Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp1rl | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp1rl | ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜃 ∧ 𝜏) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl 768 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓)) → 𝜑) | |
2 | 1 | 3ad2ant1 1132 | 1 ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜃 ∧ 𝜏) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: f1imass 7134 smo11 8186 zsupss 12676 lsmcv 20401 lspsolvlem 20402 mat2pmatghm 21877 mat2pmatmul 21878 plyadd 25376 plymul 25377 coeeu 25384 aannenlem1 25486 logexprlim 26371 ax5seglem6 27300 ax5seg 27304 mdetpmtr1 31769 mdetpmtr2 31770 wsuclem 33815 btwnconn1lem2 34386 btwnconn1lem3 34387 btwnconn1lem4 34388 btwnconn1lem12 34396 lshpsmreu 37119 2llnmat 37534 lvolex3N 37548 lnjatN 37790 pclfinclN 37960 lhpat3 38056 cdlemd6 38213 cdlemfnid 38574 cdlemk19ylem 38940 dihlsscpre 39244 dih1dimb2 39251 dihglblem6 39350 pellex 40654 mullimc 43128 mullimcf 43135 limcperiod 43140 cncfshift 43386 cncfperiod 43391 |
Copyright terms: Public domain | W3C validator |