MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmatcrng Structured version   Visualization version   GIF version

Theorem dmatcrng 22529
Description: The subring of diagonal matrices (over a commutative ring) is a commutative ring . (Contributed by AV, 20-Aug-2019.) (Revised by AV, 18-Dec-2019.)
Hypotheses
Ref Expression
dmatid.a 𝐴 = (𝑁 Mat 𝑅)
dmatid.b 𝐵 = (Base‘𝐴)
dmatid.0 0 = (0g𝑅)
dmatid.d 𝐷 = (𝑁 DMat 𝑅)
dmatcrng.c 𝐶 = (𝐴s 𝐷)
Assertion
Ref Expression
dmatcrng ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → 𝐶 ∈ CRing)

Proof of Theorem dmatcrng
Dummy variables 𝑥 𝑦 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crngring 20272 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2 dmatid.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
3 dmatid.b . . . . 5 𝐵 = (Base‘𝐴)
4 dmatid.0 . . . . 5 0 = (0g𝑅)
5 dmatid.d . . . . 5 𝐷 = (𝑁 DMat 𝑅)
62, 3, 4, 5dmatsrng 22528 . . . 4 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 𝐷 ∈ (SubRing‘𝐴))
71, 6sylan 579 . . 3 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → 𝐷 ∈ (SubRing‘𝐴))
8 dmatcrng.c . . . 4 𝐶 = (𝐴s 𝐷)
98subrgring 20602 . . 3 (𝐷 ∈ (SubRing‘𝐴) → 𝐶 ∈ Ring)
107, 9syl 17 . 2 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → 𝐶 ∈ Ring)
11 simp1lr 1237 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) ∧ 𝑎𝑁𝑏𝑁) → 𝑅 ∈ CRing)
12 eqid 2740 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
13 eqid 2740 . . . . . . . . . 10 (Base‘𝐴) = (Base‘𝐴)
14 simp2 1137 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) ∧ 𝑎𝑁𝑏𝑁) → 𝑎𝑁)
15 simp3 1138 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) ∧ 𝑎𝑁𝑏𝑁) → 𝑏𝑁)
162, 13, 4, 5dmatmat 22521 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑥𝐷𝑥 ∈ (Base‘𝐴)))
1716imp 406 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑥𝐷) → 𝑥 ∈ (Base‘𝐴))
1817adantrr 716 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) → 𝑥 ∈ (Base‘𝐴))
19183ad2ant1 1133 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) ∧ 𝑎𝑁𝑏𝑁) → 𝑥 ∈ (Base‘𝐴))
202, 12, 13, 14, 15, 19matecld 22453 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) ∧ 𝑎𝑁𝑏𝑁) → (𝑎𝑥𝑏) ∈ (Base‘𝑅))
212, 13, 4, 5dmatmat 22521 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑦𝐷𝑦 ∈ (Base‘𝐴)))
2221imp 406 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑦𝐷) → 𝑦 ∈ (Base‘𝐴))
2322adantrl 715 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) → 𝑦 ∈ (Base‘𝐴))
24233ad2ant1 1133 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) ∧ 𝑎𝑁𝑏𝑁) → 𝑦 ∈ (Base‘𝐴))
252, 12, 13, 14, 15, 24matecld 22453 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) ∧ 𝑎𝑁𝑏𝑁) → (𝑎𝑦𝑏) ∈ (Base‘𝑅))
26 eqid 2740 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
2712, 26crngcom 20278 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ (𝑎𝑥𝑏) ∈ (Base‘𝑅) ∧ (𝑎𝑦𝑏) ∈ (Base‘𝑅)) → ((𝑎𝑥𝑏)(.r𝑅)(𝑎𝑦𝑏)) = ((𝑎𝑦𝑏)(.r𝑅)(𝑎𝑥𝑏)))
2811, 20, 25, 27syl3anc 1371 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) ∧ 𝑎𝑁𝑏𝑁) → ((𝑎𝑥𝑏)(.r𝑅)(𝑎𝑦𝑏)) = ((𝑎𝑦𝑏)(.r𝑅)(𝑎𝑥𝑏)))
2928ifeq1d 4567 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) ∧ 𝑎𝑁𝑏𝑁) → if(𝑎 = 𝑏, ((𝑎𝑥𝑏)(.r𝑅)(𝑎𝑦𝑏)), 0 ) = if(𝑎 = 𝑏, ((𝑎𝑦𝑏)(.r𝑅)(𝑎𝑥𝑏)), 0 ))
3029mpoeq3dva 7527 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, ((𝑎𝑥𝑏)(.r𝑅)(𝑎𝑦𝑏)), 0 )) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, ((𝑎𝑦𝑏)(.r𝑅)(𝑎𝑥𝑏)), 0 )))
311anim2i 616 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
322, 3, 4, 5dmatmul 22524 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐷𝑦𝐷)) → (𝑥(.r𝐴)𝑦) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, ((𝑎𝑥𝑏)(.r𝑅)(𝑎𝑦𝑏)), 0 )))
3331, 32sylan 579 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) → (𝑥(.r𝐴)𝑦) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, ((𝑎𝑥𝑏)(.r𝑅)(𝑎𝑦𝑏)), 0 )))
34 pm3.22 459 . . . . . . 7 ((𝑥𝐷𝑦𝐷) → (𝑦𝐷𝑥𝐷))
352, 3, 4, 5dmatmul 22524 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐷𝑥𝐷)) → (𝑦(.r𝐴)𝑥) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, ((𝑎𝑦𝑏)(.r𝑅)(𝑎𝑥𝑏)), 0 )))
3631, 34, 35syl2an 595 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) → (𝑦(.r𝐴)𝑥) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, ((𝑎𝑦𝑏)(.r𝑅)(𝑎𝑥𝑏)), 0 )))
3730, 33, 363eqtr4d 2790 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) → (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥))
3837ralrimivva 3208 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ∀𝑥𝐷𝑦𝐷 (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥))
3938ancoms 458 . . 3 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → ∀𝑥𝐷𝑦𝐷 (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥))
408subrgbas 20609 . . . . . 6 (𝐷 ∈ (SubRing‘𝐴) → 𝐷 = (Base‘𝐶))
4140eqcomd 2746 . . . . 5 (𝐷 ∈ (SubRing‘𝐴) → (Base‘𝐶) = 𝐷)
42 eqid 2740 . . . . . . . . . 10 (.r𝐴) = (.r𝐴)
438, 42ressmulr 17366 . . . . . . . . 9 (𝐷 ∈ (SubRing‘𝐴) → (.r𝐴) = (.r𝐶))
4443eqcomd 2746 . . . . . . . 8 (𝐷 ∈ (SubRing‘𝐴) → (.r𝐶) = (.r𝐴))
4544oveqd 7465 . . . . . . 7 (𝐷 ∈ (SubRing‘𝐴) → (𝑥(.r𝐶)𝑦) = (𝑥(.r𝐴)𝑦))
4644oveqd 7465 . . . . . . 7 (𝐷 ∈ (SubRing‘𝐴) → (𝑦(.r𝐶)𝑥) = (𝑦(.r𝐴)𝑥))
4745, 46eqeq12d 2756 . . . . . 6 (𝐷 ∈ (SubRing‘𝐴) → ((𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥) ↔ (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
4841, 47raleqbidv 3354 . . . . 5 (𝐷 ∈ (SubRing‘𝐴) → (∀𝑦 ∈ (Base‘𝐶)(𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥) ↔ ∀𝑦𝐷 (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
4941, 48raleqbidv 3354 . . . 4 (𝐷 ∈ (SubRing‘𝐴) → (∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥) ↔ ∀𝑥𝐷𝑦𝐷 (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
507, 49syl 17 . . 3 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥) ↔ ∀𝑥𝐷𝑦𝐷 (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
5139, 50mpbird 257 . 2 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥))
52 eqid 2740 . . 3 (Base‘𝐶) = (Base‘𝐶)
53 eqid 2740 . . 3 (.r𝐶) = (.r𝐶)
5452, 53iscrng2 20279 . 2 (𝐶 ∈ CRing ↔ (𝐶 ∈ Ring ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥)))
5510, 51, 54sylanbrc 582 1 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → 𝐶 ∈ CRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  ifcif 4548  cfv 6573  (class class class)co 7448  cmpo 7450  Fincfn 9003  Basecbs 17258  s cress 17287  .rcmulr 17312  0gc0g 17499  Ringcrg 20260  CRingccrg 20261  SubRingcsubrg 20595   Mat cmat 22432   DMat cdmat 22515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-subrng 20572  df-subrg 20597  df-lmod 20882  df-lss 20953  df-sra 21195  df-rgmod 21196  df-dsmm 21775  df-frlm 21790  df-mamu 22416  df-mat 22433  df-dmat 22517
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator