MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmatcollpwscmatlem2 Structured version   Visualization version   GIF version

Theorem pmatcollpwscmatlem2 21847
Description: Lemma 2 for pmatcollpwscmat 21848. (Contributed by AV, 2-Nov-2019.) (Revised by AV, 4-Dec-2019.)
Hypotheses
Ref Expression
pmatcollpwscmat.p 𝑃 = (Poly1𝑅)
pmatcollpwscmat.c 𝐶 = (𝑁 Mat 𝑃)
pmatcollpwscmat.b 𝐵 = (Base‘𝐶)
pmatcollpwscmat.m1 = ( ·𝑠𝐶)
pmatcollpwscmat.e1 = (.g‘(mulGrp‘𝑃))
pmatcollpwscmat.x 𝑋 = (var1𝑅)
pmatcollpwscmat.t 𝑇 = (𝑁 matToPolyMat 𝑅)
pmatcollpwscmat.a 𝐴 = (𝑁 Mat 𝑅)
pmatcollpwscmat.d 𝐷 = (Base‘𝐴)
pmatcollpwscmat.u 𝑈 = (algSc‘𝑃)
pmatcollpwscmat.k 𝐾 = (Base‘𝑅)
pmatcollpwscmat.e2 𝐸 = (Base‘𝑃)
pmatcollpwscmat.s 𝑆 = (algSc‘𝑃)
pmatcollpwscmat.1 1 = (1r𝐶)
pmatcollpwscmat.m2 𝑀 = (𝑄 1 )
Assertion
Ref Expression
pmatcollpwscmatlem2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (𝑇‘(𝑀 decompPMat 𝐿)) = ((𝑈‘((coe1𝑄)‘𝐿)) 1 ))

Proof of Theorem pmatcollpwscmatlem2
Dummy variables 𝑎 𝑏 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
2 simpr 484 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring)
32adantr 480 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → 𝑅 ∈ Ring)
4 simpr 484 . . . . . . . 8 ((𝐿 ∈ ℕ0𝑄𝐸) → 𝑄𝐸)
54anim2i 616 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑄𝐸))
6 df-3an 1087 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑄𝐸) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑄𝐸))
75, 6sylibr 233 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑄𝐸))
8 pmatcollpwscmat.m2 . . . . . . 7 𝑀 = (𝑄 1 )
9 pmatcollpwscmat.p . . . . . . . 8 𝑃 = (Poly1𝑅)
10 pmatcollpwscmat.c . . . . . . . 8 𝐶 = (𝑁 Mat 𝑃)
11 pmatcollpwscmat.b . . . . . . . 8 𝐵 = (Base‘𝐶)
12 pmatcollpwscmat.e2 . . . . . . . 8 𝐸 = (Base‘𝑃)
13 pmatcollpwscmat.m1 . . . . . . . 8 = ( ·𝑠𝐶)
14 pmatcollpwscmat.1 . . . . . . . 8 1 = (1r𝐶)
159, 10, 11, 12, 13, 141pmatscmul 21759 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑄𝐸) → (𝑄 1 ) ∈ 𝐵)
168, 15eqeltrid 2843 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑄𝐸) → 𝑀𝐵)
177, 16syl 17 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → 𝑀𝐵)
18 simprl 767 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → 𝐿 ∈ ℕ0)
19 pmatcollpwscmat.a . . . . . 6 𝐴 = (𝑁 Mat 𝑅)
20 pmatcollpwscmat.d . . . . . 6 𝐷 = (Base‘𝐴)
219, 10, 11, 19, 20decpmatcl 21824 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵𝐿 ∈ ℕ0) → (𝑀 decompPMat 𝐿) ∈ 𝐷)
223, 17, 18, 21syl3anc 1369 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (𝑀 decompPMat 𝐿) ∈ 𝐷)
23 df-3an 1087 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑀 decompPMat 𝐿) ∈ 𝐷) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀 decompPMat 𝐿) ∈ 𝐷))
241, 22, 23sylanbrc 582 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑀 decompPMat 𝐿) ∈ 𝐷))
25 pmatcollpwscmat.t . . . 4 𝑇 = (𝑁 matToPolyMat 𝑅)
26 eqid 2738 . . . 4 (algSc‘𝑃) = (algSc‘𝑃)
2725, 19, 20, 9, 26mat2pmatval 21781 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑀 decompPMat 𝐿) ∈ 𝐷) → (𝑇‘(𝑀 decompPMat 𝐿)) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝐿)𝑗))))
2824, 27syl 17 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (𝑇‘(𝑀 decompPMat 𝐿)) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝐿)𝑗))))
293, 17, 183jca 1126 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (𝑅 ∈ Ring ∧ 𝑀𝐵𝐿 ∈ ℕ0))
30293ad2ant1 1131 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ 𝑖𝑁𝑗𝑁) → (𝑅 ∈ Ring ∧ 𝑀𝐵𝐿 ∈ ℕ0))
31 3simpc 1148 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑁𝑗𝑁))
329, 10, 11decpmate 21823 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑀𝐵𝐿 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑀 decompPMat 𝐿)𝑗) = ((coe1‘(𝑖𝑀𝑗))‘𝐿))
3330, 31, 32syl2anc 583 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖(𝑀 decompPMat 𝐿)𝑗) = ((coe1‘(𝑖𝑀𝑗))‘𝐿))
3433fveq2d 6760 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ 𝑖𝑁𝑗𝑁) → ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝐿)𝑗)) = ((algSc‘𝑃)‘((coe1‘(𝑖𝑀𝑗))‘𝐿)))
3534mpoeq3dva 7330 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝐿)𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘((coe1‘(𝑖𝑀𝑗))‘𝐿))))
36 simp1lr 1235 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ 𝑖𝑁𝑗𝑁) → 𝑅 ∈ Ring)
37 simp2 1135 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ 𝑖𝑁𝑗𝑁) → 𝑖𝑁)
38 simp3 1136 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ 𝑖𝑁𝑗𝑁) → 𝑗𝑁)
39173ad2ant1 1131 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ 𝑖𝑁𝑗𝑁) → 𝑀𝐵)
4010, 12, 11, 37, 38, 39matecld 21483 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑀𝑗) ∈ 𝐸)
41183ad2ant1 1131 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ 𝑖𝑁𝑗𝑁) → 𝐿 ∈ ℕ0)
42 eqid 2738 . . . . . . 7 (coe1‘(𝑖𝑀𝑗)) = (coe1‘(𝑖𝑀𝑗))
43 pmatcollpwscmat.k . . . . . . 7 𝐾 = (Base‘𝑅)
4442, 12, 9, 43coe1fvalcl 21293 . . . . . 6 (((𝑖𝑀𝑗) ∈ 𝐸𝐿 ∈ ℕ0) → ((coe1‘(𝑖𝑀𝑗))‘𝐿) ∈ 𝐾)
4540, 41, 44syl2anc 583 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖𝑀𝑗))‘𝐿) ∈ 𝐾)
46 eqid 2738 . . . . . 6 (var1𝑅) = (var1𝑅)
47 eqid 2738 . . . . . 6 ( ·𝑠𝑃) = ( ·𝑠𝑃)
48 eqid 2738 . . . . . 6 (mulGrp‘𝑃) = (mulGrp‘𝑃)
49 eqid 2738 . . . . . 6 (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃))
5043, 9, 46, 47, 48, 49, 26ply1scltm 21362 . . . . 5 ((𝑅 ∈ Ring ∧ ((coe1‘(𝑖𝑀𝑗))‘𝐿) ∈ 𝐾) → ((algSc‘𝑃)‘((coe1‘(𝑖𝑀𝑗))‘𝐿)) = (((coe1‘(𝑖𝑀𝑗))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))))
5136, 45, 50syl2anc 583 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ 𝑖𝑁𝑗𝑁) → ((algSc‘𝑃)‘((coe1‘(𝑖𝑀𝑗))‘𝐿)) = (((coe1‘(𝑖𝑀𝑗))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))))
5251mpoeq3dva 7330 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘((coe1‘(𝑖𝑀𝑗))‘𝐿))) = (𝑖𝑁, 𝑗𝑁 ↦ (((coe1‘(𝑖𝑀𝑗))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅)))))
53 pmatcollpwscmat.e1 . . . . . . 7 = (.g‘(mulGrp‘𝑃))
54 pmatcollpwscmat.x . . . . . . 7 𝑋 = (var1𝑅)
55 pmatcollpwscmat.u . . . . . . 7 𝑈 = (algSc‘𝑃)
56 pmatcollpwscmat.s . . . . . . 7 𝑆 = (algSc‘𝑃)
579, 10, 11, 13, 53, 54, 25, 19, 20, 55, 43, 12, 56, 14, 8pmatcollpwscmatlem1 21846 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) → (((coe1‘(𝑎𝑀𝑏))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = if(𝑎 = 𝑏, (𝑈‘((coe1𝑄)‘𝐿)), (0g𝑃)))
58 eqidd 2739 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) → (𝑖𝑁, 𝑗𝑁 ↦ (((coe1‘(𝑖𝑀𝑗))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅)))) = (𝑖𝑁, 𝑗𝑁 ↦ (((coe1‘(𝑖𝑀𝑗))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅)))))
59 oveq12 7264 . . . . . . . . . . 11 ((𝑖 = 𝑎𝑗 = 𝑏) → (𝑖𝑀𝑗) = (𝑎𝑀𝑏))
6059fveq2d 6760 . . . . . . . . . 10 ((𝑖 = 𝑎𝑗 = 𝑏) → (coe1‘(𝑖𝑀𝑗)) = (coe1‘(𝑎𝑀𝑏)))
6160fveq1d 6758 . . . . . . . . 9 ((𝑖 = 𝑎𝑗 = 𝑏) → ((coe1‘(𝑖𝑀𝑗))‘𝐿) = ((coe1‘(𝑎𝑀𝑏))‘𝐿))
6261oveq1d 7270 . . . . . . . 8 ((𝑖 = 𝑎𝑗 = 𝑏) → (((coe1‘(𝑖𝑀𝑗))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = (((coe1‘(𝑎𝑀𝑏))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))))
6362adantl 481 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) ∧ (𝑖 = 𝑎𝑗 = 𝑏)) → (((coe1‘(𝑖𝑀𝑗))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = (((coe1‘(𝑎𝑀𝑏))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))))
64 simprl 767 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) → 𝑎𝑁)
65 simprr 769 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) → 𝑏𝑁)
66 ovexd 7290 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) → (((coe1‘(𝑎𝑀𝑏))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ V)
6758, 63, 64, 65, 66ovmpod 7403 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) → (𝑎(𝑖𝑁, 𝑗𝑁 ↦ (((coe1‘(𝑖𝑀𝑗))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))))𝑏) = (((coe1‘(𝑎𝑀𝑏))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))))
68 simpll 763 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → 𝑁 ∈ Fin)
699ply1ring 21329 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
7069adantl 481 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑃 ∈ Ring)
7170adantr 480 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → 𝑃 ∈ Ring)
72 pm3.22 459 . . . . . . . . . . 11 ((𝐿 ∈ ℕ0𝑄𝐸) → (𝑄𝐸𝐿 ∈ ℕ0))
7372adantl 481 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (𝑄𝐸𝐿 ∈ ℕ0))
74 eqid 2738 . . . . . . . . . . 11 (coe1𝑄) = (coe1𝑄)
7574, 12, 9, 43coe1fvalcl 21293 . . . . . . . . . 10 ((𝑄𝐸𝐿 ∈ ℕ0) → ((coe1𝑄)‘𝐿) ∈ 𝐾)
7673, 75syl 17 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → ((coe1𝑄)‘𝐿) ∈ 𝐾)
779, 55, 43, 12ply1sclcl 21367 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ ((coe1𝑄)‘𝐿) ∈ 𝐾) → (𝑈‘((coe1𝑄)‘𝐿)) ∈ 𝐸)
783, 76, 77syl2anc 583 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (𝑈‘((coe1𝑄)‘𝐿)) ∈ 𝐸)
7968, 71, 783jca 1126 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ∧ (𝑈‘((coe1𝑄)‘𝐿)) ∈ 𝐸))
80 eqid 2738 . . . . . . . 8 (0g𝑃) = (0g𝑃)
8110, 12, 80, 14, 13scmatscmide 21564 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ∧ (𝑈‘((coe1𝑄)‘𝐿)) ∈ 𝐸) ∧ (𝑎𝑁𝑏𝑁)) → (𝑎((𝑈‘((coe1𝑄)‘𝐿)) 1 )𝑏) = if(𝑎 = 𝑏, (𝑈‘((coe1𝑄)‘𝐿)), (0g𝑃)))
8279, 81sylan 579 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) → (𝑎((𝑈‘((coe1𝑄)‘𝐿)) 1 )𝑏) = if(𝑎 = 𝑏, (𝑈‘((coe1𝑄)‘𝐿)), (0g𝑃)))
8357, 67, 823eqtr4d 2788 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) → (𝑎(𝑖𝑁, 𝑗𝑁 ↦ (((coe1‘(𝑖𝑀𝑗))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))))𝑏) = (𝑎((𝑈‘((coe1𝑄)‘𝐿)) 1 )𝑏))
8483ralrimivva 3114 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → ∀𝑎𝑁𝑏𝑁 (𝑎(𝑖𝑁, 𝑗𝑁 ↦ (((coe1‘(𝑖𝑀𝑗))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))))𝑏) = (𝑎((𝑈‘((coe1𝑄)‘𝐿)) 1 )𝑏))
85 0nn0 12178 . . . . . . . 8 0 ∈ ℕ0
8685a1i 11 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ 𝑖𝑁𝑗𝑁) → 0 ∈ ℕ0)
8743, 9, 46, 47, 48, 49, 12ply1tmcl 21353 . . . . . . 7 ((𝑅 ∈ Ring ∧ ((coe1‘(𝑖𝑀𝑗))‘𝐿) ∈ 𝐾 ∧ 0 ∈ ℕ0) → (((coe1‘(𝑖𝑀𝑗))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ 𝐸)
8836, 45, 86, 87syl3anc 1369 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ 𝑖𝑁𝑗𝑁) → (((coe1‘(𝑖𝑀𝑗))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ 𝐸)
8910, 12, 11, 68, 71, 88matbas2d 21480 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (𝑖𝑁, 𝑗𝑁 ↦ (((coe1‘(𝑖𝑀𝑗))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅)))) ∈ 𝐵)
909, 10, 11, 12, 13, 141pmatscmul 21759 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑈‘((coe1𝑄)‘𝐿)) ∈ 𝐸) → ((𝑈‘((coe1𝑄)‘𝐿)) 1 ) ∈ 𝐵)
9168, 3, 78, 90syl3anc 1369 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → ((𝑈‘((coe1𝑄)‘𝐿)) 1 ) ∈ 𝐵)
9210, 11eqmat 21481 . . . . 5 (((𝑖𝑁, 𝑗𝑁 ↦ (((coe1‘(𝑖𝑀𝑗))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅)))) ∈ 𝐵 ∧ ((𝑈‘((coe1𝑄)‘𝐿)) 1 ) ∈ 𝐵) → ((𝑖𝑁, 𝑗𝑁 ↦ (((coe1‘(𝑖𝑀𝑗))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅)))) = ((𝑈‘((coe1𝑄)‘𝐿)) 1 ) ↔ ∀𝑎𝑁𝑏𝑁 (𝑎(𝑖𝑁, 𝑗𝑁 ↦ (((coe1‘(𝑖𝑀𝑗))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))))𝑏) = (𝑎((𝑈‘((coe1𝑄)‘𝐿)) 1 )𝑏)))
9389, 91, 92syl2anc 583 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → ((𝑖𝑁, 𝑗𝑁 ↦ (((coe1‘(𝑖𝑀𝑗))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅)))) = ((𝑈‘((coe1𝑄)‘𝐿)) 1 ) ↔ ∀𝑎𝑁𝑏𝑁 (𝑎(𝑖𝑁, 𝑗𝑁 ↦ (((coe1‘(𝑖𝑀𝑗))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))))𝑏) = (𝑎((𝑈‘((coe1𝑄)‘𝐿)) 1 )𝑏)))
9484, 93mpbird 256 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (𝑖𝑁, 𝑗𝑁 ↦ (((coe1‘(𝑖𝑀𝑗))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅)))) = ((𝑈‘((coe1𝑄)‘𝐿)) 1 ))
9552, 94eqtrd 2778 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘((coe1‘(𝑖𝑀𝑗))‘𝐿))) = ((𝑈‘((coe1𝑄)‘𝐿)) 1 ))
9628, 35, 953eqtrd 2782 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (𝑇‘(𝑀 decompPMat 𝐿)) = ((𝑈‘((coe1𝑄)‘𝐿)) 1 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  ifcif 4456  cfv 6418  (class class class)co 7255  cmpo 7257  Fincfn 8691  0cc0 10802  0cn0 12163  Basecbs 16840   ·𝑠 cvsca 16892  0gc0g 17067  .gcmg 18615  mulGrpcmgp 19635  1rcur 19652  Ringcrg 19698  algSccascl 20969  var1cv1 21257  Poly1cpl1 21258  coe1cco1 21259   Mat cmat 21464   matToPolyMat cmat2pmat 21761   decompPMat cdecpmat 21819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-ot 4567  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-hom 16912  df-cco 16913  df-0g 17069  df-gsum 17070  df-prds 17075  df-pws 17077  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-ghm 18747  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-subrg 19937  df-lmod 20040  df-lss 20109  df-sra 20349  df-rgmod 20350  df-dsmm 20849  df-frlm 20864  df-ascl 20972  df-psr 21022  df-mvr 21023  df-mpl 21024  df-opsr 21026  df-psr1 21261  df-vr1 21262  df-ply1 21263  df-coe1 21264  df-mamu 21443  df-mat 21465  df-mat2pmat 21764  df-decpmat 21820
This theorem is referenced by:  pmatcollpwscmat  21848
  Copyright terms: Public domain W3C validator