| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp1rl | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp1rl | ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜃 ∧ 𝜏) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl 770 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓)) → 𝜑) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜃 ∧ 𝜏) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: f1imass 7257 smo11 8378 zsupss 12953 lsmcv 21102 lspsolvlem 21103 mat2pmatghm 22668 mat2pmatmul 22669 plyadd 26174 plymul 26175 coeeu 26182 aannenlem1 26288 logexprlim 27188 ax5seglem6 28913 ax5seg 28917 mdetpmtr1 33854 mdetpmtr2 33855 wsuclem 35843 btwnconn1lem2 36106 btwnconn1lem3 36107 btwnconn1lem4 36108 btwnconn1lem12 36116 lshpsmreu 39127 2llnmat 39543 lvolex3N 39557 lnjatN 39799 pclfinclN 39969 lhpat3 40065 cdlemd6 40222 cdlemfnid 40583 cdlemk19ylem 40949 dihlsscpre 41253 dih1dimb2 41260 dihglblem6 41359 pellex 42858 tfsconcatrn 43366 mullimc 45645 mullimcf 45652 limcperiod 45657 cncfshift 45903 cncfperiod 45908 |
| Copyright terms: Public domain | W3C validator |