| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp1rl | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp1rl | ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜃 ∧ 𝜏) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl 771 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓)) → 𝜑) | |
| 2 | 1 | 3ad2ant1 1134 | 1 ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜃 ∧ 𝜏) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
| This theorem is referenced by: f1imass 7284 smo11 8404 zsupss 12979 lsmcv 21143 lspsolvlem 21144 mat2pmatghm 22736 mat2pmatmul 22737 plyadd 26256 plymul 26257 coeeu 26264 aannenlem1 26370 logexprlim 27269 ax5seglem6 28949 ax5seg 28953 mdetpmtr1 33822 mdetpmtr2 33823 wsuclem 35826 btwnconn1lem2 36089 btwnconn1lem3 36090 btwnconn1lem4 36091 btwnconn1lem12 36099 lshpsmreu 39110 2llnmat 39526 lvolex3N 39540 lnjatN 39782 pclfinclN 39952 lhpat3 40048 cdlemd6 40205 cdlemfnid 40566 cdlemk19ylem 40932 dihlsscpre 41236 dih1dimb2 41243 dihglblem6 41342 pellex 42846 tfsconcatrn 43355 mullimc 45631 mullimcf 45638 limcperiod 45643 cncfshift 45889 cncfperiod 45894 |
| Copyright terms: Public domain | W3C validator |