| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simpl 482 | . . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) | 
| 2 |  | simpr 484 | . . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring) | 
| 3 | 2 | adantr 480 | . . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) → 𝑅 ∈ Ring) | 
| 4 |  | simpr 484 | . . . . . . . 8
⊢ ((𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸) → 𝑄 ∈ 𝐸) | 
| 5 | 4 | anim2i 617 | . . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑄 ∈ 𝐸)) | 
| 6 |  | df-3an 1088 | . . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑄 ∈ 𝐸) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑄 ∈ 𝐸)) | 
| 7 | 5, 6 | sylibr 234 | . . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑄 ∈ 𝐸)) | 
| 8 |  | pmatcollpwscmat.m2 | . . . . . . 7
⊢ 𝑀 = (𝑄 ∗ 1 ) | 
| 9 |  | pmatcollpwscmat.p | . . . . . . . 8
⊢ 𝑃 = (Poly1‘𝑅) | 
| 10 |  | pmatcollpwscmat.c | . . . . . . . 8
⊢ 𝐶 = (𝑁 Mat 𝑃) | 
| 11 |  | pmatcollpwscmat.b | . . . . . . . 8
⊢ 𝐵 = (Base‘𝐶) | 
| 12 |  | pmatcollpwscmat.e2 | . . . . . . . 8
⊢ 𝐸 = (Base‘𝑃) | 
| 13 |  | pmatcollpwscmat.m1 | . . . . . . . 8
⊢  ∗ = (
·𝑠 ‘𝐶) | 
| 14 |  | pmatcollpwscmat.1 | . . . . . . . 8
⊢  1 =
(1r‘𝐶) | 
| 15 | 9, 10, 11, 12, 13, 14 | 1pmatscmul 22709 | . . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑄 ∈ 𝐸) → (𝑄 ∗ 1 ) ∈ 𝐵) | 
| 16 | 8, 15 | eqeltrid 2844 | . . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑄 ∈ 𝐸) → 𝑀 ∈ 𝐵) | 
| 17 | 7, 16 | syl 17 | . . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) → 𝑀 ∈ 𝐵) | 
| 18 |  | simprl 770 | . . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) → 𝐿 ∈
ℕ0) | 
| 19 |  | pmatcollpwscmat.a | . . . . . 6
⊢ 𝐴 = (𝑁 Mat 𝑅) | 
| 20 |  | pmatcollpwscmat.d | . . . . . 6
⊢ 𝐷 = (Base‘𝐴) | 
| 21 | 9, 10, 11, 19, 20 | decpmatcl 22774 | . . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝐿 ∈ ℕ0) → (𝑀 decompPMat 𝐿) ∈ 𝐷) | 
| 22 | 3, 17, 18, 21 | syl3anc 1372 | . . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) → (𝑀 decompPMat 𝐿) ∈ 𝐷) | 
| 23 |  | df-3an 1088 | . . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑀 decompPMat 𝐿) ∈ 𝐷) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀 decompPMat 𝐿) ∈ 𝐷)) | 
| 24 | 1, 22, 23 | sylanbrc 583 | . . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑀 decompPMat 𝐿) ∈ 𝐷)) | 
| 25 |  | pmatcollpwscmat.t | . . . 4
⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | 
| 26 |  | eqid 2736 | . . . 4
⊢
(algSc‘𝑃) =
(algSc‘𝑃) | 
| 27 | 25, 19, 20, 9, 26 | mat2pmatval 22731 | . . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑀 decompPMat 𝐿) ∈ 𝐷) → (𝑇‘(𝑀 decompPMat 𝐿)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝐿)𝑗)))) | 
| 28 | 24, 27 | syl 17 | . 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) → (𝑇‘(𝑀 decompPMat 𝐿)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝐿)𝑗)))) | 
| 29 | 3, 17, 18 | 3jca 1128 | . . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) → (𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝐿 ∈
ℕ0)) | 
| 30 | 29 | 3ad2ant1 1133 | . . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝐿 ∈
ℕ0)) | 
| 31 |  | 3simpc 1150 | . . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) | 
| 32 | 9, 10, 11 | decpmate 22773 | . . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝐿 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖(𝑀 decompPMat 𝐿)𝑗) = ((coe1‘(𝑖𝑀𝑗))‘𝐿)) | 
| 33 | 30, 31, 32 | syl2anc 584 | . . . 4
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑖(𝑀 decompPMat 𝐿)𝑗) = ((coe1‘(𝑖𝑀𝑗))‘𝐿)) | 
| 34 | 33 | fveq2d 6909 | . . 3
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝐿)𝑗)) = ((algSc‘𝑃)‘((coe1‘(𝑖𝑀𝑗))‘𝐿))) | 
| 35 | 34 | mpoeq3dva 7511 | . 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝐿)𝑗))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘((coe1‘(𝑖𝑀𝑗))‘𝐿)))) | 
| 36 |  | simp1lr 1237 | . . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑅 ∈ Ring) | 
| 37 |  | simp2 1137 | . . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑖 ∈ 𝑁) | 
| 38 |  | simp3 1138 | . . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑗 ∈ 𝑁) | 
| 39 | 17 | 3ad2ant1 1133 | . . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑀 ∈ 𝐵) | 
| 40 | 10, 12, 11, 37, 38, 39 | matecld 22433 | . . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑖𝑀𝑗) ∈ 𝐸) | 
| 41 | 18 | 3ad2ant1 1133 | . . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝐿 ∈
ℕ0) | 
| 42 |  | eqid 2736 | . . . . . . 7
⊢
(coe1‘(𝑖𝑀𝑗)) = (coe1‘(𝑖𝑀𝑗)) | 
| 43 |  | pmatcollpwscmat.k | . . . . . . 7
⊢ 𝐾 = (Base‘𝑅) | 
| 44 | 42, 12, 9, 43 | coe1fvalcl 22215 | . . . . . 6
⊢ (((𝑖𝑀𝑗) ∈ 𝐸 ∧ 𝐿 ∈ ℕ0) →
((coe1‘(𝑖𝑀𝑗))‘𝐿) ∈ 𝐾) | 
| 45 | 40, 41, 44 | syl2anc 584 | . . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((coe1‘(𝑖𝑀𝑗))‘𝐿) ∈ 𝐾) | 
| 46 |  | eqid 2736 | . . . . . 6
⊢
(var1‘𝑅) = (var1‘𝑅) | 
| 47 |  | eqid 2736 | . . . . . 6
⊢ (
·𝑠 ‘𝑃) = ( ·𝑠
‘𝑃) | 
| 48 |  | eqid 2736 | . . . . . 6
⊢
(mulGrp‘𝑃) =
(mulGrp‘𝑃) | 
| 49 |  | eqid 2736 | . . . . . 6
⊢
(.g‘(mulGrp‘𝑃)) =
(.g‘(mulGrp‘𝑃)) | 
| 50 | 43, 9, 46, 47, 48, 49, 26 | ply1scltm 22285 | . . . . 5
⊢ ((𝑅 ∈ Ring ∧
((coe1‘(𝑖𝑀𝑗))‘𝐿) ∈ 𝐾) → ((algSc‘𝑃)‘((coe1‘(𝑖𝑀𝑗))‘𝐿)) = (((coe1‘(𝑖𝑀𝑗))‘𝐿)( ·𝑠
‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) | 
| 51 | 36, 45, 50 | syl2anc 584 | . . . 4
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((algSc‘𝑃)‘((coe1‘(𝑖𝑀𝑗))‘𝐿)) = (((coe1‘(𝑖𝑀𝑗))‘𝐿)( ·𝑠
‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) | 
| 52 | 51 | mpoeq3dva 7511 | . . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘((coe1‘(𝑖𝑀𝑗))‘𝐿))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (((coe1‘(𝑖𝑀𝑗))‘𝐿)( ·𝑠
‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅))))) | 
| 53 |  | pmatcollpwscmat.e1 | . . . . . . 7
⊢  ↑ =
(.g‘(mulGrp‘𝑃)) | 
| 54 |  | pmatcollpwscmat.x | . . . . . . 7
⊢ 𝑋 = (var1‘𝑅) | 
| 55 |  | pmatcollpwscmat.u | . . . . . . 7
⊢ 𝑈 = (algSc‘𝑃) | 
| 56 |  | pmatcollpwscmat.s | . . . . . . 7
⊢ 𝑆 = (algSc‘𝑃) | 
| 57 | 9, 10, 11, 13, 53, 54, 25, 19, 20, 55, 43, 12, 56, 14, 8 | pmatcollpwscmatlem1 22796 | . . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → (((coe1‘(𝑎𝑀𝑏))‘𝐿)( ·𝑠
‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅))) = if(𝑎 = 𝑏, (𝑈‘((coe1‘𝑄)‘𝐿)), (0g‘𝑃))) | 
| 58 |  | eqidd 2737 | . . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (((coe1‘(𝑖𝑀𝑗))‘𝐿)( ·𝑠
‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (((coe1‘(𝑖𝑀𝑗))‘𝐿)( ·𝑠
‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅))))) | 
| 59 |  | oveq12 7441 | . . . . . . . . . . 11
⊢ ((𝑖 = 𝑎 ∧ 𝑗 = 𝑏) → (𝑖𝑀𝑗) = (𝑎𝑀𝑏)) | 
| 60 | 59 | fveq2d 6909 | . . . . . . . . . 10
⊢ ((𝑖 = 𝑎 ∧ 𝑗 = 𝑏) → (coe1‘(𝑖𝑀𝑗)) = (coe1‘(𝑎𝑀𝑏))) | 
| 61 | 60 | fveq1d 6907 | . . . . . . . . 9
⊢ ((𝑖 = 𝑎 ∧ 𝑗 = 𝑏) → ((coe1‘(𝑖𝑀𝑗))‘𝐿) = ((coe1‘(𝑎𝑀𝑏))‘𝐿)) | 
| 62 | 61 | oveq1d 7447 | . . . . . . . 8
⊢ ((𝑖 = 𝑎 ∧ 𝑗 = 𝑏) → (((coe1‘(𝑖𝑀𝑗))‘𝐿)( ·𝑠
‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅))) =
(((coe1‘(𝑎𝑀𝑏))‘𝐿)( ·𝑠
‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) | 
| 63 | 62 | adantl 481 | . . . . . . 7
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝐿 ∈
ℕ0 ∧ 𝑄
∈ 𝐸)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) ∧ (𝑖 = 𝑎 ∧ 𝑗 = 𝑏)) → (((coe1‘(𝑖𝑀𝑗))‘𝐿)( ·𝑠
‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅))) =
(((coe1‘(𝑎𝑀𝑏))‘𝐿)( ·𝑠
‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) | 
| 64 |  | simprl 770 | . . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → 𝑎 ∈ 𝑁) | 
| 65 |  | simprr 772 | . . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → 𝑏 ∈ 𝑁) | 
| 66 |  | ovexd 7467 | . . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → (((coe1‘(𝑎𝑀𝑏))‘𝐿)( ·𝑠
‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅))) ∈ V) | 
| 67 | 58, 63, 64, 65, 66 | ovmpod 7586 | . . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → (𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (((coe1‘(𝑖𝑀𝑗))‘𝐿)( ·𝑠
‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅))))𝑏) = (((coe1‘(𝑎𝑀𝑏))‘𝐿)( ·𝑠
‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) | 
| 68 |  | simpll 766 | . . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) → 𝑁 ∈ Fin) | 
| 69 | 9 | ply1ring 22250 | . . . . . . . . . 10
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) | 
| 70 | 69 | adantl 481 | . . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑃 ∈ Ring) | 
| 71 | 70 | adantr 480 | . . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) → 𝑃 ∈ Ring) | 
| 72 |  | pm3.22 459 | . . . . . . . . . . 11
⊢ ((𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸) → (𝑄 ∈ 𝐸 ∧ 𝐿 ∈
ℕ0)) | 
| 73 | 72 | adantl 481 | . . . . . . . . . 10
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) → (𝑄 ∈ 𝐸 ∧ 𝐿 ∈
ℕ0)) | 
| 74 |  | eqid 2736 | . . . . . . . . . . 11
⊢
(coe1‘𝑄) = (coe1‘𝑄) | 
| 75 | 74, 12, 9, 43 | coe1fvalcl 22215 | . . . . . . . . . 10
⊢ ((𝑄 ∈ 𝐸 ∧ 𝐿 ∈ ℕ0) →
((coe1‘𝑄)‘𝐿) ∈ 𝐾) | 
| 76 | 73, 75 | syl 17 | . . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) →
((coe1‘𝑄)‘𝐿) ∈ 𝐾) | 
| 77 | 9, 55, 43, 12 | ply1sclcl 22290 | . . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧
((coe1‘𝑄)‘𝐿) ∈ 𝐾) → (𝑈‘((coe1‘𝑄)‘𝐿)) ∈ 𝐸) | 
| 78 | 3, 76, 77 | syl2anc 584 | . . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) → (𝑈‘((coe1‘𝑄)‘𝐿)) ∈ 𝐸) | 
| 79 | 68, 71, 78 | 3jca 1128 | . . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ∧ (𝑈‘((coe1‘𝑄)‘𝐿)) ∈ 𝐸)) | 
| 80 |  | eqid 2736 | . . . . . . . 8
⊢
(0g‘𝑃) = (0g‘𝑃) | 
| 81 | 10, 12, 80, 14, 13 | scmatscmide 22514 | . . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ∧ (𝑈‘((coe1‘𝑄)‘𝐿)) ∈ 𝐸) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → (𝑎((𝑈‘((coe1‘𝑄)‘𝐿)) ∗ 1 )𝑏) = if(𝑎 = 𝑏, (𝑈‘((coe1‘𝑄)‘𝐿)), (0g‘𝑃))) | 
| 82 | 79, 81 | sylan 580 | . . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → (𝑎((𝑈‘((coe1‘𝑄)‘𝐿)) ∗ 1 )𝑏) = if(𝑎 = 𝑏, (𝑈‘((coe1‘𝑄)‘𝐿)), (0g‘𝑃))) | 
| 83 | 57, 67, 82 | 3eqtr4d 2786 | . . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → (𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (((coe1‘(𝑖𝑀𝑗))‘𝐿)( ·𝑠
‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅))))𝑏) = (𝑎((𝑈‘((coe1‘𝑄)‘𝐿)) ∗ 1 )𝑏)) | 
| 84 | 83 | ralrimivva 3201 | . . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) → ∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 (𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (((coe1‘(𝑖𝑀𝑗))‘𝐿)( ·𝑠
‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅))))𝑏) = (𝑎((𝑈‘((coe1‘𝑄)‘𝐿)) ∗ 1 )𝑏)) | 
| 85 |  | 0nn0 12543 | . . . . . . . 8
⊢ 0 ∈
ℕ0 | 
| 86 | 85 | a1i 11 | . . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 0 ∈
ℕ0) | 
| 87 | 43, 9, 46, 47, 48, 49, 12 | ply1tmcl 22276 | . . . . . . 7
⊢ ((𝑅 ∈ Ring ∧
((coe1‘(𝑖𝑀𝑗))‘𝐿) ∈ 𝐾 ∧ 0 ∈ ℕ0) →
(((coe1‘(𝑖𝑀𝑗))‘𝐿)( ·𝑠
‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅))) ∈ 𝐸) | 
| 88 | 36, 45, 86, 87 | syl3anc 1372 | . . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (((coe1‘(𝑖𝑀𝑗))‘𝐿)( ·𝑠
‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅))) ∈ 𝐸) | 
| 89 | 10, 12, 11, 68, 71, 88 | matbas2d 22430 | . . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (((coe1‘(𝑖𝑀𝑗))‘𝐿)( ·𝑠
‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) ∈ 𝐵) | 
| 90 | 9, 10, 11, 12, 13, 14 | 1pmatscmul 22709 | . . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑈‘((coe1‘𝑄)‘𝐿)) ∈ 𝐸) → ((𝑈‘((coe1‘𝑄)‘𝐿)) ∗ 1 ) ∈ 𝐵) | 
| 91 | 68, 3, 78, 90 | syl3anc 1372 | . . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) → ((𝑈‘((coe1‘𝑄)‘𝐿)) ∗ 1 ) ∈ 𝐵) | 
| 92 | 10, 11 | eqmat 22431 | . . . . 5
⊢ (((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (((coe1‘(𝑖𝑀𝑗))‘𝐿)( ·𝑠
‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) ∈ 𝐵 ∧ ((𝑈‘((coe1‘𝑄)‘𝐿)) ∗ 1 ) ∈ 𝐵) → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (((coe1‘(𝑖𝑀𝑗))‘𝐿)( ·𝑠
‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) = ((𝑈‘((coe1‘𝑄)‘𝐿)) ∗ 1 ) ↔ ∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 (𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (((coe1‘(𝑖𝑀𝑗))‘𝐿)( ·𝑠
‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅))))𝑏) = (𝑎((𝑈‘((coe1‘𝑄)‘𝐿)) ∗ 1 )𝑏))) | 
| 93 | 89, 91, 92 | syl2anc 584 | . . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (((coe1‘(𝑖𝑀𝑗))‘𝐿)( ·𝑠
‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) = ((𝑈‘((coe1‘𝑄)‘𝐿)) ∗ 1 ) ↔ ∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 (𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (((coe1‘(𝑖𝑀𝑗))‘𝐿)( ·𝑠
‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅))))𝑏) = (𝑎((𝑈‘((coe1‘𝑄)‘𝐿)) ∗ 1 )𝑏))) | 
| 94 | 84, 93 | mpbird 257 | . . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (((coe1‘(𝑖𝑀𝑗))‘𝐿)( ·𝑠
‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) = ((𝑈‘((coe1‘𝑄)‘𝐿)) ∗ 1 )) | 
| 95 | 52, 94 | eqtrd 2776 | . 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘((coe1‘(𝑖𝑀𝑗))‘𝐿))) = ((𝑈‘((coe1‘𝑄)‘𝐿)) ∗ 1 )) | 
| 96 | 28, 35, 95 | 3eqtrd 2780 | 1
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) → (𝑇‘(𝑀 decompPMat 𝐿)) = ((𝑈‘((coe1‘𝑄)‘𝐿)) ∗ 1 )) |