MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmatcollpwscmatlem2 Structured version   Visualization version   GIF version

Theorem pmatcollpwscmatlem2 22733
Description: Lemma 2 for pmatcollpwscmat 22734. (Contributed by AV, 2-Nov-2019.) (Revised by AV, 4-Dec-2019.)
Hypotheses
Ref Expression
pmatcollpwscmat.p 𝑃 = (Poly1𝑅)
pmatcollpwscmat.c 𝐶 = (𝑁 Mat 𝑃)
pmatcollpwscmat.b 𝐵 = (Base‘𝐶)
pmatcollpwscmat.m1 = ( ·𝑠𝐶)
pmatcollpwscmat.e1 = (.g‘(mulGrp‘𝑃))
pmatcollpwscmat.x 𝑋 = (var1𝑅)
pmatcollpwscmat.t 𝑇 = (𝑁 matToPolyMat 𝑅)
pmatcollpwscmat.a 𝐴 = (𝑁 Mat 𝑅)
pmatcollpwscmat.d 𝐷 = (Base‘𝐴)
pmatcollpwscmat.u 𝑈 = (algSc‘𝑃)
pmatcollpwscmat.k 𝐾 = (Base‘𝑅)
pmatcollpwscmat.e2 𝐸 = (Base‘𝑃)
pmatcollpwscmat.s 𝑆 = (algSc‘𝑃)
pmatcollpwscmat.1 1 = (1r𝐶)
pmatcollpwscmat.m2 𝑀 = (𝑄 1 )
Assertion
Ref Expression
pmatcollpwscmatlem2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (𝑇‘(𝑀 decompPMat 𝐿)) = ((𝑈‘((coe1𝑄)‘𝐿)) 1 ))

Proof of Theorem pmatcollpwscmatlem2
Dummy variables 𝑎 𝑏 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
2 simpr 484 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring)
32adantr 480 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → 𝑅 ∈ Ring)
4 simpr 484 . . . . . . . 8 ((𝐿 ∈ ℕ0𝑄𝐸) → 𝑄𝐸)
54anim2i 617 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑄𝐸))
6 df-3an 1088 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑄𝐸) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑄𝐸))
75, 6sylibr 234 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑄𝐸))
8 pmatcollpwscmat.m2 . . . . . . 7 𝑀 = (𝑄 1 )
9 pmatcollpwscmat.p . . . . . . . 8 𝑃 = (Poly1𝑅)
10 pmatcollpwscmat.c . . . . . . . 8 𝐶 = (𝑁 Mat 𝑃)
11 pmatcollpwscmat.b . . . . . . . 8 𝐵 = (Base‘𝐶)
12 pmatcollpwscmat.e2 . . . . . . . 8 𝐸 = (Base‘𝑃)
13 pmatcollpwscmat.m1 . . . . . . . 8 = ( ·𝑠𝐶)
14 pmatcollpwscmat.1 . . . . . . . 8 1 = (1r𝐶)
159, 10, 11, 12, 13, 141pmatscmul 22645 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑄𝐸) → (𝑄 1 ) ∈ 𝐵)
168, 15eqeltrid 2839 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑄𝐸) → 𝑀𝐵)
177, 16syl 17 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → 𝑀𝐵)
18 simprl 770 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → 𝐿 ∈ ℕ0)
19 pmatcollpwscmat.a . . . . . 6 𝐴 = (𝑁 Mat 𝑅)
20 pmatcollpwscmat.d . . . . . 6 𝐷 = (Base‘𝐴)
219, 10, 11, 19, 20decpmatcl 22710 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵𝐿 ∈ ℕ0) → (𝑀 decompPMat 𝐿) ∈ 𝐷)
223, 17, 18, 21syl3anc 1373 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (𝑀 decompPMat 𝐿) ∈ 𝐷)
23 df-3an 1088 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑀 decompPMat 𝐿) ∈ 𝐷) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀 decompPMat 𝐿) ∈ 𝐷))
241, 22, 23sylanbrc 583 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑀 decompPMat 𝐿) ∈ 𝐷))
25 pmatcollpwscmat.t . . . 4 𝑇 = (𝑁 matToPolyMat 𝑅)
26 eqid 2736 . . . 4 (algSc‘𝑃) = (algSc‘𝑃)
2725, 19, 20, 9, 26mat2pmatval 22667 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑀 decompPMat 𝐿) ∈ 𝐷) → (𝑇‘(𝑀 decompPMat 𝐿)) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝐿)𝑗))))
2824, 27syl 17 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (𝑇‘(𝑀 decompPMat 𝐿)) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝐿)𝑗))))
293, 17, 183jca 1128 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (𝑅 ∈ Ring ∧ 𝑀𝐵𝐿 ∈ ℕ0))
30293ad2ant1 1133 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ 𝑖𝑁𝑗𝑁) → (𝑅 ∈ Ring ∧ 𝑀𝐵𝐿 ∈ ℕ0))
31 3simpc 1150 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑁𝑗𝑁))
329, 10, 11decpmate 22709 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑀𝐵𝐿 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑀 decompPMat 𝐿)𝑗) = ((coe1‘(𝑖𝑀𝑗))‘𝐿))
3330, 31, 32syl2anc 584 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖(𝑀 decompPMat 𝐿)𝑗) = ((coe1‘(𝑖𝑀𝑗))‘𝐿))
3433fveq2d 6885 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ 𝑖𝑁𝑗𝑁) → ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝐿)𝑗)) = ((algSc‘𝑃)‘((coe1‘(𝑖𝑀𝑗))‘𝐿)))
3534mpoeq3dva 7489 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝐿)𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘((coe1‘(𝑖𝑀𝑗))‘𝐿))))
36 simp1lr 1238 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ 𝑖𝑁𝑗𝑁) → 𝑅 ∈ Ring)
37 simp2 1137 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ 𝑖𝑁𝑗𝑁) → 𝑖𝑁)
38 simp3 1138 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ 𝑖𝑁𝑗𝑁) → 𝑗𝑁)
39173ad2ant1 1133 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ 𝑖𝑁𝑗𝑁) → 𝑀𝐵)
4010, 12, 11, 37, 38, 39matecld 22369 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑀𝑗) ∈ 𝐸)
41183ad2ant1 1133 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ 𝑖𝑁𝑗𝑁) → 𝐿 ∈ ℕ0)
42 eqid 2736 . . . . . . 7 (coe1‘(𝑖𝑀𝑗)) = (coe1‘(𝑖𝑀𝑗))
43 pmatcollpwscmat.k . . . . . . 7 𝐾 = (Base‘𝑅)
4442, 12, 9, 43coe1fvalcl 22153 . . . . . 6 (((𝑖𝑀𝑗) ∈ 𝐸𝐿 ∈ ℕ0) → ((coe1‘(𝑖𝑀𝑗))‘𝐿) ∈ 𝐾)
4540, 41, 44syl2anc 584 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖𝑀𝑗))‘𝐿) ∈ 𝐾)
46 eqid 2736 . . . . . 6 (var1𝑅) = (var1𝑅)
47 eqid 2736 . . . . . 6 ( ·𝑠𝑃) = ( ·𝑠𝑃)
48 eqid 2736 . . . . . 6 (mulGrp‘𝑃) = (mulGrp‘𝑃)
49 eqid 2736 . . . . . 6 (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃))
5043, 9, 46, 47, 48, 49, 26ply1scltm 22223 . . . . 5 ((𝑅 ∈ Ring ∧ ((coe1‘(𝑖𝑀𝑗))‘𝐿) ∈ 𝐾) → ((algSc‘𝑃)‘((coe1‘(𝑖𝑀𝑗))‘𝐿)) = (((coe1‘(𝑖𝑀𝑗))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))))
5136, 45, 50syl2anc 584 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ 𝑖𝑁𝑗𝑁) → ((algSc‘𝑃)‘((coe1‘(𝑖𝑀𝑗))‘𝐿)) = (((coe1‘(𝑖𝑀𝑗))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))))
5251mpoeq3dva 7489 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘((coe1‘(𝑖𝑀𝑗))‘𝐿))) = (𝑖𝑁, 𝑗𝑁 ↦ (((coe1‘(𝑖𝑀𝑗))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅)))))
53 pmatcollpwscmat.e1 . . . . . . 7 = (.g‘(mulGrp‘𝑃))
54 pmatcollpwscmat.x . . . . . . 7 𝑋 = (var1𝑅)
55 pmatcollpwscmat.u . . . . . . 7 𝑈 = (algSc‘𝑃)
56 pmatcollpwscmat.s . . . . . . 7 𝑆 = (algSc‘𝑃)
579, 10, 11, 13, 53, 54, 25, 19, 20, 55, 43, 12, 56, 14, 8pmatcollpwscmatlem1 22732 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) → (((coe1‘(𝑎𝑀𝑏))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = if(𝑎 = 𝑏, (𝑈‘((coe1𝑄)‘𝐿)), (0g𝑃)))
58 eqidd 2737 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) → (𝑖𝑁, 𝑗𝑁 ↦ (((coe1‘(𝑖𝑀𝑗))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅)))) = (𝑖𝑁, 𝑗𝑁 ↦ (((coe1‘(𝑖𝑀𝑗))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅)))))
59 oveq12 7419 . . . . . . . . . . 11 ((𝑖 = 𝑎𝑗 = 𝑏) → (𝑖𝑀𝑗) = (𝑎𝑀𝑏))
6059fveq2d 6885 . . . . . . . . . 10 ((𝑖 = 𝑎𝑗 = 𝑏) → (coe1‘(𝑖𝑀𝑗)) = (coe1‘(𝑎𝑀𝑏)))
6160fveq1d 6883 . . . . . . . . 9 ((𝑖 = 𝑎𝑗 = 𝑏) → ((coe1‘(𝑖𝑀𝑗))‘𝐿) = ((coe1‘(𝑎𝑀𝑏))‘𝐿))
6261oveq1d 7425 . . . . . . . 8 ((𝑖 = 𝑎𝑗 = 𝑏) → (((coe1‘(𝑖𝑀𝑗))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = (((coe1‘(𝑎𝑀𝑏))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))))
6362adantl 481 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) ∧ (𝑖 = 𝑎𝑗 = 𝑏)) → (((coe1‘(𝑖𝑀𝑗))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = (((coe1‘(𝑎𝑀𝑏))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))))
64 simprl 770 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) → 𝑎𝑁)
65 simprr 772 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) → 𝑏𝑁)
66 ovexd 7445 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) → (((coe1‘(𝑎𝑀𝑏))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ V)
6758, 63, 64, 65, 66ovmpod 7564 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) → (𝑎(𝑖𝑁, 𝑗𝑁 ↦ (((coe1‘(𝑖𝑀𝑗))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))))𝑏) = (((coe1‘(𝑎𝑀𝑏))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))))
68 simpll 766 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → 𝑁 ∈ Fin)
699ply1ring 22188 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
7069adantl 481 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑃 ∈ Ring)
7170adantr 480 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → 𝑃 ∈ Ring)
72 pm3.22 459 . . . . . . . . . . 11 ((𝐿 ∈ ℕ0𝑄𝐸) → (𝑄𝐸𝐿 ∈ ℕ0))
7372adantl 481 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (𝑄𝐸𝐿 ∈ ℕ0))
74 eqid 2736 . . . . . . . . . . 11 (coe1𝑄) = (coe1𝑄)
7574, 12, 9, 43coe1fvalcl 22153 . . . . . . . . . 10 ((𝑄𝐸𝐿 ∈ ℕ0) → ((coe1𝑄)‘𝐿) ∈ 𝐾)
7673, 75syl 17 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → ((coe1𝑄)‘𝐿) ∈ 𝐾)
779, 55, 43, 12ply1sclcl 22228 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ ((coe1𝑄)‘𝐿) ∈ 𝐾) → (𝑈‘((coe1𝑄)‘𝐿)) ∈ 𝐸)
783, 76, 77syl2anc 584 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (𝑈‘((coe1𝑄)‘𝐿)) ∈ 𝐸)
7968, 71, 783jca 1128 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ∧ (𝑈‘((coe1𝑄)‘𝐿)) ∈ 𝐸))
80 eqid 2736 . . . . . . . 8 (0g𝑃) = (0g𝑃)
8110, 12, 80, 14, 13scmatscmide 22450 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ∧ (𝑈‘((coe1𝑄)‘𝐿)) ∈ 𝐸) ∧ (𝑎𝑁𝑏𝑁)) → (𝑎((𝑈‘((coe1𝑄)‘𝐿)) 1 )𝑏) = if(𝑎 = 𝑏, (𝑈‘((coe1𝑄)‘𝐿)), (0g𝑃)))
8279, 81sylan 580 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) → (𝑎((𝑈‘((coe1𝑄)‘𝐿)) 1 )𝑏) = if(𝑎 = 𝑏, (𝑈‘((coe1𝑄)‘𝐿)), (0g𝑃)))
8357, 67, 823eqtr4d 2781 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) → (𝑎(𝑖𝑁, 𝑗𝑁 ↦ (((coe1‘(𝑖𝑀𝑗))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))))𝑏) = (𝑎((𝑈‘((coe1𝑄)‘𝐿)) 1 )𝑏))
8483ralrimivva 3188 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → ∀𝑎𝑁𝑏𝑁 (𝑎(𝑖𝑁, 𝑗𝑁 ↦ (((coe1‘(𝑖𝑀𝑗))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))))𝑏) = (𝑎((𝑈‘((coe1𝑄)‘𝐿)) 1 )𝑏))
85 0nn0 12521 . . . . . . . 8 0 ∈ ℕ0
8685a1i 11 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ 𝑖𝑁𝑗𝑁) → 0 ∈ ℕ0)
8743, 9, 46, 47, 48, 49, 12ply1tmcl 22214 . . . . . . 7 ((𝑅 ∈ Ring ∧ ((coe1‘(𝑖𝑀𝑗))‘𝐿) ∈ 𝐾 ∧ 0 ∈ ℕ0) → (((coe1‘(𝑖𝑀𝑗))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ 𝐸)
8836, 45, 86, 87syl3anc 1373 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ 𝑖𝑁𝑗𝑁) → (((coe1‘(𝑖𝑀𝑗))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ 𝐸)
8910, 12, 11, 68, 71, 88matbas2d 22366 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (𝑖𝑁, 𝑗𝑁 ↦ (((coe1‘(𝑖𝑀𝑗))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅)))) ∈ 𝐵)
909, 10, 11, 12, 13, 141pmatscmul 22645 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑈‘((coe1𝑄)‘𝐿)) ∈ 𝐸) → ((𝑈‘((coe1𝑄)‘𝐿)) 1 ) ∈ 𝐵)
9168, 3, 78, 90syl3anc 1373 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → ((𝑈‘((coe1𝑄)‘𝐿)) 1 ) ∈ 𝐵)
9210, 11eqmat 22367 . . . . 5 (((𝑖𝑁, 𝑗𝑁 ↦ (((coe1‘(𝑖𝑀𝑗))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅)))) ∈ 𝐵 ∧ ((𝑈‘((coe1𝑄)‘𝐿)) 1 ) ∈ 𝐵) → ((𝑖𝑁, 𝑗𝑁 ↦ (((coe1‘(𝑖𝑀𝑗))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅)))) = ((𝑈‘((coe1𝑄)‘𝐿)) 1 ) ↔ ∀𝑎𝑁𝑏𝑁 (𝑎(𝑖𝑁, 𝑗𝑁 ↦ (((coe1‘(𝑖𝑀𝑗))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))))𝑏) = (𝑎((𝑈‘((coe1𝑄)‘𝐿)) 1 )𝑏)))
9389, 91, 92syl2anc 584 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → ((𝑖𝑁, 𝑗𝑁 ↦ (((coe1‘(𝑖𝑀𝑗))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅)))) = ((𝑈‘((coe1𝑄)‘𝐿)) 1 ) ↔ ∀𝑎𝑁𝑏𝑁 (𝑎(𝑖𝑁, 𝑗𝑁 ↦ (((coe1‘(𝑖𝑀𝑗))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))))𝑏) = (𝑎((𝑈‘((coe1𝑄)‘𝐿)) 1 )𝑏)))
9484, 93mpbird 257 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (𝑖𝑁, 𝑗𝑁 ↦ (((coe1‘(𝑖𝑀𝑗))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅)))) = ((𝑈‘((coe1𝑄)‘𝐿)) 1 ))
9552, 94eqtrd 2771 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘((coe1‘(𝑖𝑀𝑗))‘𝐿))) = ((𝑈‘((coe1𝑄)‘𝐿)) 1 ))
9628, 35, 953eqtrd 2775 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (𝑇‘(𝑀 decompPMat 𝐿)) = ((𝑈‘((coe1𝑄)‘𝐿)) 1 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3052  Vcvv 3464  ifcif 4505  cfv 6536  (class class class)co 7410  cmpo 7412  Fincfn 8964  0cc0 11134  0cn0 12506  Basecbs 17233   ·𝑠 cvsca 17280  0gc0g 17458  .gcmg 19055  mulGrpcmgp 20105  1rcur 20146  Ringcrg 20198  algSccascl 21817  var1cv1 22116  Poly1cpl1 22117  coe1cco1 22118   Mat cmat 22350   matToPolyMat cmat2pmat 22647   decompPMat cdecpmat 22705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-ot 4615  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-ofr 7677  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-sup 9459  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14354  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-hom 17300  df-cco 17301  df-0g 17460  df-gsum 17461  df-prds 17466  df-pws 17468  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-subg 19111  df-ghm 19201  df-cntz 19305  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-subrng 20511  df-subrg 20535  df-lmod 20824  df-lss 20894  df-sra 21136  df-rgmod 21137  df-dsmm 21697  df-frlm 21712  df-ascl 21820  df-psr 21874  df-mvr 21875  df-mpl 21876  df-opsr 21878  df-psr1 22120  df-vr1 22121  df-ply1 22122  df-coe1 22123  df-mamu 22334  df-mat 22351  df-mat2pmat 22650  df-decpmat 22706
This theorem is referenced by:  pmatcollpwscmat  22734
  Copyright terms: Public domain W3C validator