Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp1rl | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp1rl | ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜃 ∧ 𝜏) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl 767 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓)) → 𝜑) | |
2 | 1 | 3ad2ant1 1131 | 1 ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜃 ∧ 𝜏) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: f1imass 7131 smo11 8179 zsupss 12659 lsmcv 20384 lspsolvlem 20385 mat2pmatghm 21860 mat2pmatmul 21861 plyadd 25359 plymul 25360 coeeu 25367 aannenlem1 25469 logexprlim 26354 ax5seglem6 27283 ax5seg 27287 mdetpmtr1 31752 mdetpmtr2 31753 wsuclem 33798 btwnconn1lem2 34369 btwnconn1lem3 34370 btwnconn1lem4 34371 btwnconn1lem12 34379 lshpsmreu 37102 2llnmat 37517 lvolex3N 37531 lnjatN 37773 pclfinclN 37943 lhpat3 38039 cdlemd6 38196 cdlemfnid 38557 cdlemk19ylem 38923 dihlsscpre 39227 dih1dimb2 39234 dihglblem6 39333 pellex 40637 mullimc 43111 mullimcf 43118 limcperiod 43123 cncfshift 43369 cncfperiod 43374 |
Copyright terms: Public domain | W3C validator |