| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp1rl | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp1rl | ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜃 ∧ 𝜏) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl 770 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓)) → 𝜑) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜃 ∧ 𝜏) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: f1imass 7198 smo11 8284 zsupss 12835 lsmcv 21079 lspsolvlem 21080 mat2pmatghm 22646 mat2pmatmul 22647 plyadd 26150 plymul 26151 coeeu 26158 aannenlem1 26264 logexprlim 27164 ax5seglem6 28913 ax5seg 28917 mdetpmtr1 33834 mdetpmtr2 33835 wsuclem 35865 btwnconn1lem2 36128 btwnconn1lem3 36129 btwnconn1lem4 36130 btwnconn1lem12 36138 lshpsmreu 39154 2llnmat 39569 lvolex3N 39583 lnjatN 39825 pclfinclN 39995 lhpat3 40091 cdlemd6 40248 cdlemfnid 40609 cdlemk19ylem 40975 dihlsscpre 41279 dih1dimb2 41286 dihglblem6 41385 pellex 42874 tfsconcatrn 43381 mullimc 45662 mullimcf 45669 limcperiod 45674 cncfshift 45918 cncfperiod 45923 |
| Copyright terms: Public domain | W3C validator |