Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp1rl | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp1rl | ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜃 ∧ 𝜏) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl 769 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓)) → 𝜑) | |
2 | 1 | 3ad2ant1 1133 | 1 ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜃 ∧ 𝜏) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1089 |
This theorem is referenced by: f1imass 7169 smo11 8226 zsupss 12723 lsmcv 20448 lspsolvlem 20449 mat2pmatghm 21924 mat2pmatmul 21925 plyadd 25423 plymul 25424 coeeu 25431 aannenlem1 25533 logexprlim 26418 ax5seglem6 27347 ax5seg 27351 mdetpmtr1 31818 mdetpmtr2 31819 wsuclem 33864 btwnconn1lem2 34435 btwnconn1lem3 34436 btwnconn1lem4 34437 btwnconn1lem12 34445 lshpsmreu 37165 2llnmat 37580 lvolex3N 37594 lnjatN 37836 pclfinclN 38006 lhpat3 38102 cdlemd6 38259 cdlemfnid 38620 cdlemk19ylem 38986 dihlsscpre 39290 dih1dimb2 39297 dihglblem6 39396 pellex 40694 mullimc 43206 mullimcf 43213 limcperiod 43218 cncfshift 43464 cncfperiod 43469 |
Copyright terms: Public domain | W3C validator |