| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp1rl | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp1rl | ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜃 ∧ 𝜏) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl 770 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓)) → 𝜑) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜃 ∧ 𝜏) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: f1imass 7239 smo11 8333 zsupss 12896 lsmcv 21051 lspsolvlem 21052 mat2pmatghm 22617 mat2pmatmul 22618 plyadd 26122 plymul 26123 coeeu 26130 aannenlem1 26236 logexprlim 27136 ax5seglem6 28861 ax5seg 28865 mdetpmtr1 33813 mdetpmtr2 33814 wsuclem 35813 btwnconn1lem2 36076 btwnconn1lem3 36077 btwnconn1lem4 36078 btwnconn1lem12 36086 lshpsmreu 39102 2llnmat 39518 lvolex3N 39532 lnjatN 39774 pclfinclN 39944 lhpat3 40040 cdlemd6 40197 cdlemfnid 40558 cdlemk19ylem 40924 dihlsscpre 41228 dih1dimb2 41235 dihglblem6 41334 pellex 42823 tfsconcatrn 43331 mullimc 45614 mullimcf 45621 limcperiod 45626 cncfshift 45872 cncfperiod 45877 |
| Copyright terms: Public domain | W3C validator |