| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp1rl | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp1rl | ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜃 ∧ 𝜏) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl 770 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓)) → 𝜑) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜃 ∧ 𝜏) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: f1imass 7206 smo11 8292 zsupss 12839 lsmcv 21082 lspsolvlem 21083 mat2pmatghm 22648 mat2pmatmul 22649 plyadd 26152 plymul 26153 coeeu 26160 aannenlem1 26266 logexprlim 27166 ax5seglem6 28916 ax5seg 28920 mdetpmtr1 33859 mdetpmtr2 33860 wsuclem 35890 btwnconn1lem2 36155 btwnconn1lem3 36156 btwnconn1lem4 36157 btwnconn1lem12 36165 lshpsmreu 39231 2llnmat 39646 lvolex3N 39660 lnjatN 39902 pclfinclN 40072 lhpat3 40168 cdlemd6 40325 cdlemfnid 40686 cdlemk19ylem 41052 dihlsscpre 41356 dih1dimb2 41363 dihglblem6 41462 pellex 42955 tfsconcatrn 43462 mullimc 45743 mullimcf 45750 limcperiod 45755 cncfshift 45999 cncfperiod 46004 |
| Copyright terms: Public domain | W3C validator |