Step | Hyp | Ref
| Expression |
1 | | crngring 20061 |
. . . 4
β’ (π
β CRing β π
β Ring) |
2 | | dmatid.a |
. . . . 5
β’ π΄ = (π Mat π
) |
3 | | dmatid.b |
. . . . 5
β’ π΅ = (Baseβπ΄) |
4 | | dmatid.0 |
. . . . 5
β’ 0 =
(0gβπ
) |
5 | | dmatid.d |
. . . . 5
β’ π· = (π DMat π
) |
6 | 2, 3, 4, 5 | dmatsrng 21994 |
. . . 4
β’ ((π
β Ring β§ π β Fin) β π· β (SubRingβπ΄)) |
7 | 1, 6 | sylan 580 |
. . 3
β’ ((π
β CRing β§ π β Fin) β π· β (SubRingβπ΄)) |
8 | | dmatcrng.c |
. . . 4
β’ πΆ = (π΄ βΎs π·) |
9 | 8 | subrgring 20358 |
. . 3
β’ (π· β (SubRingβπ΄) β πΆ β Ring) |
10 | 7, 9 | syl 17 |
. 2
β’ ((π
β CRing β§ π β Fin) β πΆ β Ring) |
11 | | simp1lr 1237 |
. . . . . . . . 9
β’ ((((π β Fin β§ π
β CRing) β§ (π₯ β π· β§ π¦ β π·)) β§ π β π β§ π β π) β π
β CRing) |
12 | | eqid 2732 |
. . . . . . . . . 10
β’
(Baseβπ
) =
(Baseβπ
) |
13 | | eqid 2732 |
. . . . . . . . . 10
β’
(Baseβπ΄) =
(Baseβπ΄) |
14 | | simp2 1137 |
. . . . . . . . . 10
β’ ((((π β Fin β§ π
β CRing) β§ (π₯ β π· β§ π¦ β π·)) β§ π β π β§ π β π) β π β π) |
15 | | simp3 1138 |
. . . . . . . . . 10
β’ ((((π β Fin β§ π
β CRing) β§ (π₯ β π· β§ π¦ β π·)) β§ π β π β§ π β π) β π β π) |
16 | 2, 13, 4, 5 | dmatmat 21987 |
. . . . . . . . . . . . 13
β’ ((π β Fin β§ π
β CRing) β (π₯ β π· β π₯ β (Baseβπ΄))) |
17 | 16 | imp 407 |
. . . . . . . . . . . 12
β’ (((π β Fin β§ π
β CRing) β§ π₯ β π·) β π₯ β (Baseβπ΄)) |
18 | 17 | adantrr 715 |
. . . . . . . . . . 11
β’ (((π β Fin β§ π
β CRing) β§ (π₯ β π· β§ π¦ β π·)) β π₯ β (Baseβπ΄)) |
19 | 18 | 3ad2ant1 1133 |
. . . . . . . . . 10
β’ ((((π β Fin β§ π
β CRing) β§ (π₯ β π· β§ π¦ β π·)) β§ π β π β§ π β π) β π₯ β (Baseβπ΄)) |
20 | 2, 12, 13, 14, 15, 19 | matecld 21919 |
. . . . . . . . 9
β’ ((((π β Fin β§ π
β CRing) β§ (π₯ β π· β§ π¦ β π·)) β§ π β π β§ π β π) β (ππ₯π) β (Baseβπ
)) |
21 | 2, 13, 4, 5 | dmatmat 21987 |
. . . . . . . . . . . . 13
β’ ((π β Fin β§ π
β CRing) β (π¦ β π· β π¦ β (Baseβπ΄))) |
22 | 21 | imp 407 |
. . . . . . . . . . . 12
β’ (((π β Fin β§ π
β CRing) β§ π¦ β π·) β π¦ β (Baseβπ΄)) |
23 | 22 | adantrl 714 |
. . . . . . . . . . 11
β’ (((π β Fin β§ π
β CRing) β§ (π₯ β π· β§ π¦ β π·)) β π¦ β (Baseβπ΄)) |
24 | 23 | 3ad2ant1 1133 |
. . . . . . . . . 10
β’ ((((π β Fin β§ π
β CRing) β§ (π₯ β π· β§ π¦ β π·)) β§ π β π β§ π β π) β π¦ β (Baseβπ΄)) |
25 | 2, 12, 13, 14, 15, 24 | matecld 21919 |
. . . . . . . . 9
β’ ((((π β Fin β§ π
β CRing) β§ (π₯ β π· β§ π¦ β π·)) β§ π β π β§ π β π) β (ππ¦π) β (Baseβπ
)) |
26 | | eqid 2732 |
. . . . . . . . . 10
β’
(.rβπ
) = (.rβπ
) |
27 | 12, 26 | crngcom 20067 |
. . . . . . . . 9
β’ ((π
β CRing β§ (ππ₯π) β (Baseβπ
) β§ (ππ¦π) β (Baseβπ
)) β ((ππ₯π)(.rβπ
)(ππ¦π)) = ((ππ¦π)(.rβπ
)(ππ₯π))) |
28 | 11, 20, 25, 27 | syl3anc 1371 |
. . . . . . . 8
β’ ((((π β Fin β§ π
β CRing) β§ (π₯ β π· β§ π¦ β π·)) β§ π β π β§ π β π) β ((ππ₯π)(.rβπ
)(ππ¦π)) = ((ππ¦π)(.rβπ
)(ππ₯π))) |
29 | 28 | ifeq1d 4546 |
. . . . . . 7
β’ ((((π β Fin β§ π
β CRing) β§ (π₯ β π· β§ π¦ β π·)) β§ π β π β§ π β π) β if(π = π, ((ππ₯π)(.rβπ
)(ππ¦π)), 0 ) = if(π = π, ((ππ¦π)(.rβπ
)(ππ₯π)), 0 )) |
30 | 29 | mpoeq3dva 7482 |
. . . . . 6
β’ (((π β Fin β§ π
β CRing) β§ (π₯ β π· β§ π¦ β π·)) β (π β π, π β π β¦ if(π = π, ((ππ₯π)(.rβπ
)(ππ¦π)), 0 )) = (π β π, π β π β¦ if(π = π, ((ππ¦π)(.rβπ
)(ππ₯π)), 0 ))) |
31 | 1 | anim2i 617 |
. . . . . . 7
β’ ((π β Fin β§ π
β CRing) β (π β Fin β§ π
β Ring)) |
32 | 2, 3, 4, 5 | dmatmul 21990 |
. . . . . . 7
β’ (((π β Fin β§ π
β Ring) β§ (π₯ β π· β§ π¦ β π·)) β (π₯(.rβπ΄)π¦) = (π β π, π β π β¦ if(π = π, ((ππ₯π)(.rβπ
)(ππ¦π)), 0 ))) |
33 | 31, 32 | sylan 580 |
. . . . . 6
β’ (((π β Fin β§ π
β CRing) β§ (π₯ β π· β§ π¦ β π·)) β (π₯(.rβπ΄)π¦) = (π β π, π β π β¦ if(π = π, ((ππ₯π)(.rβπ
)(ππ¦π)), 0 ))) |
34 | | pm3.22 460 |
. . . . . . 7
β’ ((π₯ β π· β§ π¦ β π·) β (π¦ β π· β§ π₯ β π·)) |
35 | 2, 3, 4, 5 | dmatmul 21990 |
. . . . . . 7
β’ (((π β Fin β§ π
β Ring) β§ (π¦ β π· β§ π₯ β π·)) β (π¦(.rβπ΄)π₯) = (π β π, π β π β¦ if(π = π, ((ππ¦π)(.rβπ
)(ππ₯π)), 0 ))) |
36 | 31, 34, 35 | syl2an 596 |
. . . . . 6
β’ (((π β Fin β§ π
β CRing) β§ (π₯ β π· β§ π¦ β π·)) β (π¦(.rβπ΄)π₯) = (π β π, π β π β¦ if(π = π, ((ππ¦π)(.rβπ
)(ππ₯π)), 0 ))) |
37 | 30, 33, 36 | 3eqtr4d 2782 |
. . . . 5
β’ (((π β Fin β§ π
β CRing) β§ (π₯ β π· β§ π¦ β π·)) β (π₯(.rβπ΄)π¦) = (π¦(.rβπ΄)π₯)) |
38 | 37 | ralrimivva 3200 |
. . . 4
β’ ((π β Fin β§ π
β CRing) β
βπ₯ β π· βπ¦ β π· (π₯(.rβπ΄)π¦) = (π¦(.rβπ΄)π₯)) |
39 | 38 | ancoms 459 |
. . 3
β’ ((π
β CRing β§ π β Fin) β
βπ₯ β π· βπ¦ β π· (π₯(.rβπ΄)π¦) = (π¦(.rβπ΄)π₯)) |
40 | 8 | subrgbas 20364 |
. . . . . 6
β’ (π· β (SubRingβπ΄) β π· = (BaseβπΆ)) |
41 | 40 | eqcomd 2738 |
. . . . 5
β’ (π· β (SubRingβπ΄) β (BaseβπΆ) = π·) |
42 | | eqid 2732 |
. . . . . . . . . 10
β’
(.rβπ΄) = (.rβπ΄) |
43 | 8, 42 | ressmulr 17248 |
. . . . . . . . 9
β’ (π· β (SubRingβπ΄) β
(.rβπ΄) =
(.rβπΆ)) |
44 | 43 | eqcomd 2738 |
. . . . . . . 8
β’ (π· β (SubRingβπ΄) β
(.rβπΆ) =
(.rβπ΄)) |
45 | 44 | oveqd 7422 |
. . . . . . 7
β’ (π· β (SubRingβπ΄) β (π₯(.rβπΆ)π¦) = (π₯(.rβπ΄)π¦)) |
46 | 44 | oveqd 7422 |
. . . . . . 7
β’ (π· β (SubRingβπ΄) β (π¦(.rβπΆ)π₯) = (π¦(.rβπ΄)π₯)) |
47 | 45, 46 | eqeq12d 2748 |
. . . . . 6
β’ (π· β (SubRingβπ΄) β ((π₯(.rβπΆ)π¦) = (π¦(.rβπΆ)π₯) β (π₯(.rβπ΄)π¦) = (π¦(.rβπ΄)π₯))) |
48 | 41, 47 | raleqbidv 3342 |
. . . . 5
β’ (π· β (SubRingβπ΄) β (βπ¦ β (BaseβπΆ)(π₯(.rβπΆ)π¦) = (π¦(.rβπΆ)π₯) β βπ¦ β π· (π₯(.rβπ΄)π¦) = (π¦(.rβπ΄)π₯))) |
49 | 41, 48 | raleqbidv 3342 |
. . . 4
β’ (π· β (SubRingβπ΄) β (βπ₯ β (BaseβπΆ)βπ¦ β (BaseβπΆ)(π₯(.rβπΆ)π¦) = (π¦(.rβπΆ)π₯) β βπ₯ β π· βπ¦ β π· (π₯(.rβπ΄)π¦) = (π¦(.rβπ΄)π₯))) |
50 | 7, 49 | syl 17 |
. . 3
β’ ((π
β CRing β§ π β Fin) β
(βπ₯ β
(BaseβπΆ)βπ¦ β (BaseβπΆ)(π₯(.rβπΆ)π¦) = (π¦(.rβπΆ)π₯) β βπ₯ β π· βπ¦ β π· (π₯(.rβπ΄)π¦) = (π¦(.rβπ΄)π₯))) |
51 | 39, 50 | mpbird 256 |
. 2
β’ ((π
β CRing β§ π β Fin) β
βπ₯ β
(BaseβπΆ)βπ¦ β (BaseβπΆ)(π₯(.rβπΆ)π¦) = (π¦(.rβπΆ)π₯)) |
52 | | eqid 2732 |
. . 3
β’
(BaseβπΆ) =
(BaseβπΆ) |
53 | | eqid 2732 |
. . 3
β’
(.rβπΆ) = (.rβπΆ) |
54 | 52, 53 | iscrng2 20068 |
. 2
β’ (πΆ β CRing β (πΆ β Ring β§ βπ₯ β (BaseβπΆ)βπ¦ β (BaseβπΆ)(π₯(.rβπΆ)π¦) = (π¦(.rβπΆ)π₯))) |
55 | 10, 51, 54 | sylanbrc 583 |
1
β’ ((π
β CRing β§ π β Fin) β πΆ β CRing) |