MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmatcrng Structured version   Visualization version   GIF version

Theorem dmatcrng 22389
Description: The subring of diagonal matrices (over a commutative ring) is a commutative ring . (Contributed by AV, 20-Aug-2019.) (Revised by AV, 18-Dec-2019.)
Hypotheses
Ref Expression
dmatid.a 𝐴 = (𝑁 Mat 𝑅)
dmatid.b 𝐵 = (Base‘𝐴)
dmatid.0 0 = (0g𝑅)
dmatid.d 𝐷 = (𝑁 DMat 𝑅)
dmatcrng.c 𝐶 = (𝐴s 𝐷)
Assertion
Ref Expression
dmatcrng ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → 𝐶 ∈ CRing)

Proof of Theorem dmatcrng
Dummy variables 𝑥 𝑦 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crngring 20154 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2 dmatid.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
3 dmatid.b . . . . 5 𝐵 = (Base‘𝐴)
4 dmatid.0 . . . . 5 0 = (0g𝑅)
5 dmatid.d . . . . 5 𝐷 = (𝑁 DMat 𝑅)
62, 3, 4, 5dmatsrng 22388 . . . 4 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 𝐷 ∈ (SubRing‘𝐴))
71, 6sylan 580 . . 3 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → 𝐷 ∈ (SubRing‘𝐴))
8 dmatcrng.c . . . 4 𝐶 = (𝐴s 𝐷)
98subrgring 20483 . . 3 (𝐷 ∈ (SubRing‘𝐴) → 𝐶 ∈ Ring)
107, 9syl 17 . 2 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → 𝐶 ∈ Ring)
11 simp1lr 1238 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) ∧ 𝑎𝑁𝑏𝑁) → 𝑅 ∈ CRing)
12 eqid 2729 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
13 eqid 2729 . . . . . . . . . 10 (Base‘𝐴) = (Base‘𝐴)
14 simp2 1137 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) ∧ 𝑎𝑁𝑏𝑁) → 𝑎𝑁)
15 simp3 1138 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) ∧ 𝑎𝑁𝑏𝑁) → 𝑏𝑁)
162, 13, 4, 5dmatmat 22381 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑥𝐷𝑥 ∈ (Base‘𝐴)))
1716imp 406 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑥𝐷) → 𝑥 ∈ (Base‘𝐴))
1817adantrr 717 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) → 𝑥 ∈ (Base‘𝐴))
19183ad2ant1 1133 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) ∧ 𝑎𝑁𝑏𝑁) → 𝑥 ∈ (Base‘𝐴))
202, 12, 13, 14, 15, 19matecld 22313 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) ∧ 𝑎𝑁𝑏𝑁) → (𝑎𝑥𝑏) ∈ (Base‘𝑅))
212, 13, 4, 5dmatmat 22381 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑦𝐷𝑦 ∈ (Base‘𝐴)))
2221imp 406 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑦𝐷) → 𝑦 ∈ (Base‘𝐴))
2322adantrl 716 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) → 𝑦 ∈ (Base‘𝐴))
24233ad2ant1 1133 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) ∧ 𝑎𝑁𝑏𝑁) → 𝑦 ∈ (Base‘𝐴))
252, 12, 13, 14, 15, 24matecld 22313 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) ∧ 𝑎𝑁𝑏𝑁) → (𝑎𝑦𝑏) ∈ (Base‘𝑅))
26 eqid 2729 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
2712, 26crngcom 20160 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ (𝑎𝑥𝑏) ∈ (Base‘𝑅) ∧ (𝑎𝑦𝑏) ∈ (Base‘𝑅)) → ((𝑎𝑥𝑏)(.r𝑅)(𝑎𝑦𝑏)) = ((𝑎𝑦𝑏)(.r𝑅)(𝑎𝑥𝑏)))
2811, 20, 25, 27syl3anc 1373 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) ∧ 𝑎𝑁𝑏𝑁) → ((𝑎𝑥𝑏)(.r𝑅)(𝑎𝑦𝑏)) = ((𝑎𝑦𝑏)(.r𝑅)(𝑎𝑥𝑏)))
2928ifeq1d 4508 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) ∧ 𝑎𝑁𝑏𝑁) → if(𝑎 = 𝑏, ((𝑎𝑥𝑏)(.r𝑅)(𝑎𝑦𝑏)), 0 ) = if(𝑎 = 𝑏, ((𝑎𝑦𝑏)(.r𝑅)(𝑎𝑥𝑏)), 0 ))
3029mpoeq3dva 7466 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, ((𝑎𝑥𝑏)(.r𝑅)(𝑎𝑦𝑏)), 0 )) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, ((𝑎𝑦𝑏)(.r𝑅)(𝑎𝑥𝑏)), 0 )))
311anim2i 617 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
322, 3, 4, 5dmatmul 22384 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐷𝑦𝐷)) → (𝑥(.r𝐴)𝑦) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, ((𝑎𝑥𝑏)(.r𝑅)(𝑎𝑦𝑏)), 0 )))
3331, 32sylan 580 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) → (𝑥(.r𝐴)𝑦) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, ((𝑎𝑥𝑏)(.r𝑅)(𝑎𝑦𝑏)), 0 )))
34 pm3.22 459 . . . . . . 7 ((𝑥𝐷𝑦𝐷) → (𝑦𝐷𝑥𝐷))
352, 3, 4, 5dmatmul 22384 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐷𝑥𝐷)) → (𝑦(.r𝐴)𝑥) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, ((𝑎𝑦𝑏)(.r𝑅)(𝑎𝑥𝑏)), 0 )))
3631, 34, 35syl2an 596 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) → (𝑦(.r𝐴)𝑥) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, ((𝑎𝑦𝑏)(.r𝑅)(𝑎𝑥𝑏)), 0 )))
3730, 33, 363eqtr4d 2774 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) → (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥))
3837ralrimivva 3180 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ∀𝑥𝐷𝑦𝐷 (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥))
3938ancoms 458 . . 3 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → ∀𝑥𝐷𝑦𝐷 (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥))
408subrgbas 20490 . . . . . 6 (𝐷 ∈ (SubRing‘𝐴) → 𝐷 = (Base‘𝐶))
4140eqcomd 2735 . . . . 5 (𝐷 ∈ (SubRing‘𝐴) → (Base‘𝐶) = 𝐷)
42 eqid 2729 . . . . . . . . . 10 (.r𝐴) = (.r𝐴)
438, 42ressmulr 17270 . . . . . . . . 9 (𝐷 ∈ (SubRing‘𝐴) → (.r𝐴) = (.r𝐶))
4443eqcomd 2735 . . . . . . . 8 (𝐷 ∈ (SubRing‘𝐴) → (.r𝐶) = (.r𝐴))
4544oveqd 7404 . . . . . . 7 (𝐷 ∈ (SubRing‘𝐴) → (𝑥(.r𝐶)𝑦) = (𝑥(.r𝐴)𝑦))
4644oveqd 7404 . . . . . . 7 (𝐷 ∈ (SubRing‘𝐴) → (𝑦(.r𝐶)𝑥) = (𝑦(.r𝐴)𝑥))
4745, 46eqeq12d 2745 . . . . . 6 (𝐷 ∈ (SubRing‘𝐴) → ((𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥) ↔ (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
4841, 47raleqbidv 3319 . . . . 5 (𝐷 ∈ (SubRing‘𝐴) → (∀𝑦 ∈ (Base‘𝐶)(𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥) ↔ ∀𝑦𝐷 (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
4941, 48raleqbidv 3319 . . . 4 (𝐷 ∈ (SubRing‘𝐴) → (∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥) ↔ ∀𝑥𝐷𝑦𝐷 (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
507, 49syl 17 . . 3 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥) ↔ ∀𝑥𝐷𝑦𝐷 (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
5139, 50mpbird 257 . 2 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥))
52 eqid 2729 . . 3 (Base‘𝐶) = (Base‘𝐶)
53 eqid 2729 . . 3 (.r𝐶) = (.r𝐶)
5452, 53iscrng2 20161 . 2 (𝐶 ∈ CRing ↔ (𝐶 ∈ Ring ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥)))
5510, 51, 54sylanbrc 583 1 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → 𝐶 ∈ CRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  ifcif 4488  cfv 6511  (class class class)co 7387  cmpo 7389  Fincfn 8918  Basecbs 17179  s cress 17200  .rcmulr 17221  0gc0g 17402  Ringcrg 20142  CRingccrg 20143  SubRingcsubrg 20478   Mat cmat 22294   DMat cdmat 22375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-ot 4598  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-subrng 20455  df-subrg 20479  df-lmod 20768  df-lss 20838  df-sra 21080  df-rgmod 21081  df-dsmm 21641  df-frlm 21656  df-mamu 22278  df-mat 22295  df-dmat 22377
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator