Step | Hyp | Ref
| Expression |
1 | | simpl 483 |
. . . 4
β’ (((π β Fin β§ π
β Ring) β§ (πΏ β β0
β§ π β πΈ)) β (π β Fin β§ π
β Ring)) |
2 | | simpr 485 |
. . . . . 6
β’ ((π β Fin β§ π
β Ring) β π
β Ring) |
3 | 2 | adantr 481 |
. . . . 5
β’ (((π β Fin β§ π
β Ring) β§ (πΏ β β0
β§ π β πΈ)) β π
β Ring) |
4 | | simpr 485 |
. . . . . . . 8
β’ ((πΏ β β0
β§ π β πΈ) β π β πΈ) |
5 | 4 | anim2i 617 |
. . . . . . 7
β’ (((π β Fin β§ π
β Ring) β§ (πΏ β β0
β§ π β πΈ)) β ((π β Fin β§ π
β Ring) β§ π β πΈ)) |
6 | | df-3an 1089 |
. . . . . . 7
β’ ((π β Fin β§ π
β Ring β§ π β πΈ) β ((π β Fin β§ π
β Ring) β§ π β πΈ)) |
7 | 5, 6 | sylibr 233 |
. . . . . 6
β’ (((π β Fin β§ π
β Ring) β§ (πΏ β β0
β§ π β πΈ)) β (π β Fin β§ π
β Ring β§ π β πΈ)) |
8 | | pmatcollpwscmat.m2 |
. . . . . . 7
β’ π = (π β 1 ) |
9 | | pmatcollpwscmat.p |
. . . . . . . 8
β’ π = (Poly1βπ
) |
10 | | pmatcollpwscmat.c |
. . . . . . . 8
β’ πΆ = (π Mat π) |
11 | | pmatcollpwscmat.b |
. . . . . . . 8
β’ π΅ = (BaseβπΆ) |
12 | | pmatcollpwscmat.e2 |
. . . . . . . 8
β’ πΈ = (Baseβπ) |
13 | | pmatcollpwscmat.m1 |
. . . . . . . 8
β’ β = (
Β·π βπΆ) |
14 | | pmatcollpwscmat.1 |
. . . . . . . 8
β’ 1 =
(1rβπΆ) |
15 | 9, 10, 11, 12, 13, 14 | 1pmatscmul 22195 |
. . . . . . 7
β’ ((π β Fin β§ π
β Ring β§ π β πΈ) β (π β 1 ) β π΅) |
16 | 8, 15 | eqeltrid 2837 |
. . . . . 6
β’ ((π β Fin β§ π
β Ring β§ π β πΈ) β π β π΅) |
17 | 7, 16 | syl 17 |
. . . . 5
β’ (((π β Fin β§ π
β Ring) β§ (πΏ β β0
β§ π β πΈ)) β π β π΅) |
18 | | simprl 769 |
. . . . 5
β’ (((π β Fin β§ π
β Ring) β§ (πΏ β β0
β§ π β πΈ)) β πΏ β
β0) |
19 | | pmatcollpwscmat.a |
. . . . . 6
β’ π΄ = (π Mat π
) |
20 | | pmatcollpwscmat.d |
. . . . . 6
β’ π· = (Baseβπ΄) |
21 | 9, 10, 11, 19, 20 | decpmatcl 22260 |
. . . . 5
β’ ((π
β Ring β§ π β π΅ β§ πΏ β β0) β (π decompPMat πΏ) β π·) |
22 | 3, 17, 18, 21 | syl3anc 1371 |
. . . 4
β’ (((π β Fin β§ π
β Ring) β§ (πΏ β β0
β§ π β πΈ)) β (π decompPMat πΏ) β π·) |
23 | | df-3an 1089 |
. . . 4
β’ ((π β Fin β§ π
β Ring β§ (π decompPMat πΏ) β π·) β ((π β Fin β§ π
β Ring) β§ (π decompPMat πΏ) β π·)) |
24 | 1, 22, 23 | sylanbrc 583 |
. . 3
β’ (((π β Fin β§ π
β Ring) β§ (πΏ β β0
β§ π β πΈ)) β (π β Fin β§ π
β Ring β§ (π decompPMat πΏ) β π·)) |
25 | | pmatcollpwscmat.t |
. . . 4
β’ π = (π matToPolyMat π
) |
26 | | eqid 2732 |
. . . 4
β’
(algScβπ) =
(algScβπ) |
27 | 25, 19, 20, 9, 26 | mat2pmatval 22217 |
. . 3
β’ ((π β Fin β§ π
β Ring β§ (π decompPMat πΏ) β π·) β (πβ(π decompPMat πΏ)) = (π β π, π β π β¦ ((algScβπ)β(π(π decompPMat πΏ)π)))) |
28 | 24, 27 | syl 17 |
. 2
β’ (((π β Fin β§ π
β Ring) β§ (πΏ β β0
β§ π β πΈ)) β (πβ(π decompPMat πΏ)) = (π β π, π β π β¦ ((algScβπ)β(π(π decompPMat πΏ)π)))) |
29 | 3, 17, 18 | 3jca 1128 |
. . . . . 6
β’ (((π β Fin β§ π
β Ring) β§ (πΏ β β0
β§ π β πΈ)) β (π
β Ring β§ π β π΅ β§ πΏ β
β0)) |
30 | 29 | 3ad2ant1 1133 |
. . . . 5
β’ ((((π β Fin β§ π
β Ring) β§ (πΏ β β0
β§ π β πΈ)) β§ π β π β§ π β π) β (π
β Ring β§ π β π΅ β§ πΏ β
β0)) |
31 | | 3simpc 1150 |
. . . . 5
β’ ((((π β Fin β§ π
β Ring) β§ (πΏ β β0
β§ π β πΈ)) β§ π β π β§ π β π) β (π β π β§ π β π)) |
32 | 9, 10, 11 | decpmate 22259 |
. . . . 5
β’ (((π
β Ring β§ π β π΅ β§ πΏ β β0) β§ (π β π β§ π β π)) β (π(π decompPMat πΏ)π) = ((coe1β(πππ))βπΏ)) |
33 | 30, 31, 32 | syl2anc 584 |
. . . 4
β’ ((((π β Fin β§ π
β Ring) β§ (πΏ β β0
β§ π β πΈ)) β§ π β π β§ π β π) β (π(π decompPMat πΏ)π) = ((coe1β(πππ))βπΏ)) |
34 | 33 | fveq2d 6892 |
. . 3
β’ ((((π β Fin β§ π
β Ring) β§ (πΏ β β0
β§ π β πΈ)) β§ π β π β§ π β π) β ((algScβπ)β(π(π decompPMat πΏ)π)) = ((algScβπ)β((coe1β(πππ))βπΏ))) |
35 | 34 | mpoeq3dva 7482 |
. 2
β’ (((π β Fin β§ π
β Ring) β§ (πΏ β β0
β§ π β πΈ)) β (π β π, π β π β¦ ((algScβπ)β(π(π decompPMat πΏ)π))) = (π β π, π β π β¦ ((algScβπ)β((coe1β(πππ))βπΏ)))) |
36 | | simp1lr 1237 |
. . . . 5
β’ ((((π β Fin β§ π
β Ring) β§ (πΏ β β0
β§ π β πΈ)) β§ π β π β§ π β π) β π
β Ring) |
37 | | simp2 1137 |
. . . . . . 7
β’ ((((π β Fin β§ π
β Ring) β§ (πΏ β β0
β§ π β πΈ)) β§ π β π β§ π β π) β π β π) |
38 | | simp3 1138 |
. . . . . . 7
β’ ((((π β Fin β§ π
β Ring) β§ (πΏ β β0
β§ π β πΈ)) β§ π β π β§ π β π) β π β π) |
39 | 17 | 3ad2ant1 1133 |
. . . . . . 7
β’ ((((π β Fin β§ π
β Ring) β§ (πΏ β β0
β§ π β πΈ)) β§ π β π β§ π β π) β π β π΅) |
40 | 10, 12, 11, 37, 38, 39 | matecld 21919 |
. . . . . 6
β’ ((((π β Fin β§ π
β Ring) β§ (πΏ β β0
β§ π β πΈ)) β§ π β π β§ π β π) β (πππ) β πΈ) |
41 | 18 | 3ad2ant1 1133 |
. . . . . 6
β’ ((((π β Fin β§ π
β Ring) β§ (πΏ β β0
β§ π β πΈ)) β§ π β π β§ π β π) β πΏ β
β0) |
42 | | eqid 2732 |
. . . . . . 7
β’
(coe1β(πππ)) = (coe1β(πππ)) |
43 | | pmatcollpwscmat.k |
. . . . . . 7
β’ πΎ = (Baseβπ
) |
44 | 42, 12, 9, 43 | coe1fvalcl 21727 |
. . . . . 6
β’ (((πππ) β πΈ β§ πΏ β β0) β
((coe1β(πππ))βπΏ) β πΎ) |
45 | 40, 41, 44 | syl2anc 584 |
. . . . 5
β’ ((((π β Fin β§ π
β Ring) β§ (πΏ β β0
β§ π β πΈ)) β§ π β π β§ π β π) β ((coe1β(πππ))βπΏ) β πΎ) |
46 | | eqid 2732 |
. . . . . 6
β’
(var1βπ
) = (var1βπ
) |
47 | | eqid 2732 |
. . . . . 6
β’ (
Β·π βπ) = ( Β·π
βπ) |
48 | | eqid 2732 |
. . . . . 6
β’
(mulGrpβπ) =
(mulGrpβπ) |
49 | | eqid 2732 |
. . . . . 6
β’
(.gβ(mulGrpβπ)) =
(.gβ(mulGrpβπ)) |
50 | 43, 9, 46, 47, 48, 49, 26 | ply1scltm 21794 |
. . . . 5
β’ ((π
β Ring β§
((coe1β(πππ))βπΏ) β πΎ) β ((algScβπ)β((coe1β(πππ))βπΏ)) = (((coe1β(πππ))βπΏ)( Β·π
βπ)(0(.gβ(mulGrpβπ))(var1βπ
)))) |
51 | 36, 45, 50 | syl2anc 584 |
. . . 4
β’ ((((π β Fin β§ π
β Ring) β§ (πΏ β β0
β§ π β πΈ)) β§ π β π β§ π β π) β ((algScβπ)β((coe1β(πππ))βπΏ)) = (((coe1β(πππ))βπΏ)( Β·π
βπ)(0(.gβ(mulGrpβπ))(var1βπ
)))) |
52 | 51 | mpoeq3dva 7482 |
. . 3
β’ (((π β Fin β§ π
β Ring) β§ (πΏ β β0
β§ π β πΈ)) β (π β π, π β π β¦ ((algScβπ)β((coe1β(πππ))βπΏ))) = (π β π, π β π β¦ (((coe1β(πππ))βπΏ)( Β·π
βπ)(0(.gβ(mulGrpβπ))(var1βπ
))))) |
53 | | pmatcollpwscmat.e1 |
. . . . . . 7
β’ β =
(.gβ(mulGrpβπ)) |
54 | | pmatcollpwscmat.x |
. . . . . . 7
β’ π = (var1βπ
) |
55 | | pmatcollpwscmat.u |
. . . . . . 7
β’ π = (algScβπ) |
56 | | pmatcollpwscmat.s |
. . . . . . 7
β’ π = (algScβπ) |
57 | 9, 10, 11, 13, 53, 54, 25, 19, 20, 55, 43, 12, 56, 14, 8 | pmatcollpwscmatlem1 22282 |
. . . . . 6
β’ ((((π β Fin β§ π
β Ring) β§ (πΏ β β0
β§ π β πΈ)) β§ (π β π β§ π β π)) β (((coe1β(πππ))βπΏ)( Β·π
βπ)(0(.gβ(mulGrpβπ))(var1βπ
))) = if(π = π, (πβ((coe1βπ)βπΏ)), (0gβπ))) |
58 | | eqidd 2733 |
. . . . . . 7
β’ ((((π β Fin β§ π
β Ring) β§ (πΏ β β0
β§ π β πΈ)) β§ (π β π β§ π β π)) β (π β π, π β π β¦ (((coe1β(πππ))βπΏ)( Β·π
βπ)(0(.gβ(mulGrpβπ))(var1βπ
)))) = (π β π, π β π β¦ (((coe1β(πππ))βπΏ)( Β·π
βπ)(0(.gβ(mulGrpβπ))(var1βπ
))))) |
59 | | oveq12 7414 |
. . . . . . . . . . 11
β’ ((π = π β§ π = π) β (πππ) = (πππ)) |
60 | 59 | fveq2d 6892 |
. . . . . . . . . 10
β’ ((π = π β§ π = π) β (coe1β(πππ)) = (coe1β(πππ))) |
61 | 60 | fveq1d 6890 |
. . . . . . . . 9
β’ ((π = π β§ π = π) β ((coe1β(πππ))βπΏ) = ((coe1β(πππ))βπΏ)) |
62 | 61 | oveq1d 7420 |
. . . . . . . 8
β’ ((π = π β§ π = π) β (((coe1β(πππ))βπΏ)( Β·π
βπ)(0(.gβ(mulGrpβπ))(var1βπ
))) =
(((coe1β(πππ))βπΏ)( Β·π
βπ)(0(.gβ(mulGrpβπ))(var1βπ
)))) |
63 | 62 | adantl 482 |
. . . . . . 7
β’
(((((π β Fin
β§ π
β Ring) β§
(πΏ β
β0 β§ π
β πΈ)) β§ (π β π β§ π β π)) β§ (π = π β§ π = π)) β (((coe1β(πππ))βπΏ)( Β·π
βπ)(0(.gβ(mulGrpβπ))(var1βπ
))) =
(((coe1β(πππ))βπΏ)( Β·π
βπ)(0(.gβ(mulGrpβπ))(var1βπ
)))) |
64 | | simprl 769 |
. . . . . . 7
β’ ((((π β Fin β§ π
β Ring) β§ (πΏ β β0
β§ π β πΈ)) β§ (π β π β§ π β π)) β π β π) |
65 | | simprr 771 |
. . . . . . 7
β’ ((((π β Fin β§ π
β Ring) β§ (πΏ β β0
β§ π β πΈ)) β§ (π β π β§ π β π)) β π β π) |
66 | | ovexd 7440 |
. . . . . . 7
β’ ((((π β Fin β§ π
β Ring) β§ (πΏ β β0
β§ π β πΈ)) β§ (π β π β§ π β π)) β (((coe1β(πππ))βπΏ)( Β·π
βπ)(0(.gβ(mulGrpβπ))(var1βπ
))) β V) |
67 | 58, 63, 64, 65, 66 | ovmpod 7556 |
. . . . . 6
β’ ((((π β Fin β§ π
β Ring) β§ (πΏ β β0
β§ π β πΈ)) β§ (π β π β§ π β π)) β (π(π β π, π β π β¦ (((coe1β(πππ))βπΏ)( Β·π
βπ)(0(.gβ(mulGrpβπ))(var1βπ
))))π) = (((coe1β(πππ))βπΏ)( Β·π
βπ)(0(.gβ(mulGrpβπ))(var1βπ
)))) |
68 | | simpll 765 |
. . . . . . . 8
β’ (((π β Fin β§ π
β Ring) β§ (πΏ β β0
β§ π β πΈ)) β π β Fin) |
69 | 9 | ply1ring 21761 |
. . . . . . . . . 10
β’ (π
β Ring β π β Ring) |
70 | 69 | adantl 482 |
. . . . . . . . 9
β’ ((π β Fin β§ π
β Ring) β π β Ring) |
71 | 70 | adantr 481 |
. . . . . . . 8
β’ (((π β Fin β§ π
β Ring) β§ (πΏ β β0
β§ π β πΈ)) β π β Ring) |
72 | | pm3.22 460 |
. . . . . . . . . . 11
β’ ((πΏ β β0
β§ π β πΈ) β (π β πΈ β§ πΏ β
β0)) |
73 | 72 | adantl 482 |
. . . . . . . . . 10
β’ (((π β Fin β§ π
β Ring) β§ (πΏ β β0
β§ π β πΈ)) β (π β πΈ β§ πΏ β
β0)) |
74 | | eqid 2732 |
. . . . . . . . . . 11
β’
(coe1βπ) = (coe1βπ) |
75 | 74, 12, 9, 43 | coe1fvalcl 21727 |
. . . . . . . . . 10
β’ ((π β πΈ β§ πΏ β β0) β
((coe1βπ)βπΏ) β πΎ) |
76 | 73, 75 | syl 17 |
. . . . . . . . 9
β’ (((π β Fin β§ π
β Ring) β§ (πΏ β β0
β§ π β πΈ)) β
((coe1βπ)βπΏ) β πΎ) |
77 | 9, 55, 43, 12 | ply1sclcl 21799 |
. . . . . . . . 9
β’ ((π
β Ring β§
((coe1βπ)βπΏ) β πΎ) β (πβ((coe1βπ)βπΏ)) β πΈ) |
78 | 3, 76, 77 | syl2anc 584 |
. . . . . . . 8
β’ (((π β Fin β§ π
β Ring) β§ (πΏ β β0
β§ π β πΈ)) β (πβ((coe1βπ)βπΏ)) β πΈ) |
79 | 68, 71, 78 | 3jca 1128 |
. . . . . . 7
β’ (((π β Fin β§ π
β Ring) β§ (πΏ β β0
β§ π β πΈ)) β (π β Fin β§ π β Ring β§ (πβ((coe1βπ)βπΏ)) β πΈ)) |
80 | | eqid 2732 |
. . . . . . . 8
β’
(0gβπ) = (0gβπ) |
81 | 10, 12, 80, 14, 13 | scmatscmide 22000 |
. . . . . . 7
β’ (((π β Fin β§ π β Ring β§ (πβ((coe1βπ)βπΏ)) β πΈ) β§ (π β π β§ π β π)) β (π((πβ((coe1βπ)βπΏ)) β 1 )π) = if(π = π, (πβ((coe1βπ)βπΏ)), (0gβπ))) |
82 | 79, 81 | sylan 580 |
. . . . . 6
β’ ((((π β Fin β§ π
β Ring) β§ (πΏ β β0
β§ π β πΈ)) β§ (π β π β§ π β π)) β (π((πβ((coe1βπ)βπΏ)) β 1 )π) = if(π = π, (πβ((coe1βπ)βπΏ)), (0gβπ))) |
83 | 57, 67, 82 | 3eqtr4d 2782 |
. . . . 5
β’ ((((π β Fin β§ π
β Ring) β§ (πΏ β β0
β§ π β πΈ)) β§ (π β π β§ π β π)) β (π(π β π, π β π β¦ (((coe1β(πππ))βπΏ)( Β·π
βπ)(0(.gβ(mulGrpβπ))(var1βπ
))))π) = (π((πβ((coe1βπ)βπΏ)) β 1 )π)) |
84 | 83 | ralrimivva 3200 |
. . . 4
β’ (((π β Fin β§ π
β Ring) β§ (πΏ β β0
β§ π β πΈ)) β βπ β π βπ β π (π(π β π, π β π β¦ (((coe1β(πππ))βπΏ)( Β·π
βπ)(0(.gβ(mulGrpβπ))(var1βπ
))))π) = (π((πβ((coe1βπ)βπΏ)) β 1 )π)) |
85 | | 0nn0 12483 |
. . . . . . . 8
β’ 0 β
β0 |
86 | 85 | a1i 11 |
. . . . . . 7
β’ ((((π β Fin β§ π
β Ring) β§ (πΏ β β0
β§ π β πΈ)) β§ π β π β§ π β π) β 0 β
β0) |
87 | 43, 9, 46, 47, 48, 49, 12 | ply1tmcl 21785 |
. . . . . . 7
β’ ((π
β Ring β§
((coe1β(πππ))βπΏ) β πΎ β§ 0 β β0) β
(((coe1β(πππ))βπΏ)( Β·π
βπ)(0(.gβ(mulGrpβπ))(var1βπ
))) β πΈ) |
88 | 36, 45, 86, 87 | syl3anc 1371 |
. . . . . 6
β’ ((((π β Fin β§ π
β Ring) β§ (πΏ β β0
β§ π β πΈ)) β§ π β π β§ π β π) β (((coe1β(πππ))βπΏ)( Β·π
βπ)(0(.gβ(mulGrpβπ))(var1βπ
))) β πΈ) |
89 | 10, 12, 11, 68, 71, 88 | matbas2d 21916 |
. . . . 5
β’ (((π β Fin β§ π
β Ring) β§ (πΏ β β0
β§ π β πΈ)) β (π β π, π β π β¦ (((coe1β(πππ))βπΏ)( Β·π
βπ)(0(.gβ(mulGrpβπ))(var1βπ
)))) β π΅) |
90 | 9, 10, 11, 12, 13, 14 | 1pmatscmul 22195 |
. . . . . 6
β’ ((π β Fin β§ π
β Ring β§ (πβ((coe1βπ)βπΏ)) β πΈ) β ((πβ((coe1βπ)βπΏ)) β 1 ) β π΅) |
91 | 68, 3, 78, 90 | syl3anc 1371 |
. . . . 5
β’ (((π β Fin β§ π
β Ring) β§ (πΏ β β0
β§ π β πΈ)) β ((πβ((coe1βπ)βπΏ)) β 1 ) β π΅) |
92 | 10, 11 | eqmat 21917 |
. . . . 5
β’ (((π β π, π β π β¦ (((coe1β(πππ))βπΏ)( Β·π
βπ)(0(.gβ(mulGrpβπ))(var1βπ
)))) β π΅ β§ ((πβ((coe1βπ)βπΏ)) β 1 ) β π΅) β ((π β π, π β π β¦ (((coe1β(πππ))βπΏ)( Β·π
βπ)(0(.gβ(mulGrpβπ))(var1βπ
)))) = ((πβ((coe1βπ)βπΏ)) β 1 ) β βπ β π βπ β π (π(π β π, π β π β¦ (((coe1β(πππ))βπΏ)( Β·π
βπ)(0(.gβ(mulGrpβπ))(var1βπ
))))π) = (π((πβ((coe1βπ)βπΏ)) β 1 )π))) |
93 | 89, 91, 92 | syl2anc 584 |
. . . 4
β’ (((π β Fin β§ π
β Ring) β§ (πΏ β β0
β§ π β πΈ)) β ((π β π, π β π β¦ (((coe1β(πππ))βπΏ)( Β·π
βπ)(0(.gβ(mulGrpβπ))(var1βπ
)))) = ((πβ((coe1βπ)βπΏ)) β 1 ) β βπ β π βπ β π (π(π β π, π β π β¦ (((coe1β(πππ))βπΏ)( Β·π
βπ)(0(.gβ(mulGrpβπ))(var1βπ
))))π) = (π((πβ((coe1βπ)βπΏ)) β 1 )π))) |
94 | 84, 93 | mpbird 256 |
. . 3
β’ (((π β Fin β§ π
β Ring) β§ (πΏ β β0
β§ π β πΈ)) β (π β π, π β π β¦ (((coe1β(πππ))βπΏ)( Β·π
βπ)(0(.gβ(mulGrpβπ))(var1βπ
)))) = ((πβ((coe1βπ)βπΏ)) β 1 )) |
95 | 52, 94 | eqtrd 2772 |
. 2
β’ (((π β Fin β§ π
β Ring) β§ (πΏ β β0
β§ π β πΈ)) β (π β π, π β π β¦ ((algScβπ)β((coe1β(πππ))βπΏ))) = ((πβ((coe1βπ)βπΏ)) β 1 )) |
96 | 28, 35, 95 | 3eqtrd 2776 |
1
β’ (((π β Fin β§ π
β Ring) β§ (πΏ β β0
β§ π β πΈ)) β (πβ(π decompPMat πΏ)) = ((πβ((coe1βπ)βπΏ)) β 1 )) |