| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp1rl | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp1rl | ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜃 ∧ 𝜏) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl 770 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓)) → 𝜑) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜃 ∧ 𝜏) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: f1imass 7242 smo11 8336 zsupss 12903 lsmcv 21058 lspsolvlem 21059 mat2pmatghm 22624 mat2pmatmul 22625 plyadd 26129 plymul 26130 coeeu 26137 aannenlem1 26243 logexprlim 27143 ax5seglem6 28868 ax5seg 28872 mdetpmtr1 33820 mdetpmtr2 33821 wsuclem 35820 btwnconn1lem2 36083 btwnconn1lem3 36084 btwnconn1lem4 36085 btwnconn1lem12 36093 lshpsmreu 39109 2llnmat 39525 lvolex3N 39539 lnjatN 39781 pclfinclN 39951 lhpat3 40047 cdlemd6 40204 cdlemfnid 40565 cdlemk19ylem 40931 dihlsscpre 41235 dih1dimb2 41242 dihglblem6 41341 pellex 42830 tfsconcatrn 43338 mullimc 45621 mullimcf 45628 limcperiod 45633 cncfshift 45879 cncfperiod 45884 |
| Copyright terms: Public domain | W3C validator |