Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem32 Structured version   Visualization version   GIF version

Theorem etransclem32 43807
Description: This is the proof for the last equation in the proof of the derivative calculated in [Juillerat] p. 12, just after equation *(6) . (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem32.s (𝜑𝑆 ∈ {ℝ, ℂ})
etransclem32.x (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
etransclem32.p (𝜑𝑃 ∈ ℕ)
etransclem32.m (𝜑𝑀 ∈ ℕ0)
etransclem32.f 𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
etransclem32.n (𝜑𝑁 ∈ ℕ0)
etransclem32.ngt (𝜑 → ((𝑀 · 𝑃) + (𝑃 − 1)) < 𝑁)
etransclem32.h 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
Assertion
Ref Expression
etransclem32 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥𝑋 ↦ 0))
Distinct variable groups:   𝑗,𝐻,𝑥   𝑗,𝑀,𝑥   𝑗,𝑁,𝑥   𝑃,𝑗,𝑥   𝑆,𝑗,𝑥   𝑗,𝑋,𝑥   𝜑,𝑗,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑗)

Proof of Theorem etransclem32
Dummy variables 𝐴 𝑐 𝑘 𝑛 𝑑 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 etransclem32.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
2 etransclem32.x . . 3 (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
3 etransclem32.p . . 3 (𝜑𝑃 ∈ ℕ)
4 etransclem32.m . . 3 (𝜑𝑀 ∈ ℕ0)
5 etransclem32.f . . 3 𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
6 etransclem32.n . . 3 (𝜑𝑁 ∈ ℕ0)
7 etransclem32.h . . 3 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
8 etransclem11 43786 . . 3 (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚}) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
91, 2, 3, 4, 5, 6, 7, 8etransclem30 43805 . 2 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥))))
10 simpr 485 . . . . . . . . . 10 ((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁))
118, 6etransclem12 43787 . . . . . . . . . . 11 (𝜑 → ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁) = {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
1211adantr 481 . . . . . . . . . 10 ((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁) = {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
1310, 12eleqtrd 2841 . . . . . . . . 9 ((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
1413adantlr 712 . . . . . . . 8 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
15 nfv 1917 . . . . . . . . . . . . . 14 𝑘(𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
16 nfre1 3239 . . . . . . . . . . . . . . 15 𝑘𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)
1716nfn 1860 . . . . . . . . . . . . . 14 𝑘 ¬ ∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)
1815, 17nfan 1902 . . . . . . . . . . . . 13 𝑘((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ¬ ∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘))
19 fzssre 42853 . . . . . . . . . . . . . . . . 17 (0...𝑁) ⊆ ℝ
20 rabid 3310 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} ↔ (𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∧ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁))
2120simplbi 498 . . . . . . . . . . . . . . . . . . . 20 (𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → 𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)))
22 elmapi 8637 . . . . . . . . . . . . . . . . . . . 20 (𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) → 𝑐:(0...𝑀)⟶(0...𝑁))
2321, 22syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → 𝑐:(0...𝑀)⟶(0...𝑁))
2423adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) → 𝑐:(0...𝑀)⟶(0...𝑁))
2524ffvelrnda 6961 . . . . . . . . . . . . . . . . 17 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀)) → (𝑐𝑘) ∈ (0...𝑁))
2619, 25sselid 3919 . . . . . . . . . . . . . . . 16 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀)) → (𝑐𝑘) ∈ ℝ)
2726adantlr 712 . . . . . . . . . . . . . . 15 ((((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ¬ ∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) ∧ 𝑘 ∈ (0...𝑀)) → (𝑐𝑘) ∈ ℝ)
28 nnm1nn0 12274 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
293, 28syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑃 − 1) ∈ ℕ0)
3029nn0red 12294 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑃 − 1) ∈ ℝ)
313nnred 11988 . . . . . . . . . . . . . . . . 17 (𝜑𝑃 ∈ ℝ)
3230, 31ifcld 4505 . . . . . . . . . . . . . . . 16 (𝜑 → if(𝑘 = 0, (𝑃 − 1), 𝑃) ∈ ℝ)
3332ad3antrrr 727 . . . . . . . . . . . . . . 15 ((((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ¬ ∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) ∧ 𝑘 ∈ (0...𝑀)) → if(𝑘 = 0, (𝑃 − 1), 𝑃) ∈ ℝ)
34 ralnex 3167 . . . . . . . . . . . . . . . . . 18 (∀𝑘 ∈ (0...𝑀) ¬ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘) ↔ ¬ ∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘))
3534biimpri 227 . . . . . . . . . . . . . . . . 17 (¬ ∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘) → ∀𝑘 ∈ (0...𝑀) ¬ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘))
3635r19.21bi 3134 . . . . . . . . . . . . . . . 16 ((¬ ∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘) ∧ 𝑘 ∈ (0...𝑀)) → ¬ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘))
3736adantll 711 . . . . . . . . . . . . . . 15 ((((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ¬ ∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) ∧ 𝑘 ∈ (0...𝑀)) → ¬ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘))
3827, 33, 37nltled 11125 . . . . . . . . . . . . . 14 ((((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ¬ ∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) ∧ 𝑘 ∈ (0...𝑀)) → (𝑐𝑘) ≤ if(𝑘 = 0, (𝑃 − 1), 𝑃))
3938ex 413 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ¬ ∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → (𝑘 ∈ (0...𝑀) → (𝑐𝑘) ≤ if(𝑘 = 0, (𝑃 − 1), 𝑃)))
4018, 39ralrimi 3141 . . . . . . . . . . . 12 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ¬ ∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → ∀𝑘 ∈ (0...𝑀)(𝑐𝑘) ≤ if(𝑘 = 0, (𝑃 − 1), 𝑃))
4120simprbi 497 . . . . . . . . . . . . . . 15 (𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁)
42 fveq2 6774 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑘 → (𝑐𝑗) = (𝑐𝑘))
4342cbvsumv 15408 . . . . . . . . . . . . . . 15 Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = Σ𝑘 ∈ (0...𝑀)(𝑐𝑘)
4441, 43eqtr3di 2793 . . . . . . . . . . . . . 14 (𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → 𝑁 = Σ𝑘 ∈ (0...𝑀)(𝑐𝑘))
4544ad2antlr 724 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ∀𝑘 ∈ (0...𝑀)(𝑐𝑘) ≤ if(𝑘 = 0, (𝑃 − 1), 𝑃)) → 𝑁 = Σ𝑘 ∈ (0...𝑀)(𝑐𝑘))
46 fveq2 6774 . . . . . . . . . . . . . . 15 (𝑘 = → (𝑐𝑘) = (𝑐))
4746cbvsumv 15408 . . . . . . . . . . . . . 14 Σ𝑘 ∈ (0...𝑀)(𝑐𝑘) = Σ ∈ (0...𝑀)(𝑐)
48 fzfid 13693 . . . . . . . . . . . . . . . 16 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ∀𝑘 ∈ (0...𝑀)(𝑐𝑘) ≤ if(𝑘 = 0, (𝑃 − 1), 𝑃)) → (0...𝑀) ∈ Fin)
4924ffvelrnda 6961 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ∈ (0...𝑀)) → (𝑐) ∈ (0...𝑁))
5019, 49sselid 3919 . . . . . . . . . . . . . . . . 17 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ∈ (0...𝑀)) → (𝑐) ∈ ℝ)
5150adantlr 712 . . . . . . . . . . . . . . . 16 ((((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ∀𝑘 ∈ (0...𝑀)(𝑐𝑘) ≤ if(𝑘 = 0, (𝑃 − 1), 𝑃)) ∧ ∈ (0...𝑀)) → (𝑐) ∈ ℝ)
5230, 31ifcld 4505 . . . . . . . . . . . . . . . . 17 (𝜑 → if( = 0, (𝑃 − 1), 𝑃) ∈ ℝ)
5352ad3antrrr 727 . . . . . . . . . . . . . . . 16 ((((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ∀𝑘 ∈ (0...𝑀)(𝑐𝑘) ≤ if(𝑘 = 0, (𝑃 − 1), 𝑃)) ∧ ∈ (0...𝑀)) → if( = 0, (𝑃 − 1), 𝑃) ∈ ℝ)
54 eqeq1 2742 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = → (𝑘 = 0 ↔ = 0))
5554ifbid 4482 . . . . . . . . . . . . . . . . . . 19 (𝑘 = → if(𝑘 = 0, (𝑃 − 1), 𝑃) = if( = 0, (𝑃 − 1), 𝑃))
5646, 55breq12d 5087 . . . . . . . . . . . . . . . . . 18 (𝑘 = → ((𝑐𝑘) ≤ if(𝑘 = 0, (𝑃 − 1), 𝑃) ↔ (𝑐) ≤ if( = 0, (𝑃 − 1), 𝑃)))
5756rspccva 3560 . . . . . . . . . . . . . . . . 17 ((∀𝑘 ∈ (0...𝑀)(𝑐𝑘) ≤ if(𝑘 = 0, (𝑃 − 1), 𝑃) ∧ ∈ (0...𝑀)) → (𝑐) ≤ if( = 0, (𝑃 − 1), 𝑃))
5857adantll 711 . . . . . . . . . . . . . . . 16 ((((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ∀𝑘 ∈ (0...𝑀)(𝑐𝑘) ≤ if(𝑘 = 0, (𝑃 − 1), 𝑃)) ∧ ∈ (0...𝑀)) → (𝑐) ≤ if( = 0, (𝑃 − 1), 𝑃))
5948, 51, 53, 58fsumle 15511 . . . . . . . . . . . . . . 15 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ∀𝑘 ∈ (0...𝑀)(𝑐𝑘) ≤ if(𝑘 = 0, (𝑃 − 1), 𝑃)) → Σ ∈ (0...𝑀)(𝑐) ≤ Σ ∈ (0...𝑀)if( = 0, (𝑃 − 1), 𝑃))
60 nn0uz 12620 . . . . . . . . . . . . . . . . . . 19 0 = (ℤ‘0)
614, 60eleqtrdi 2849 . . . . . . . . . . . . . . . . . 18 (𝜑𝑀 ∈ (ℤ‘0))
623nnnn0d 12293 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑃 ∈ ℕ0)
6329, 62ifcld 4505 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → if( = 0, (𝑃 − 1), 𝑃) ∈ ℕ0)
6463adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∈ (0...𝑀)) → if( = 0, (𝑃 − 1), 𝑃) ∈ ℕ0)
6564nn0cnd 12295 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∈ (0...𝑀)) → if( = 0, (𝑃 − 1), 𝑃) ∈ ℂ)
66 iftrue 4465 . . . . . . . . . . . . . . . . . 18 ( = 0 → if( = 0, (𝑃 − 1), 𝑃) = (𝑃 − 1))
6761, 65, 66fsum1p 15465 . . . . . . . . . . . . . . . . 17 (𝜑 → Σ ∈ (0...𝑀)if( = 0, (𝑃 − 1), 𝑃) = ((𝑃 − 1) + Σ ∈ ((0 + 1)...𝑀)if( = 0, (𝑃 − 1), 𝑃)))
68 0p1e1 12095 . . . . . . . . . . . . . . . . . . . . . 22 (0 + 1) = 1
6968oveq1i 7285 . . . . . . . . . . . . . . . . . . . . 21 ((0 + 1)...𝑀) = (1...𝑀)
7069a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((0 + 1)...𝑀) = (1...𝑀))
7170sumeq1d 15413 . . . . . . . . . . . . . . . . . . 19 (𝜑 → Σ ∈ ((0 + 1)...𝑀)if( = 0, (𝑃 − 1), 𝑃) = Σ ∈ (1...𝑀)if( = 0, (𝑃 − 1), 𝑃))
72 0red 10978 . . . . . . . . . . . . . . . . . . . . . . . . 25 ( ∈ (1...𝑀) → 0 ∈ ℝ)
73 1red 10976 . . . . . . . . . . . . . . . . . . . . . . . . 25 ( ∈ (1...𝑀) → 1 ∈ ℝ)
74 elfzelz 13256 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ( ∈ (1...𝑀) → ∈ ℤ)
7574zred 12426 . . . . . . . . . . . . . . . . . . . . . . . . 25 ( ∈ (1...𝑀) → ∈ ℝ)
76 0lt1 11497 . . . . . . . . . . . . . . . . . . . . . . . . . 26 0 < 1
7776a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 ( ∈ (1...𝑀) → 0 < 1)
78 elfzle1 13259 . . . . . . . . . . . . . . . . . . . . . . . . 25 ( ∈ (1...𝑀) → 1 ≤ )
7972, 73, 75, 77, 78ltletrd 11135 . . . . . . . . . . . . . . . . . . . . . . . 24 ( ∈ (1...𝑀) → 0 < )
8079gt0ne0d 11539 . . . . . . . . . . . . . . . . . . . . . . 23 ( ∈ (1...𝑀) → ≠ 0)
8180neneqd 2948 . . . . . . . . . . . . . . . . . . . . . 22 ( ∈ (1...𝑀) → ¬ = 0)
8281iffalsed 4470 . . . . . . . . . . . . . . . . . . . . 21 ( ∈ (1...𝑀) → if( = 0, (𝑃 − 1), 𝑃) = 𝑃)
8382adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∈ (1...𝑀)) → if( = 0, (𝑃 − 1), 𝑃) = 𝑃)
8483sumeq2dv 15415 . . . . . . . . . . . . . . . . . . 19 (𝜑 → Σ ∈ (1...𝑀)if( = 0, (𝑃 − 1), 𝑃) = Σ ∈ (1...𝑀)𝑃)
85 fzfid 13693 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (1...𝑀) ∈ Fin)
863nncnd 11989 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑃 ∈ ℂ)
87 fsumconst 15502 . . . . . . . . . . . . . . . . . . . . 21 (((1...𝑀) ∈ Fin ∧ 𝑃 ∈ ℂ) → Σ ∈ (1...𝑀)𝑃 = ((♯‘(1...𝑀)) · 𝑃))
8885, 86, 87syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → Σ ∈ (1...𝑀)𝑃 = ((♯‘(1...𝑀)) · 𝑃))
89 hashfz1 14060 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ∈ ℕ0 → (♯‘(1...𝑀)) = 𝑀)
904, 89syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (♯‘(1...𝑀)) = 𝑀)
9190oveq1d 7290 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((♯‘(1...𝑀)) · 𝑃) = (𝑀 · 𝑃))
9288, 91eqtrd 2778 . . . . . . . . . . . . . . . . . . 19 (𝜑 → Σ ∈ (1...𝑀)𝑃 = (𝑀 · 𝑃))
9371, 84, 923eqtrd 2782 . . . . . . . . . . . . . . . . . 18 (𝜑 → Σ ∈ ((0 + 1)...𝑀)if( = 0, (𝑃 − 1), 𝑃) = (𝑀 · 𝑃))
9493oveq2d 7291 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑃 − 1) + Σ ∈ ((0 + 1)...𝑀)if( = 0, (𝑃 − 1), 𝑃)) = ((𝑃 − 1) + (𝑀 · 𝑃)))
9529nn0cnd 12295 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑃 − 1) ∈ ℂ)
964, 62nn0mulcld 12298 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑀 · 𝑃) ∈ ℕ0)
9796nn0cnd 12295 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑀 · 𝑃) ∈ ℂ)
9895, 97addcomd 11177 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑃 − 1) + (𝑀 · 𝑃)) = ((𝑀 · 𝑃) + (𝑃 − 1)))
9967, 94, 983eqtrd 2782 . . . . . . . . . . . . . . . 16 (𝜑 → Σ ∈ (0...𝑀)if( = 0, (𝑃 − 1), 𝑃) = ((𝑀 · 𝑃) + (𝑃 − 1)))
10099ad2antrr 723 . . . . . . . . . . . . . . 15 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ∀𝑘 ∈ (0...𝑀)(𝑐𝑘) ≤ if(𝑘 = 0, (𝑃 − 1), 𝑃)) → Σ ∈ (0...𝑀)if( = 0, (𝑃 − 1), 𝑃) = ((𝑀 · 𝑃) + (𝑃 − 1)))
10159, 100breqtrd 5100 . . . . . . . . . . . . . 14 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ∀𝑘 ∈ (0...𝑀)(𝑐𝑘) ≤ if(𝑘 = 0, (𝑃 − 1), 𝑃)) → Σ ∈ (0...𝑀)(𝑐) ≤ ((𝑀 · 𝑃) + (𝑃 − 1)))
10247, 101eqbrtrid 5109 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ∀𝑘 ∈ (0...𝑀)(𝑐𝑘) ≤ if(𝑘 = 0, (𝑃 − 1), 𝑃)) → Σ𝑘 ∈ (0...𝑀)(𝑐𝑘) ≤ ((𝑀 · 𝑃) + (𝑃 − 1)))
10345, 102eqbrtrd 5096 . . . . . . . . . . . 12 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ∀𝑘 ∈ (0...𝑀)(𝑐𝑘) ≤ if(𝑘 = 0, (𝑃 − 1), 𝑃)) → 𝑁 ≤ ((𝑀 · 𝑃) + (𝑃 − 1)))
10440, 103syldan 591 . . . . . . . . . . 11 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ¬ ∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → 𝑁 ≤ ((𝑀 · 𝑃) + (𝑃 − 1)))
105 etransclem32.ngt . . . . . . . . . . . . 13 (𝜑 → ((𝑀 · 𝑃) + (𝑃 − 1)) < 𝑁)
10696, 29nn0addcld 12297 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑀 · 𝑃) + (𝑃 − 1)) ∈ ℕ0)
107106nn0red 12294 . . . . . . . . . . . . . 14 (𝜑 → ((𝑀 · 𝑃) + (𝑃 − 1)) ∈ ℝ)
1086nn0red 12294 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℝ)
109107, 108ltnled 11122 . . . . . . . . . . . . 13 (𝜑 → (((𝑀 · 𝑃) + (𝑃 − 1)) < 𝑁 ↔ ¬ 𝑁 ≤ ((𝑀 · 𝑃) + (𝑃 − 1))))
110105, 109mpbid 231 . . . . . . . . . . . 12 (𝜑 → ¬ 𝑁 ≤ ((𝑀 · 𝑃) + (𝑃 − 1)))
111110ad2antrr 723 . . . . . . . . . . 11 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ¬ ∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → ¬ 𝑁 ≤ ((𝑀 · 𝑃) + (𝑃 − 1)))
112104, 111condan 815 . . . . . . . . . 10 ((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) → ∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘))
113112adantlr 712 . . . . . . . . 9 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) → ∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘))
114 nfv 1917 . . . . . . . . . . . . 13 𝑗(𝜑𝑥𝑋)
115 nfcv 2907 . . . . . . . . . . . . . . . . 17 𝑗(0...𝑀)
116115nfsum1 15401 . . . . . . . . . . . . . . . 16 𝑗Σ𝑗 ∈ (0...𝑀)(𝑐𝑗)
117116nfeq1 2922 . . . . . . . . . . . . . . 15 𝑗Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁
118 nfcv 2907 . . . . . . . . . . . . . . 15 𝑗((0...𝑁) ↑m (0...𝑀))
119117, 118nfrabw 3318 . . . . . . . . . . . . . 14 𝑗{𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}
120119nfcri 2894 . . . . . . . . . . . . 13 𝑗 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}
121114, 120nfan 1902 . . . . . . . . . . . 12 𝑗((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
122 nfv 1917 . . . . . . . . . . . 12 𝑗 𝑘 ∈ (0...𝑀)
123 nfv 1917 . . . . . . . . . . . 12 𝑗if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)
124121, 122, 123nf3an 1904 . . . . . . . . . . 11 𝑗(((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀) ∧ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘))
125 nfcv 2907 . . . . . . . . . . 11 𝑗(((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘))‘𝑥)
126 fzfid 13693 . . . . . . . . . . 11 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀) ∧ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → (0...𝑀) ∈ Fin)
1271ad3antrrr 727 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑗 ∈ (0...𝑀)) → 𝑆 ∈ {ℝ, ℂ})
1282ad3antrrr 727 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑗 ∈ (0...𝑀)) → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
1293ad3antrrr 727 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑗 ∈ (0...𝑀)) → 𝑃 ∈ ℕ)
130 etransclem5 43780 . . . . . . . . . . . . . . 15 (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) = (𝑘 ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))
1317, 130eqtri 2766 . . . . . . . . . . . . . 14 𝐻 = (𝑘 ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))
132 simpr 485 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑗 ∈ (0...𝑀)) → 𝑗 ∈ (0...𝑀))
13323ad2antlr 724 . . . . . . . . . . . . . . . . 17 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑗 ∈ (0...𝑀)) → 𝑐:(0...𝑀)⟶(0...𝑁))
134 simpr 485 . . . . . . . . . . . . . . . . 17 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑗 ∈ (0...𝑀)) → 𝑗 ∈ (0...𝑀))
135133, 134ffvelrnd 6962 . . . . . . . . . . . . . . . 16 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑗 ∈ (0...𝑀)) → (𝑐𝑗) ∈ (0...𝑁))
136135adantllr 716 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑗 ∈ (0...𝑀)) → (𝑐𝑗) ∈ (0...𝑁))
137 elfznn0 13349 . . . . . . . . . . . . . . 15 ((𝑐𝑗) ∈ (0...𝑁) → (𝑐𝑗) ∈ ℕ0)
138136, 137syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑗 ∈ (0...𝑀)) → (𝑐𝑗) ∈ ℕ0)
139127, 128, 129, 131, 132, 138etransclem20 43795 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑗 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗)):𝑋⟶ℂ)
140 simpllr 773 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑗 ∈ (0...𝑀)) → 𝑥𝑋)
141139, 140ffvelrnd 6962 . . . . . . . . . . . 12 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑗 ∈ (0...𝑀)) → (((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥) ∈ ℂ)
1421413ad2antl1 1184 . . . . . . . . . . 11 (((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀) ∧ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) ∧ 𝑗 ∈ (0...𝑀)) → (((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥) ∈ ℂ)
143 fveq2 6774 . . . . . . . . . . . . . 14 (𝑗 = 𝑘 → (𝐻𝑗) = (𝐻𝑘))
144143oveq2d 7291 . . . . . . . . . . . . 13 (𝑗 = 𝑘 → (𝑆 D𝑛 (𝐻𝑗)) = (𝑆 D𝑛 (𝐻𝑘)))
145144, 42fveq12d 6781 . . . . . . . . . . . 12 (𝑗 = 𝑘 → ((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗)) = ((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘)))
146145fveq1d 6776 . . . . . . . . . . 11 (𝑗 = 𝑘 → (((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥) = (((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘))‘𝑥))
147 simp2 1136 . . . . . . . . . . 11 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀) ∧ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → 𝑘 ∈ (0...𝑀))
1481ad2antrr 723 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) → 𝑆 ∈ {ℝ, ℂ})
1491483ad2ant1 1132 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀) ∧ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → 𝑆 ∈ {ℝ, ℂ})
1502ad2antrr 723 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
1511503ad2ant1 1132 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀) ∧ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
1523ad2antrr 723 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) → 𝑃 ∈ ℕ)
1531523ad2ant1 1132 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀) ∧ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → 𝑃 ∈ ℕ)
154 etransclem5 43780 . . . . . . . . . . . . . 14 (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) = ( ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦)↑if( = 0, (𝑃 − 1), 𝑃))))
1557, 154eqtri 2766 . . . . . . . . . . . . 13 𝐻 = ( ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦)↑if( = 0, (𝑃 − 1), 𝑃))))
15625elfzelzd 13257 . . . . . . . . . . . . . . 15 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀)) → (𝑐𝑘) ∈ ℤ)
157156adantllr 716 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀)) → (𝑐𝑘) ∈ ℤ)
1581573adant3 1131 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀) ∧ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → (𝑐𝑘) ∈ ℤ)
159 simp3 1137 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀) ∧ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘))
160149, 151, 153, 155, 147, 158, 159etransclem19 43794 . . . . . . . . . . . 12 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀) ∧ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → ((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘)) = (𝑦𝑋 ↦ 0))
161 eqidd 2739 . . . . . . . . . . . 12 (((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀) ∧ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) ∧ 𝑦 = 𝑥) → 0 = 0)
162 simp1lr 1236 . . . . . . . . . . . 12 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀) ∧ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → 𝑥𝑋)
163 0red 10978 . . . . . . . . . . . 12 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀) ∧ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → 0 ∈ ℝ)
164160, 161, 162, 163fvmptd 6882 . . . . . . . . . . 11 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀) ∧ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → (((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘))‘𝑥) = 0)
165124, 125, 126, 142, 146, 147, 164fprod0 43137 . . . . . . . . . 10 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀) ∧ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥) = 0)
166165rexlimdv3a 3215 . . . . . . . . 9 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) → (∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘) → ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥) = 0))
167113, 166mpd 15 . . . . . . . 8 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) → ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥) = 0)
16814, 167syldan 591 . . . . . . 7 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥) = 0)
169168oveq2d 7291 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥)) = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · 0))
1706faccld 13998 . . . . . . . . . . 11 (𝜑 → (!‘𝑁) ∈ ℕ)
171170nncnd 11989 . . . . . . . . . 10 (𝜑 → (!‘𝑁) ∈ ℂ)
172171adantr 481 . . . . . . . . 9 ((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → (!‘𝑁) ∈ ℂ)
173 fzfid 13693 . . . . . . . . . 10 ((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → (0...𝑀) ∈ Fin)
174 simpll 764 . . . . . . . . . . . . . 14 (((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → 𝜑)
17513adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
176 simpr 485 . . . . . . . . . . . . . 14 (((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → 𝑗 ∈ (0...𝑀))
177174, 175, 176, 135syl21anc 835 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (𝑐𝑗) ∈ (0...𝑁))
178177, 137syl 17 . . . . . . . . . . . 12 (((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (𝑐𝑗) ∈ ℕ0)
179178faccld 13998 . . . . . . . . . . 11 (((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (!‘(𝑐𝑗)) ∈ ℕ)
180179nncnd 11989 . . . . . . . . . 10 (((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (!‘(𝑐𝑗)) ∈ ℂ)
181173, 180fprodcl 15662 . . . . . . . . 9 ((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗)) ∈ ℂ)
182179nnne0d 12023 . . . . . . . . . 10 (((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (!‘(𝑐𝑗)) ≠ 0)
183173, 180, 182fprodn0 15689 . . . . . . . . 9 ((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗)) ≠ 0)
184172, 181, 183divcld 11751 . . . . . . . 8 ((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) ∈ ℂ)
185184mul01d 11174 . . . . . . 7 ((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · 0) = 0)
186185adantlr 712 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · 0) = 0)
187169, 186eqtrd 2778 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥)) = 0)
188187sumeq2dv 15415 . . . 4 ((𝜑𝑥𝑋) → Σ𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥)) = Σ𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)0)
189 eqid 2738 . . . . . . . 8 (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚}) = (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})
190189, 6etransclem16 43791 . . . . . . 7 (𝜑 → ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁) ∈ Fin)
191190olcd 871 . . . . . 6 (𝜑 → (((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁) ⊆ (ℤ𝐴) ∨ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁) ∈ Fin))
192191adantr 481 . . . . 5 ((𝜑𝑥𝑋) → (((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁) ⊆ (ℤ𝐴) ∨ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁) ∈ Fin))
193 sumz 15434 . . . . 5 ((((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁) ⊆ (ℤ𝐴) ∨ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁) ∈ Fin) → Σ𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)0 = 0)
194192, 193syl 17 . . . 4 ((𝜑𝑥𝑋) → Σ𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)0 = 0)
195188, 194eqtrd 2778 . . 3 ((𝜑𝑥𝑋) → Σ𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥)) = 0)
196195mpteq2dva 5174 . 2 (𝜑 → (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥))) = (𝑥𝑋 ↦ 0))
1979, 196eqtrd 2778 1 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥𝑋 ↦ 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065  {crab 3068  wss 3887  ifcif 4459  {cpr 4563   class class class wbr 5074  cmpt 5157  wf 6429  cfv 6433  (class class class)co 7275  m cmap 8615  Fincfn 8733  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  cn 11973  0cn0 12233  cz 12319  cuz 12582  ...cfz 13239  cexp 13782  !cfa 13987  chash 14044  Σcsu 15397  cprod 15615  t crest 17131  TopOpenctopn 17132  fldccnfld 20597   D𝑛 cdvn 25028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-prod 15616  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-limc 25030  df-dv 25031  df-dvn 25032
This theorem is referenced by:  etransclem46  43821
  Copyright terms: Public domain W3C validator