . . . . . . . . . 25 ( ∈ (1...𝑀) → 1 ∈ ℝ)
74 elfzelz 13541 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ( ∈ (1...𝑀) → ∈ ℤ)
7574zred 12697 . . . . . . . . . . . . . . . . . . . . . . . . 25 ( ∈ (1...𝑀) → ∈ ℝ)
76 0lt1 11759 . . . . . . . . . . . . . . . . . . . . . . . . . 26 0 < 1
7776a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 ( ∈ (1...𝑀) → 0 < 1)
78 elfzle1 13544 . . . . . . . . . . . . . . . . . . . . . . . . 25 ( ∈ (1...𝑀) → 1 ≤ )
7972, 73, 75, 77, 78ltletrd 11395 . . . . . . . . . . . . . . . . . . . . . . . 24 ( ∈ (1...𝑀) → 0 < )
8079gt0ne0d 11801 . . . . . . . . . . . . . . . . . . . . . . 23 ( ∈ (1...𝑀) → ≠ 0)
8180neneqd 2937 . . . . . . . . . . . . . . . . . . . . . 22 ( ∈ (1...𝑀) → ¬ = 0)
8281iffalsed 4511 . . . . . . . . . . . . . . . . . . . . 21 ( ∈ (1...𝑀) → if( = 0, (𝑃 − 1), 𝑃) = 𝑃)
8382adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∈ (1...𝑀)) → if( = 0, (𝑃 − 1), 𝑃) = 𝑃)
8483sumeq2dv 15718 . . . . . . . . . . . . . . . . . . 19 (𝜑 → Σ ∈ (1...𝑀)if( = 0, (𝑃 − 1), 𝑃) = Σ ∈ (1...𝑀)𝑃)
85 fzfid 13991 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (1...𝑀) ∈ Fin)
863nncnd 12256 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑃 ∈ ℂ)
87 fsumconst 15806 . . . . . . . . . . . . . . . . . . . . 21 (((1...𝑀) ∈ Fin ∧ 𝑃 ∈ ℂ) → Σ ∈ (1...𝑀)𝑃 = ((♯‘(1...𝑀)) · 𝑃))
8885, 86, 87syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → Σ ∈ (1...𝑀)𝑃 = ((♯‘(1...𝑀)) · 𝑃))
89 hashfz1 14364 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ∈ ℕ0 → (♯‘(1...𝑀)) = 𝑀)
904, 89syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (♯‘(1...𝑀)) = 𝑀)
9190oveq1d 7420 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((♯‘(1...𝑀)) · 𝑃) = (𝑀 · 𝑃))
9288, 91eqtrd 2770 . . . . . . . . . . . . . . . . . . 19 (𝜑 → Σ ∈ (1...𝑀)𝑃 = (𝑀 · 𝑃))
9371, 84, 923eqtrd 2774 . . . . . . . . . . . . . . . . . 18 (𝜑 → Σ ∈ ((0 + 1)...𝑀)if( = 0, (𝑃 − 1), 𝑃) = (𝑀 · 𝑃))
9493oveq2d 7421 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑃 − 1) + Σ ∈ ((0 + 1)...𝑀)if( = 0, (𝑃 − 1), 𝑃)) = ((𝑃 − 1) + (𝑀 · 𝑃)))
9529nn0cnd 12564 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑃 − 1) ∈ ℂ)
964, 62nn0mulcld 12567 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑀 · 𝑃) ∈ ℕ0)
9796nn0cnd 12564 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑀 · 𝑃) ∈ ℂ)
9895, 97addcomd 11437 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑃 − 1) + (𝑀 · 𝑃)) = ((𝑀 · 𝑃) + (𝑃 − 1)))
9967, 94, 983eqtrd 2774 . . . . . . . . . . . . . . . 16 (𝜑 → Σ ∈ (0...𝑀)if( = 0, (𝑃 − 1), 𝑃) = ((𝑀 · 𝑃) + (𝑃 − 1)))
10099ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ∀𝑘 ∈ (0...𝑀)(𝑐𝑘) ≤ if(𝑘 = 0, (𝑃 − 1), 𝑃)) → Σ ∈ (0...𝑀)if( = 0, (𝑃 − 1), 𝑃) = ((𝑀 · 𝑃) + (𝑃 − 1)))
10159, 100breqtrd 5145 . . . . . . . . . . . . . 14 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ∀𝑘 ∈ (0...𝑀)(𝑐𝑘) ≤ if(𝑘 = 0, (𝑃 − 1), 𝑃)) → Σ ∈ (0...𝑀)(𝑐) ≤ ((𝑀 · 𝑃) + (𝑃 − 1)))
10247, 101eqbrtrid 5154 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ∀𝑘 ∈ (0...𝑀)(𝑐𝑘) ≤ if(𝑘 = 0, (𝑃 − 1), 𝑃)) → Σ𝑘 ∈ (0...𝑀)(𝑐𝑘) ≤ ((𝑀 · 𝑃) + (𝑃 − 1)))
10345, 102eqbrtrd 5141 . . . . . . . . . . . 12 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ∀𝑘 ∈ (0...𝑀)(𝑐𝑘) ≤ if(𝑘 = 0, (𝑃 − 1), 𝑃)) → 𝑁 ≤ ((𝑀 · 𝑃) + (𝑃 − 1)))
10440, 103syldan 591 . . . . . . . . . . 11 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ¬ ∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → 𝑁 ≤ ((𝑀 · 𝑃) + (𝑃 − 1)))
105 etransclem32.ngt . . . . . . . . . . . . 13 (𝜑 → ((𝑀 · 𝑃) + (𝑃 − 1)) < 𝑁)
10696, 29nn0addcld 12566 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑀 · 𝑃) + (𝑃 − 1)) ∈ ℕ0)
107106nn0red 12563 . . . . . . . . . . . . . 14 (𝜑 → ((𝑀 · 𝑃) + (𝑃 − 1)) ∈ ℝ)
1086nn0red 12563 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℝ)
109107, 108ltnled 11382 . . . . . . . . . . . . 13 (𝜑 → (((𝑀 · 𝑃) + (𝑃 − 1)) < 𝑁 ↔ ¬ 𝑁 ≤ ((𝑀 · 𝑃) + (𝑃 − 1))))
110105, 109mpbid 232 . . . . . . . . . . . 12 (𝜑 → ¬ 𝑁 ≤ ((𝑀 · 𝑃) + (𝑃 − 1)))
111110ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ¬ ∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → ¬ 𝑁 ≤ ((𝑀 · 𝑃) + (𝑃 − 1)))
112104, 111condan 817 . . . . . . . . . 10 ((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) → ∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘))
113112adantlr 715 . . . . . . . . 9 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) → ∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘))
114 nfv 1914 . . . . . . . . . . . . 13 𝑗(𝜑𝑥𝑋)
115 nfcv 2898 . . . . . . . . . . . . . . . . 17 𝑗(0...𝑀)
116115nfsum1 15706 . . . . . . . . . . . . . . . 16 𝑗Σ𝑗 ∈ (0...𝑀)(𝑐𝑗)
117116nfeq1 2914 . . . . . . . . . . . . . . 15 𝑗Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁
118 nfcv 2898 . . . . . . . . . . . . . . 15 𝑗((0...𝑁) ↑m (0...𝑀))
119117, 118nfrabw 3454 . . . . . . . . . . . . . 14 𝑗{𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}
120119nfcri 2890 . . . . . . . . . . . . 13 𝑗 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}
121114, 120nfan 1899 . . . . . . . . . . . 12 𝑗((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
122 nfv 1914 . . . . . . . . . . . 12 𝑗 𝑘 ∈ (0...𝑀)
123 nfv 1914 . . . . . . . . . . . 12 𝑗if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)
124121, 122, 123nf3an 1901 . . . . . . . . . . 11 𝑗(((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀) ∧ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘))
125 nfcv 2898 . . . . . . . . . . 11 𝑗(((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘))‘𝑥)
126 fzfid 13991 . . . . . . . . . . 11 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀) ∧ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → (0...𝑀) ∈ Fin)
1271ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑗 ∈ (0...𝑀)) → 𝑆 ∈ {ℝ, ℂ})
1282ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑗 ∈ (0...𝑀)) → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
1293ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑗 ∈ (0...𝑀)) → 𝑃 ∈ ℕ)
130 etransclem5 46268 . . . . . . . . . . . . . . 15 (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) = (𝑘 ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))
1317, 130eqtri 2758 . . . . . . . . . . . . . 14 𝐻 = (𝑘 ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))
132 simpr 484 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑗 ∈ (0...𝑀)) → 𝑗 ∈ (0...𝑀))
13323ad2antlr 727 . . . . . . . . . . . . . . . . 17 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑗 ∈ (0...𝑀)) → 𝑐:(0...𝑀)⟶(0...𝑁))
134 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑗 ∈ (0...𝑀)) → 𝑗 ∈ (0...𝑀))
135133, 134ffvelcdmd 7075 . . . . . . . . . . . . . . . 16 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑗 ∈ (0...𝑀)) → (𝑐𝑗) ∈ (0...𝑁))
136135adantllr 719 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑗 ∈ (0...𝑀)) → (𝑐𝑗) ∈ (0...𝑁))
137 elfznn0 13637 . . . . . . . . . . . . . . 15 ((𝑐𝑗) ∈ (0...𝑁) → (𝑐𝑗) ∈ ℕ0)
138136, 137syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑗 ∈ (0...𝑀)) → (𝑐𝑗) ∈ ℕ0)
139127, 128, 129, 131, 132, 138etransclem20 46283 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑗 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗)):𝑋⟶ℂ)
140 simpllr 775 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑗 ∈ (0...𝑀)) → 𝑥𝑋)
141139, 140ffvelcdmd 7075 . . . . . . . . . . . 12 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑗 ∈ (0...𝑀)) → (((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥) ∈ ℂ)
1421413ad2antl1 1186 . . . . . . . . . . 11 (((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀) ∧ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) ∧ 𝑗 ∈ (0...𝑀)) → (((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥) ∈ ℂ)
143 fveq2 6876 . . . . . . . . . . . . . 14 (𝑗 = 𝑘 → (𝐻𝑗) = (𝐻𝑘))
144143oveq2d 7421 . . . . . . . . . . . . 13 (𝑗 = 𝑘 → (𝑆 D𝑛 (𝐻𝑗)) = (𝑆 D𝑛 (𝐻𝑘)))
145144, 42fveq12d 6883 . . . . . . . . . . . 12 (𝑗 = 𝑘 → ((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗)) = ((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘)))
146145fveq1d 6878 . . . . . . . . . . 11 (𝑗 = 𝑘 → (((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥) = (((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘))‘𝑥))
147 simp2 1137 . . . . . . . . . . 11 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀) ∧ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → 𝑘 ∈ (0...𝑀))
1481ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) → 𝑆 ∈ {ℝ, ℂ})
1491483ad2ant1 1133 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀) ∧ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → 𝑆 ∈ {ℝ, ℂ})
1502ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
1511503ad2ant1 1133 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀) ∧ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
1523ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) → 𝑃 ∈ ℕ)
1531523ad2ant1 1133 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀) ∧ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → 𝑃 ∈ ℕ)
154 etransclem5 46268 . . . . . . . . . . . . . 14 (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) = ( ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦)↑if( = 0, (𝑃 − 1), 𝑃))))
1557, 154eqtri 2758 . . . . . . . . . . . . 13 𝐻 = ( ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦)↑if( = 0, (𝑃 − 1), 𝑃))))
15625elfzelzd 13542 . . . . . . . . . . . . . . 15 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀)) → (𝑐𝑘) ∈ ℤ)
157156adantllr 719 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀)) → (𝑐𝑘) ∈ ℤ)
1581573adant3 1132 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀) ∧ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → (𝑐𝑘) ∈ ℤ)
159 simp3 1138 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀) ∧ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘))
160149, 151, 153, 155, 147, 158, 159etransclem19 46282 . . . . . . . . . . . 12 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀) ∧ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → ((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘)) = (𝑦𝑋 ↦ 0))
161 eqidd 2736 . . . . . . . . . . . 12 (((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀) ∧ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) ∧ 𝑦 = 𝑥) → 0 = 0)
162 simp1lr 1238 . . . . . . . . . . . 12 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀) ∧ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → 𝑥𝑋)
163 0red 11238 . . . . . . . . . . . 12 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀) ∧ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → 0 ∈ ℝ)
164160, 161, 162, 163fvmptd 6993 . . . . . . . . . . 11 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀) ∧ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → (((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘))‘𝑥) = 0)
165124, 125, 126, 142, 146, 147, 164fprod0 45625 . . . . . . . . . 10 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀) ∧ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥) = 0)
166165rexlimdv3a 3145 . . . . . . . . 9 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) → (∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘) → ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥) = 0))
167113, 166mpd 15 . . . . . . . 8 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) → ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥) = 0)
16814, 167syldan 591 . . . . . . 7 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥) = 0)
169168oveq2d 7421 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥)) = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · 0))
1706faccld 14302 . . . . . . . . . . 11 (𝜑 → (!‘𝑁) ∈ ℕ)
171170nncnd 12256 . . . . . . . . . 10 (𝜑 → (!‘𝑁) ∈ ℂ)
172171adantr 480 . . . . . . . . 9 ((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → (!‘𝑁) ∈ ℂ)
173 fzfid 13991 . . . . . . . . . 10 ((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → (0...𝑀) ∈ Fin)
174 simpll 766 . . . . . . . . . . . . . 14 (((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → 𝜑)
17513adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
176 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → 𝑗 ∈ (0...𝑀))
177174, 175, 176, 135syl21anc 837 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (𝑐𝑗) ∈ (0...𝑁))
178177, 137syl 17 . . . . . . . . . . . 12 (((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (𝑐𝑗) ∈ ℕ0)
179178faccld 14302 . . . . . . . . . . 11 (((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (!‘(𝑐𝑗)) ∈ ℕ)
180179nncnd 12256 . . . . . . . . . 10 (((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (!‘(𝑐𝑗)) ∈ ℂ)
181173, 180fprodcl 15968 . . . . . . . . 9 ((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗)) ∈ ℂ)
182179nnne0d 12290 . . . . . . . . . 10 (((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (!‘(𝑐𝑗)) ≠ 0)
183173, 180, 182fprodn0 15995 . . . . . . . . 9 ((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗)) ≠ 0)
184172, 181, 183divcld 12017 . . . . . . . 8 ((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) ∈ ℂ)
185184mul01d 11434 . . . . . . 7 ((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · 0) = 0)
186185adantlr 715 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · 0) = 0)
187169, 186eqtrd 2770 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥)) = 0)
188187sumeq2dv 15718 . . . 4 ((𝜑𝑥𝑋) → Σ𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥)) = Σ𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)0)
189 eqid 2735 . . . . . . . 8 (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚}) = (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})
190189, 6etransclem16 46279 . . . . . . 7 (𝜑 → ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁) ∈ Fin)
191190olcd 874 . . . . . 6 (𝜑 → (((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁) ⊆ (ℤ𝐴) ∨ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁) ∈ Fin))
192191adantr 480 . . . . 5 ((𝜑𝑥𝑋) → (((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁) ⊆ (ℤ𝐴) ∨ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁) ∈ Fin))
193 sumz 15738 . . . . 5 ((((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁) ⊆ (ℤ𝐴) ∨ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁) ∈ Fin) → Σ𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)0 = 0)
194192, 193syl 17 . . . 4 ((𝜑𝑥𝑋) → Σ𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)0 = 0)
195188, 194eqtrd 2770 . . 3 ((𝜑𝑥𝑋) → Σ𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥)) = 0)
196195mpteq2dva 5214 . 2 (𝜑 → (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥))) = (𝑥𝑋 ↦ 0))
1979, 196eqtrd 2770 1 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥𝑋 ↦ 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2108  wral 3051  wrex 3060  {crab 3415  wss 3926  ifcif 4500  {cpr 4603   class class class wbr 5119  cmpt 5201  wf 6527  cfv 6531  (class class class)co 7405  m cmap 8840  Fincfn 8959  cc 11127  cr 11128  0cc0 11129  1c1 11130   + caddc 11132   · cmul 11134   < clt 11269  cle 11270  cmin 11466   / cdiv 11894  cn 12240  0cn0 12501  cz 12588  cuz 12852  ...cfz 13524  cexp 14079  !cfa 14291  chash 14348  Σcsu 15702  cprod 15919  t crest 17434  TopOpenctopn 17435  fldccnfld 21315   D𝑛 cdvn 25817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-seq 14020  df-exp 14080  df-fac 14292  df-bc 14321  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-sum 15703  df-prod 15920  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-pt 17458  df-prds 17461  df-xrs 17516  df-qtop 17521  df-imas 17522  df-xps 17524  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-mulg 19051  df-cntz 19300  df-cmn 19763  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-fbas 21312  df-fg 21313  df-cnfld 21316  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-lp 23074  df-perf 23075  df-cn 23165  df-cnp 23166  df-haus 23253  df-tx 23500  df-hmeo 23693  df-fil 23784  df-fm 23876  df-flim 23877  df-flf 23878  df-xms 24259  df-ms 24260  df-tms 24261  df-cncf 24822  df-limc 25819  df-dv 25820  df-dvn 25821
This theorem is referenced by:  etransclem46  46309
  Copyright terms: Public domain W3C validator