Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem32 Structured version   Visualization version   GIF version

Theorem etransclem32 42093
Description: This is the proof for the last equation in the proof of the derivative calculated in [Juillerat] p. 12, just after equation *(6) . (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem32.s (𝜑𝑆 ∈ {ℝ, ℂ})
etransclem32.x (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
etransclem32.p (𝜑𝑃 ∈ ℕ)
etransclem32.m (𝜑𝑀 ∈ ℕ0)
etransclem32.f 𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
etransclem32.n (𝜑𝑁 ∈ ℕ0)
etransclem32.ngt (𝜑 → ((𝑀 · 𝑃) + (𝑃 − 1)) < 𝑁)
etransclem32.h 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
Assertion
Ref Expression
etransclem32 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥𝑋 ↦ 0))
Distinct variable groups:   𝑗,𝐻,𝑥   𝑗,𝑀,𝑥   𝑗,𝑁,𝑥   𝑃,𝑗,𝑥   𝑆,𝑗,𝑥   𝑗,𝑋,𝑥   𝜑,𝑗,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑗)

Proof of Theorem etransclem32
Dummy variables 𝐴 𝑐 𝑘 𝑛 𝑑 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 etransclem32.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
2 etransclem32.x . . 3 (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
3 etransclem32.p . . 3 (𝜑𝑃 ∈ ℕ)
4 etransclem32.m . . 3 (𝜑𝑀 ∈ ℕ0)
5 etransclem32.f . . 3 𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
6 etransclem32.n . . 3 (𝜑𝑁 ∈ ℕ0)
7 etransclem32.h . . 3 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
8 etransclem11 42072 . . 3 (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚}) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
91, 2, 3, 4, 5, 6, 7, 8etransclem30 42091 . 2 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥))))
10 simpr 485 . . . . . . . . . 10 ((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁))
118, 6etransclem12 42073 . . . . . . . . . . 11 (𝜑 → ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁) = {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
1211adantr 481 . . . . . . . . . 10 ((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁) = {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
1310, 12eleqtrd 2885 . . . . . . . . 9 ((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
1413adantlr 711 . . . . . . . 8 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
15 nfv 1892 . . . . . . . . . . . . . 14 𝑘(𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
16 nfre1 3269 . . . . . . . . . . . . . . 15 𝑘𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)
1716nfn 1838 . . . . . . . . . . . . . 14 𝑘 ¬ ∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)
1815, 17nfan 1881 . . . . . . . . . . . . 13 𝑘((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ¬ ∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘))
19 fzssre 41122 . . . . . . . . . . . . . . . . 17 (0...𝑁) ⊆ ℝ
20 rabid 3337 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} ↔ (𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∧ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁))
2120simplbi 498 . . . . . . . . . . . . . . . . . . . 20 (𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → 𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)))
22 elmapi 8278 . . . . . . . . . . . . . . . . . . . 20 (𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) → 𝑐:(0...𝑀)⟶(0...𝑁))
2321, 22syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → 𝑐:(0...𝑀)⟶(0...𝑁))
2423adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) → 𝑐:(0...𝑀)⟶(0...𝑁))
2524ffvelrnda 6716 . . . . . . . . . . . . . . . . 17 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀)) → (𝑐𝑘) ∈ (0...𝑁))
2619, 25sseldi 3887 . . . . . . . . . . . . . . . 16 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀)) → (𝑐𝑘) ∈ ℝ)
2726adantlr 711 . . . . . . . . . . . . . . 15 ((((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ¬ ∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) ∧ 𝑘 ∈ (0...𝑀)) → (𝑐𝑘) ∈ ℝ)
28 nnm1nn0 11786 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
293, 28syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑃 − 1) ∈ ℕ0)
3029nn0red 11804 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑃 − 1) ∈ ℝ)
313nnred 11501 . . . . . . . . . . . . . . . . 17 (𝜑𝑃 ∈ ℝ)
3230, 31ifcld 4426 . . . . . . . . . . . . . . . 16 (𝜑 → if(𝑘 = 0, (𝑃 − 1), 𝑃) ∈ ℝ)
3332ad3antrrr 726 . . . . . . . . . . . . . . 15 ((((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ¬ ∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) ∧ 𝑘 ∈ (0...𝑀)) → if(𝑘 = 0, (𝑃 − 1), 𝑃) ∈ ℝ)
34 ralnex 3200 . . . . . . . . . . . . . . . . . 18 (∀𝑘 ∈ (0...𝑀) ¬ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘) ↔ ¬ ∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘))
3534biimpri 229 . . . . . . . . . . . . . . . . 17 (¬ ∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘) → ∀𝑘 ∈ (0...𝑀) ¬ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘))
3635r19.21bi 3175 . . . . . . . . . . . . . . . 16 ((¬ ∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘) ∧ 𝑘 ∈ (0...𝑀)) → ¬ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘))
3736adantll 710 . . . . . . . . . . . . . . 15 ((((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ¬ ∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) ∧ 𝑘 ∈ (0...𝑀)) → ¬ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘))
3827, 33, 37nltled 10637 . . . . . . . . . . . . . 14 ((((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ¬ ∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) ∧ 𝑘 ∈ (0...𝑀)) → (𝑐𝑘) ≤ if(𝑘 = 0, (𝑃 − 1), 𝑃))
3938ex 413 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ¬ ∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → (𝑘 ∈ (0...𝑀) → (𝑐𝑘) ≤ if(𝑘 = 0, (𝑃 − 1), 𝑃)))
4018, 39ralrimi 3183 . . . . . . . . . . . 12 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ¬ ∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → ∀𝑘 ∈ (0...𝑀)(𝑐𝑘) ≤ if(𝑘 = 0, (𝑃 − 1), 𝑃))
41 fveq2 6538 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑘 → (𝑐𝑗) = (𝑐𝑘))
4241cbvsumv 14886 . . . . . . . . . . . . . . 15 Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = Σ𝑘 ∈ (0...𝑀)(𝑐𝑘)
4320simprbi 497 . . . . . . . . . . . . . . 15 (𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁)
4442, 43syl5reqr 2846 . . . . . . . . . . . . . 14 (𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → 𝑁 = Σ𝑘 ∈ (0...𝑀)(𝑐𝑘))
4544ad2antlr 723 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ∀𝑘 ∈ (0...𝑀)(𝑐𝑘) ≤ if(𝑘 = 0, (𝑃 − 1), 𝑃)) → 𝑁 = Σ𝑘 ∈ (0...𝑀)(𝑐𝑘))
46 fveq2 6538 . . . . . . . . . . . . . . 15 (𝑘 = → (𝑐𝑘) = (𝑐))
4746cbvsumv 14886 . . . . . . . . . . . . . 14 Σ𝑘 ∈ (0...𝑀)(𝑐𝑘) = Σ ∈ (0...𝑀)(𝑐)
48 fzfid 13191 . . . . . . . . . . . . . . . 16 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ∀𝑘 ∈ (0...𝑀)(𝑐𝑘) ≤ if(𝑘 = 0, (𝑃 − 1), 𝑃)) → (0...𝑀) ∈ Fin)
4924ffvelrnda 6716 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ∈ (0...𝑀)) → (𝑐) ∈ (0...𝑁))
5019, 49sseldi 3887 . . . . . . . . . . . . . . . . 17 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ∈ (0...𝑀)) → (𝑐) ∈ ℝ)
5150adantlr 711 . . . . . . . . . . . . . . . 16 ((((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ∀𝑘 ∈ (0...𝑀)(𝑐𝑘) ≤ if(𝑘 = 0, (𝑃 − 1), 𝑃)) ∧ ∈ (0...𝑀)) → (𝑐) ∈ ℝ)
5230, 31ifcld 4426 . . . . . . . . . . . . . . . . 17 (𝜑 → if( = 0, (𝑃 − 1), 𝑃) ∈ ℝ)
5352ad3antrrr 726 . . . . . . . . . . . . . . . 16 ((((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ∀𝑘 ∈ (0...𝑀)(𝑐𝑘) ≤ if(𝑘 = 0, (𝑃 − 1), 𝑃)) ∧ ∈ (0...𝑀)) → if( = 0, (𝑃 − 1), 𝑃) ∈ ℝ)
54 eqeq1 2799 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = → (𝑘 = 0 ↔ = 0))
5554ifbid 4403 . . . . . . . . . . . . . . . . . . 19 (𝑘 = → if(𝑘 = 0, (𝑃 − 1), 𝑃) = if( = 0, (𝑃 − 1), 𝑃))
5646, 55breq12d 4975 . . . . . . . . . . . . . . . . . 18 (𝑘 = → ((𝑐𝑘) ≤ if(𝑘 = 0, (𝑃 − 1), 𝑃) ↔ (𝑐) ≤ if( = 0, (𝑃 − 1), 𝑃)))
5756rspccva 3558 . . . . . . . . . . . . . . . . 17 ((∀𝑘 ∈ (0...𝑀)(𝑐𝑘) ≤ if(𝑘 = 0, (𝑃 − 1), 𝑃) ∧ ∈ (0...𝑀)) → (𝑐) ≤ if( = 0, (𝑃 − 1), 𝑃))
5857adantll 710 . . . . . . . . . . . . . . . 16 ((((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ∀𝑘 ∈ (0...𝑀)(𝑐𝑘) ≤ if(𝑘 = 0, (𝑃 − 1), 𝑃)) ∧ ∈ (0...𝑀)) → (𝑐) ≤ if( = 0, (𝑃 − 1), 𝑃))
5948, 51, 53, 58fsumle 14987 . . . . . . . . . . . . . . 15 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ∀𝑘 ∈ (0...𝑀)(𝑐𝑘) ≤ if(𝑘 = 0, (𝑃 − 1), 𝑃)) → Σ ∈ (0...𝑀)(𝑐) ≤ Σ ∈ (0...𝑀)if( = 0, (𝑃 − 1), 𝑃))
60 nn0uz 12129 . . . . . . . . . . . . . . . . . . 19 0 = (ℤ‘0)
614, 60syl6eleq 2893 . . . . . . . . . . . . . . . . . 18 (𝜑𝑀 ∈ (ℤ‘0))
623nnnn0d 11803 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑃 ∈ ℕ0)
6329, 62ifcld 4426 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → if( = 0, (𝑃 − 1), 𝑃) ∈ ℕ0)
6463adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∈ (0...𝑀)) → if( = 0, (𝑃 − 1), 𝑃) ∈ ℕ0)
6564nn0cnd 11805 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∈ (0...𝑀)) → if( = 0, (𝑃 − 1), 𝑃) ∈ ℂ)
66 iftrue 4387 . . . . . . . . . . . . . . . . . 18 ( = 0 → if( = 0, (𝑃 − 1), 𝑃) = (𝑃 − 1))
6761, 65, 66fsum1p 14941 . . . . . . . . . . . . . . . . 17 (𝜑 → Σ ∈ (0...𝑀)if( = 0, (𝑃 − 1), 𝑃) = ((𝑃 − 1) + Σ ∈ ((0 + 1)...𝑀)if( = 0, (𝑃 − 1), 𝑃)))
68 0p1e1 11607 . . . . . . . . . . . . . . . . . . . . . 22 (0 + 1) = 1
6968oveq1i 7026 . . . . . . . . . . . . . . . . . . . . 21 ((0 + 1)...𝑀) = (1...𝑀)
7069a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((0 + 1)...𝑀) = (1...𝑀))
7170sumeq1d 14891 . . . . . . . . . . . . . . . . . . 19 (𝜑 → Σ ∈ ((0 + 1)...𝑀)if( = 0, (𝑃 − 1), 𝑃) = Σ ∈ (1...𝑀)if( = 0, (𝑃 − 1), 𝑃))
72 0red 10490 . . . . . . . . . . . . . . . . . . . . . . . . 25 ( ∈ (1...𝑀) → 0 ∈ ℝ)
73 1red 10488 . . . . . . . . . . . . . . . . . . . . . . . . 25 ( ∈ (1...𝑀) → 1 ∈ ℝ)
74 elfzelz 12758 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ( ∈ (1...𝑀) → ∈ ℤ)
7574zred 11936 . . . . . . . . . . . . . . . . . . . . . . . . 25 ( ∈ (1...𝑀) → ∈ ℝ)
76 0lt1 11010 . . . . . . . . . . . . . . . . . . . . . . . . . 26 0 < 1
7776a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 ( ∈ (1...𝑀) → 0 < 1)
78 elfzle1 12760 . . . . . . . . . . . . . . . . . . . . . . . . 25 ( ∈ (1...𝑀) → 1 ≤ )
7972, 73, 75, 77, 78ltletrd 10647 . . . . . . . . . . . . . . . . . . . . . . . 24 ( ∈ (1...𝑀) → 0 < )
8079gt0ne0d 11052 . . . . . . . . . . . . . . . . . . . . . . 23 ( ∈ (1...𝑀) → ≠ 0)
8180neneqd 2989 . . . . . . . . . . . . . . . . . . . . . 22 ( ∈ (1...𝑀) → ¬ = 0)
8281iffalsed 4392 . . . . . . . . . . . . . . . . . . . . 21 ( ∈ (1...𝑀) → if( = 0, (𝑃 − 1), 𝑃) = 𝑃)
8382adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∈ (1...𝑀)) → if( = 0, (𝑃 − 1), 𝑃) = 𝑃)
8483sumeq2dv 14893 . . . . . . . . . . . . . . . . . . 19 (𝜑 → Σ ∈ (1...𝑀)if( = 0, (𝑃 − 1), 𝑃) = Σ ∈ (1...𝑀)𝑃)
85 fzfid 13191 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (1...𝑀) ∈ Fin)
863nncnd 11502 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑃 ∈ ℂ)
87 fsumconst 14978 . . . . . . . . . . . . . . . . . . . . 21 (((1...𝑀) ∈ Fin ∧ 𝑃 ∈ ℂ) → Σ ∈ (1...𝑀)𝑃 = ((♯‘(1...𝑀)) · 𝑃))
8885, 86, 87syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → Σ ∈ (1...𝑀)𝑃 = ((♯‘(1...𝑀)) · 𝑃))
89 hashfz1 13556 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ∈ ℕ0 → (♯‘(1...𝑀)) = 𝑀)
904, 89syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (♯‘(1...𝑀)) = 𝑀)
9190oveq1d 7031 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((♯‘(1...𝑀)) · 𝑃) = (𝑀 · 𝑃))
9288, 91eqtrd 2831 . . . . . . . . . . . . . . . . . . 19 (𝜑 → Σ ∈ (1...𝑀)𝑃 = (𝑀 · 𝑃))
9371, 84, 923eqtrd 2835 . . . . . . . . . . . . . . . . . 18 (𝜑 → Σ ∈ ((0 + 1)...𝑀)if( = 0, (𝑃 − 1), 𝑃) = (𝑀 · 𝑃))
9493oveq2d 7032 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑃 − 1) + Σ ∈ ((0 + 1)...𝑀)if( = 0, (𝑃 − 1), 𝑃)) = ((𝑃 − 1) + (𝑀 · 𝑃)))
9529nn0cnd 11805 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑃 − 1) ∈ ℂ)
964, 62nn0mulcld 11808 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑀 · 𝑃) ∈ ℕ0)
9796nn0cnd 11805 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑀 · 𝑃) ∈ ℂ)
9895, 97addcomd 10689 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑃 − 1) + (𝑀 · 𝑃)) = ((𝑀 · 𝑃) + (𝑃 − 1)))
9967, 94, 983eqtrd 2835 . . . . . . . . . . . . . . . 16 (𝜑 → Σ ∈ (0...𝑀)if( = 0, (𝑃 − 1), 𝑃) = ((𝑀 · 𝑃) + (𝑃 − 1)))
10099ad2antrr 722 . . . . . . . . . . . . . . 15 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ∀𝑘 ∈ (0...𝑀)(𝑐𝑘) ≤ if(𝑘 = 0, (𝑃 − 1), 𝑃)) → Σ ∈ (0...𝑀)if( = 0, (𝑃 − 1), 𝑃) = ((𝑀 · 𝑃) + (𝑃 − 1)))
10159, 100breqtrd 4988 . . . . . . . . . . . . . 14 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ∀𝑘 ∈ (0...𝑀)(𝑐𝑘) ≤ if(𝑘 = 0, (𝑃 − 1), 𝑃)) → Σ ∈ (0...𝑀)(𝑐) ≤ ((𝑀 · 𝑃) + (𝑃 − 1)))
10247, 101eqbrtrid 4997 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ∀𝑘 ∈ (0...𝑀)(𝑐𝑘) ≤ if(𝑘 = 0, (𝑃 − 1), 𝑃)) → Σ𝑘 ∈ (0...𝑀)(𝑐𝑘) ≤ ((𝑀 · 𝑃) + (𝑃 − 1)))
10345, 102eqbrtrd 4984 . . . . . . . . . . . 12 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ∀𝑘 ∈ (0...𝑀)(𝑐𝑘) ≤ if(𝑘 = 0, (𝑃 − 1), 𝑃)) → 𝑁 ≤ ((𝑀 · 𝑃) + (𝑃 − 1)))
10440, 103syldan 591 . . . . . . . . . . 11 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ¬ ∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → 𝑁 ≤ ((𝑀 · 𝑃) + (𝑃 − 1)))
105 etransclem32.ngt . . . . . . . . . . . . 13 (𝜑 → ((𝑀 · 𝑃) + (𝑃 − 1)) < 𝑁)
10696, 29nn0addcld 11807 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑀 · 𝑃) + (𝑃 − 1)) ∈ ℕ0)
107106nn0red 11804 . . . . . . . . . . . . . 14 (𝜑 → ((𝑀 · 𝑃) + (𝑃 − 1)) ∈ ℝ)
1086nn0red 11804 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℝ)
109107, 108ltnled 10634 . . . . . . . . . . . . 13 (𝜑 → (((𝑀 · 𝑃) + (𝑃 − 1)) < 𝑁 ↔ ¬ 𝑁 ≤ ((𝑀 · 𝑃) + (𝑃 − 1))))
110105, 109mpbid 233 . . . . . . . . . . . 12 (𝜑 → ¬ 𝑁 ≤ ((𝑀 · 𝑃) + (𝑃 − 1)))
111110ad2antrr 722 . . . . . . . . . . 11 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ¬ ∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → ¬ 𝑁 ≤ ((𝑀 · 𝑃) + (𝑃 − 1)))
112104, 111condan 814 . . . . . . . . . 10 ((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) → ∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘))
113112adantlr 711 . . . . . . . . 9 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) → ∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘))
114 nfv 1892 . . . . . . . . . . . . 13 𝑗(𝜑𝑥𝑋)
115 nfcv 2949 . . . . . . . . . . . . . . . . 17 𝑗(0...𝑀)
116115nfsum1 14880 . . . . . . . . . . . . . . . 16 𝑗Σ𝑗 ∈ (0...𝑀)(𝑐𝑗)
117116nfeq1 2962 . . . . . . . . . . . . . . 15 𝑗Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁
118 nfcv 2949 . . . . . . . . . . . . . . 15 𝑗((0...𝑁) ↑𝑚 (0...𝑀))
119117, 118nfrab 3345 . . . . . . . . . . . . . 14 𝑗{𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}
120119nfcri 2943 . . . . . . . . . . . . 13 𝑗 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}
121114, 120nfan 1881 . . . . . . . . . . . 12 𝑗((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
122 nfv 1892 . . . . . . . . . . . 12 𝑗 𝑘 ∈ (0...𝑀)
123 nfv 1892 . . . . . . . . . . . 12 𝑗if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)
124121, 122, 123nf3an 1883 . . . . . . . . . . 11 𝑗(((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀) ∧ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘))
125 nfcv 2949 . . . . . . . . . . 11 𝑗(((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘))‘𝑥)
126 fzfid 13191 . . . . . . . . . . 11 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀) ∧ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → (0...𝑀) ∈ Fin)
1271ad3antrrr 726 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑗 ∈ (0...𝑀)) → 𝑆 ∈ {ℝ, ℂ})
1282ad3antrrr 726 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑗 ∈ (0...𝑀)) → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
1293ad3antrrr 726 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑗 ∈ (0...𝑀)) → 𝑃 ∈ ℕ)
130 etransclem5 42066 . . . . . . . . . . . . . . 15 (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) = (𝑘 ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))
1317, 130eqtri 2819 . . . . . . . . . . . . . 14 𝐻 = (𝑘 ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))
132 simpr 485 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑗 ∈ (0...𝑀)) → 𝑗 ∈ (0...𝑀))
13323ad2antlr 723 . . . . . . . . . . . . . . . . 17 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑗 ∈ (0...𝑀)) → 𝑐:(0...𝑀)⟶(0...𝑁))
134 simpr 485 . . . . . . . . . . . . . . . . 17 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑗 ∈ (0...𝑀)) → 𝑗 ∈ (0...𝑀))
135133, 134ffvelrnd 6717 . . . . . . . . . . . . . . . 16 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑗 ∈ (0...𝑀)) → (𝑐𝑗) ∈ (0...𝑁))
136135adantllr 715 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑗 ∈ (0...𝑀)) → (𝑐𝑗) ∈ (0...𝑁))
137 elfznn0 12850 . . . . . . . . . . . . . . 15 ((𝑐𝑗) ∈ (0...𝑁) → (𝑐𝑗) ∈ ℕ0)
138136, 137syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑗 ∈ (0...𝑀)) → (𝑐𝑗) ∈ ℕ0)
139127, 128, 129, 131, 132, 138etransclem20 42081 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑗 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗)):𝑋⟶ℂ)
140 simpllr 772 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑗 ∈ (0...𝑀)) → 𝑥𝑋)
141139, 140ffvelrnd 6717 . . . . . . . . . . . 12 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑗 ∈ (0...𝑀)) → (((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥) ∈ ℂ)
1421413ad2antl1 1178 . . . . . . . . . . 11 (((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀) ∧ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) ∧ 𝑗 ∈ (0...𝑀)) → (((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥) ∈ ℂ)
143 fveq2 6538 . . . . . . . . . . . . . 14 (𝑗 = 𝑘 → (𝐻𝑗) = (𝐻𝑘))
144143oveq2d 7032 . . . . . . . . . . . . 13 (𝑗 = 𝑘 → (𝑆 D𝑛 (𝐻𝑗)) = (𝑆 D𝑛 (𝐻𝑘)))
145144, 41fveq12d 6545 . . . . . . . . . . . 12 (𝑗 = 𝑘 → ((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗)) = ((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘)))
146145fveq1d 6540 . . . . . . . . . . 11 (𝑗 = 𝑘 → (((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥) = (((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘))‘𝑥))
147 simp2 1130 . . . . . . . . . . 11 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀) ∧ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → 𝑘 ∈ (0...𝑀))
1481ad2antrr 722 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) → 𝑆 ∈ {ℝ, ℂ})
1491483ad2ant1 1126 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀) ∧ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → 𝑆 ∈ {ℝ, ℂ})
1502ad2antrr 722 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
1511503ad2ant1 1126 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀) ∧ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
1523ad2antrr 722 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) → 𝑃 ∈ ℕ)
1531523ad2ant1 1126 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀) ∧ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → 𝑃 ∈ ℕ)
154 etransclem5 42066 . . . . . . . . . . . . . 14 (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) = ( ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦)↑if( = 0, (𝑃 − 1), 𝑃))))
1557, 154eqtri 2819 . . . . . . . . . . . . 13 𝐻 = ( ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦)↑if( = 0, (𝑃 − 1), 𝑃))))
156 fzssz 12759 . . . . . . . . . . . . . . . 16 (0...𝑁) ⊆ ℤ
157156, 25sseldi 3887 . . . . . . . . . . . . . . 15 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀)) → (𝑐𝑘) ∈ ℤ)
158157adantllr 715 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀)) → (𝑐𝑘) ∈ ℤ)
1591583adant3 1125 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀) ∧ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → (𝑐𝑘) ∈ ℤ)
160 simp3 1131 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀) ∧ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘))
161149, 151, 153, 155, 147, 159, 160etransclem19 42080 . . . . . . . . . . . 12 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀) ∧ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → ((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘)) = (𝑦𝑋 ↦ 0))
162 eqidd 2796 . . . . . . . . . . . 12 (((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀) ∧ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) ∧ 𝑦 = 𝑥) → 0 = 0)
163 simp1lr 1230 . . . . . . . . . . . 12 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀) ∧ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → 𝑥𝑋)
164 0red 10490 . . . . . . . . . . . 12 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀) ∧ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → 0 ∈ ℝ)
165161, 162, 163, 164fvmptd 6641 . . . . . . . . . . 11 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀) ∧ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → (((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘))‘𝑥) = 0)
166124, 125, 126, 142, 146, 147, 165fprod0 41419 . . . . . . . . . 10 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀) ∧ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥) = 0)
167166rexlimdv3a 3249 . . . . . . . . 9 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) → (∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘) → ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥) = 0))
168113, 167mpd 15 . . . . . . . 8 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) → ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥) = 0)
16914, 168syldan 591 . . . . . . 7 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥) = 0)
170169oveq2d 7032 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥)) = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · 0))
1716faccld 13494 . . . . . . . . . . 11 (𝜑 → (!‘𝑁) ∈ ℕ)
172171nncnd 11502 . . . . . . . . . 10 (𝜑 → (!‘𝑁) ∈ ℂ)
173172adantr 481 . . . . . . . . 9 ((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → (!‘𝑁) ∈ ℂ)
174 fzfid 13191 . . . . . . . . . 10 ((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → (0...𝑀) ∈ Fin)
175 simpll 763 . . . . . . . . . . . . . 14 (((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → 𝜑)
17613adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
177 simpr 485 . . . . . . . . . . . . . 14 (((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → 𝑗 ∈ (0...𝑀))
178175, 176, 177, 135syl21anc 834 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (𝑐𝑗) ∈ (0...𝑁))
179178, 137syl 17 . . . . . . . . . . . 12 (((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (𝑐𝑗) ∈ ℕ0)
180179faccld 13494 . . . . . . . . . . 11 (((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (!‘(𝑐𝑗)) ∈ ℕ)
181180nncnd 11502 . . . . . . . . . 10 (((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (!‘(𝑐𝑗)) ∈ ℂ)
182174, 181fprodcl 15139 . . . . . . . . 9 ((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗)) ∈ ℂ)
183180nnne0d 11535 . . . . . . . . . 10 (((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (!‘(𝑐𝑗)) ≠ 0)
184174, 181, 183fprodn0 15166 . . . . . . . . 9 ((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗)) ≠ 0)
185173, 182, 184divcld 11264 . . . . . . . 8 ((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) ∈ ℂ)
186185mul01d 10686 . . . . . . 7 ((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · 0) = 0)
187186adantlr 711 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · 0) = 0)
188170, 187eqtrd 2831 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥)) = 0)
189188sumeq2dv 14893 . . . 4 ((𝜑𝑥𝑋) → Σ𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥)) = Σ𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)0)
190 eqid 2795 . . . . . . . 8 (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚}) = (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})
191190, 6etransclem16 42077 . . . . . . 7 (𝜑 → ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁) ∈ Fin)
192191olcd 871 . . . . . 6 (𝜑 → (((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁) ⊆ (ℤ𝐴) ∨ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁) ∈ Fin))
193192adantr 481 . . . . 5 ((𝜑𝑥𝑋) → (((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁) ⊆ (ℤ𝐴) ∨ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁) ∈ Fin))
194 sumz 14912 . . . . 5 ((((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁) ⊆ (ℤ𝐴) ∨ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁) ∈ Fin) → Σ𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)0 = 0)
195193, 194syl 17 . . . 4 ((𝜑𝑥𝑋) → Σ𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)0 = 0)
196189, 195eqtrd 2831 . . 3 ((𝜑𝑥𝑋) → Σ𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥)) = 0)
197196mpteq2dva 5055 . 2 (𝜑 → (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥))) = (𝑥𝑋 ↦ 0))
1989, 197eqtrd 2831 1 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥𝑋 ↦ 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 842  w3a 1080   = wceq 1522  wcel 2081  wral 3105  wrex 3106  {crab 3109  wss 3859  ifcif 4381  {cpr 4474   class class class wbr 4962  cmpt 5041  wf 6221  cfv 6225  (class class class)co 7016  𝑚 cmap 8256  Fincfn 8357  cc 10381  cr 10382  0cc0 10383  1c1 10384   + caddc 10386   · cmul 10388   < clt 10521  cle 10522  cmin 10717   / cdiv 11145  cn 11486  0cn0 11745  cz 11829  cuz 12093  ...cfz 12742  cexp 13279  !cfa 13483  chash 13540  Σcsu 14876  cprod 15092  t crest 16523  TopOpenctopn 16524  fldccnfld 20227   D𝑛 cdvn 24145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-inf2 8950  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461  ax-addf 10462  ax-mulf 10463
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-iin 4828  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-se 5403  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-isom 6234  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-of 7267  df-om 7437  df-1st 7545  df-2nd 7546  df-supp 7682  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-2o 7954  df-oadd 7957  df-er 8139  df-map 8258  df-pm 8259  df-ixp 8311  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-fsupp 8680  df-fi 8721  df-sup 8752  df-inf 8753  df-oi 8820  df-card 9214  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-3 11549  df-4 11550  df-5 11551  df-6 11552  df-7 11553  df-8 11554  df-9 11555  df-n0 11746  df-z 11830  df-dec 11948  df-uz 12094  df-q 12198  df-rp 12240  df-xneg 12357  df-xadd 12358  df-xmul 12359  df-ico 12594  df-icc 12595  df-fz 12743  df-fzo 12884  df-seq 13220  df-exp 13280  df-fac 13484  df-bc 13513  df-hash 13541  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-clim 14679  df-sum 14877  df-prod 15093  df-struct 16314  df-ndx 16315  df-slot 16316  df-base 16318  df-sets 16319  df-ress 16320  df-plusg 16407  df-mulr 16408  df-starv 16409  df-sca 16410  df-vsca 16411  df-ip 16412  df-tset 16413  df-ple 16414  df-ds 16416  df-unif 16417  df-hom 16418  df-cco 16419  df-rest 16525  df-topn 16526  df-0g 16544  df-gsum 16545  df-topgen 16546  df-pt 16547  df-prds 16550  df-xrs 16604  df-qtop 16609  df-imas 16610  df-xps 16612  df-mre 16686  df-mrc 16687  df-acs 16689  df-mgm 17681  df-sgrp 17723  df-mnd 17734  df-submnd 17775  df-mulg 17982  df-cntz 18188  df-cmn 18635  df-psmet 20219  df-xmet 20220  df-met 20221  df-bl 20222  df-mopn 20223  df-fbas 20224  df-fg 20225  df-cnfld 20228  df-top 21186  df-topon 21203  df-topsp 21225  df-bases 21238  df-cld 21311  df-ntr 21312  df-cls 21313  df-nei 21390  df-lp 21428  df-perf 21429  df-cn 21519  df-cnp 21520  df-haus 21607  df-tx 21854  df-hmeo 22047  df-fil 22138  df-fm 22230  df-flim 22231  df-flf 22232  df-xms 22613  df-ms 22614  df-tms 22615  df-cncf 23169  df-limc 24147  df-dv 24148  df-dvn 24149
This theorem is referenced by:  etransclem46  42107
  Copyright terms: Public domain W3C validator