| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp1rl | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp1rl | ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜃 ∧ 𝜏) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl 770 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓)) → 𝜑) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜃 ∧ 𝜏) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: f1imass 7205 smo11 8294 zsupss 12856 lsmcv 21066 lspsolvlem 21067 mat2pmatghm 22633 mat2pmatmul 22634 plyadd 26138 plymul 26139 coeeu 26146 aannenlem1 26252 logexprlim 27152 ax5seglem6 28897 ax5seg 28901 mdetpmtr1 33792 mdetpmtr2 33793 wsuclem 35801 btwnconn1lem2 36064 btwnconn1lem3 36065 btwnconn1lem4 36066 btwnconn1lem12 36074 lshpsmreu 39090 2llnmat 39506 lvolex3N 39520 lnjatN 39762 pclfinclN 39932 lhpat3 40028 cdlemd6 40185 cdlemfnid 40546 cdlemk19ylem 40912 dihlsscpre 41216 dih1dimb2 41223 dihglblem6 41322 pellex 42811 tfsconcatrn 43318 mullimc 45601 mullimcf 45608 limcperiod 45613 cncfshift 45859 cncfperiod 45864 |
| Copyright terms: Public domain | W3C validator |