![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp1rl | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp1rl | ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜃 ∧ 𝜏) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl 770 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓)) → 𝜑) | |
2 | 1 | 3ad2ant1 1133 | 1 ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜃 ∧ 𝜏) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: f1imass 7301 smo11 8420 zsupss 13002 lsmcv 21166 lspsolvlem 21167 mat2pmatghm 22757 mat2pmatmul 22758 plyadd 26276 plymul 26277 coeeu 26284 aannenlem1 26388 logexprlim 27287 ax5seglem6 28967 ax5seg 28971 mdetpmtr1 33769 mdetpmtr2 33770 wsuclem 35789 btwnconn1lem2 36052 btwnconn1lem3 36053 btwnconn1lem4 36054 btwnconn1lem12 36062 lshpsmreu 39065 2llnmat 39481 lvolex3N 39495 lnjatN 39737 pclfinclN 39907 lhpat3 40003 cdlemd6 40160 cdlemfnid 40521 cdlemk19ylem 40887 dihlsscpre 41191 dih1dimb2 41198 dihglblem6 41297 pellex 42791 tfsconcatrn 43304 mullimc 45537 mullimcf 45544 limcperiod 45549 cncfshift 45795 cncfperiod 45800 |
Copyright terms: Public domain | W3C validator |