Step | Hyp | Ref
| Expression |
1 | | 1marepvsma1.x |
. . . . . 6
⊢ 𝑋 = (( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼) |
2 | 1 | oveqi 7288 |
. . . . 5
⊢ (𝑖𝑋𝑗) = (𝑖(( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼)𝑗) |
3 | 2 | a1i 11 |
. . . 4
⊢ ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) ∧ 𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗 ∈ (𝑁 ∖ {𝐼})) → (𝑖𝑋𝑗) = (𝑖(( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼)𝑗)) |
4 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅) |
5 | | eqid 2738 |
. . . . . . . . 9
⊢
(Base‘(𝑁 Mat
𝑅)) = (Base‘(𝑁 Mat 𝑅)) |
6 | | 1marepvsma1.1 |
. . . . . . . . 9
⊢ 1 =
(1r‘(𝑁 Mat
𝑅)) |
7 | 4, 5, 6 | mat1bas 21598 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 1 ∈
(Base‘(𝑁 Mat 𝑅))) |
8 | 7 | adantr 481 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) → 1 ∈ (Base‘(𝑁 Mat 𝑅))) |
9 | | simprr 770 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) → 𝑍 ∈ 𝑉) |
10 | | simprl 768 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) → 𝐼 ∈ 𝑁) |
11 | 8, 9, 10 | 3jca 1127 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) → ( 1 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ 𝑍 ∈ 𝑉 ∧ 𝐼 ∈ 𝑁)) |
12 | 11 | 3ad2ant1 1132 |
. . . . 5
⊢ ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) ∧ 𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗 ∈ (𝑁 ∖ {𝐼})) → ( 1 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ 𝑍 ∈ 𝑉 ∧ 𝐼 ∈ 𝑁)) |
13 | | eldifi 4061 |
. . . . . . 7
⊢ (𝑖 ∈ (𝑁 ∖ {𝐼}) → 𝑖 ∈ 𝑁) |
14 | | eldifi 4061 |
. . . . . . 7
⊢ (𝑗 ∈ (𝑁 ∖ {𝐼}) → 𝑗 ∈ 𝑁) |
15 | 13, 14 | anim12i 613 |
. . . . . 6
⊢ ((𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗 ∈ (𝑁 ∖ {𝐼})) → (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) |
16 | 15 | 3adant1 1129 |
. . . . 5
⊢ ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) ∧ 𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗 ∈ (𝑁 ∖ {𝐼})) → (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) |
17 | | eqid 2738 |
. . . . . 6
⊢ (𝑁 matRepV 𝑅) = (𝑁 matRepV 𝑅) |
18 | | 1marepvsma1.v |
. . . . . 6
⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) |
19 | 4, 5, 17, 18 | marepveval 21717 |
. . . . 5
⊢ ((( 1 ∈
(Base‘(𝑁 Mat 𝑅)) ∧ 𝑍 ∈ 𝑉 ∧ 𝐼 ∈ 𝑁) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖(( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼)𝑗) = if(𝑗 = 𝐼, (𝑍‘𝑖), (𝑖 1 𝑗))) |
20 | 12, 16, 19 | syl2anc 584 |
. . . 4
⊢ ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) ∧ 𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗 ∈ (𝑁 ∖ {𝐼})) → (𝑖(( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼)𝑗) = if(𝑗 = 𝐼, (𝑍‘𝑖), (𝑖 1 𝑗))) |
21 | | eldifsni 4723 |
. . . . . . . 8
⊢ (𝑗 ∈ (𝑁 ∖ {𝐼}) → 𝑗 ≠ 𝐼) |
22 | 21 | neneqd 2948 |
. . . . . . 7
⊢ (𝑗 ∈ (𝑁 ∖ {𝐼}) → ¬ 𝑗 = 𝐼) |
23 | 22 | 3ad2ant3 1134 |
. . . . . 6
⊢ ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) ∧ 𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗 ∈ (𝑁 ∖ {𝐼})) → ¬ 𝑗 = 𝐼) |
24 | 23 | iffalsed 4470 |
. . . . 5
⊢ ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) ∧ 𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗 ∈ (𝑁 ∖ {𝐼})) → if(𝑗 = 𝐼, (𝑍‘𝑖), (𝑖 1 𝑗)) = (𝑖 1 𝑗)) |
25 | | eqid 2738 |
. . . . . 6
⊢
(1r‘𝑅) = (1r‘𝑅) |
26 | | eqid 2738 |
. . . . . 6
⊢
(0g‘𝑅) = (0g‘𝑅) |
27 | | simp1lr 1236 |
. . . . . 6
⊢ ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) ∧ 𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗 ∈ (𝑁 ∖ {𝐼})) → 𝑁 ∈ Fin) |
28 | | simp1ll 1235 |
. . . . . 6
⊢ ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) ∧ 𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗 ∈ (𝑁 ∖ {𝐼})) → 𝑅 ∈ Ring) |
29 | 13 | 3ad2ant2 1133 |
. . . . . 6
⊢ ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) ∧ 𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗 ∈ (𝑁 ∖ {𝐼})) → 𝑖 ∈ 𝑁) |
30 | 14 | 3ad2ant3 1134 |
. . . . . 6
⊢ ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) ∧ 𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗 ∈ (𝑁 ∖ {𝐼})) → 𝑗 ∈ 𝑁) |
31 | 4, 25, 26, 27, 28, 29, 30, 6 | mat1ov 21597 |
. . . . 5
⊢ ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) ∧ 𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗 ∈ (𝑁 ∖ {𝐼})) → (𝑖 1 𝑗) = if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅))) |
32 | 24, 31 | eqtrd 2778 |
. . . 4
⊢ ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) ∧ 𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗 ∈ (𝑁 ∖ {𝐼})) → if(𝑗 = 𝐼, (𝑍‘𝑖), (𝑖 1 𝑗)) = if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅))) |
33 | 3, 20, 32 | 3eqtrd 2782 |
. . 3
⊢ ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) ∧ 𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗 ∈ (𝑁 ∖ {𝐼})) → (𝑖𝑋𝑗) = if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅))) |
34 | 33 | mpoeq3dva 7352 |
. 2
⊢ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) → (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑖𝑋𝑗)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗 ∈ (𝑁 ∖ {𝐼}) ↦ if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅)))) |
35 | 4, 5, 18, 6 | ma1repvcl 21719 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝑍 ∈ 𝑉 ∧ 𝐼 ∈ 𝑁)) → (( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼) ∈ (Base‘(𝑁 Mat 𝑅))) |
36 | 35 | ancom2s 647 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) → (( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼) ∈ (Base‘(𝑁 Mat 𝑅))) |
37 | 1, 36 | eqeltrid 2843 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) → 𝑋 ∈ (Base‘(𝑁 Mat 𝑅))) |
38 | | eqid 2738 |
. . . 4
⊢ (𝑁 subMat 𝑅) = (𝑁 subMat 𝑅) |
39 | 4, 38, 5 | submaval 21730 |
. . 3
⊢ ((𝑋 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ 𝐼 ∈ 𝑁 ∧ 𝐼 ∈ 𝑁) → (𝐼((𝑁 subMat 𝑅)‘𝑋)𝐼) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑖𝑋𝑗))) |
40 | 37, 10, 10, 39 | syl3anc 1370 |
. 2
⊢ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) → (𝐼((𝑁 subMat 𝑅)‘𝑋)𝐼) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑖𝑋𝑗))) |
41 | | diffi 8962 |
. . . . . 6
⊢ (𝑁 ∈ Fin → (𝑁 ∖ {𝐼}) ∈ Fin) |
42 | 41 | anim2i 617 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → (𝑅 ∈ Ring ∧ (𝑁 ∖ {𝐼}) ∈ Fin)) |
43 | 42 | ancomd 462 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → ((𝑁 ∖ {𝐼}) ∈ Fin ∧ 𝑅 ∈ Ring)) |
44 | 43 | adantr 481 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) → ((𝑁 ∖ {𝐼}) ∈ Fin ∧ 𝑅 ∈ Ring)) |
45 | | eqid 2738 |
. . . 4
⊢ ((𝑁 ∖ {𝐼}) Mat 𝑅) = ((𝑁 ∖ {𝐼}) Mat 𝑅) |
46 | 45, 25, 26 | mat1 21596 |
. . 3
⊢ (((𝑁 ∖ {𝐼}) ∈ Fin ∧ 𝑅 ∈ Ring) →
(1r‘((𝑁
∖ {𝐼}) Mat 𝑅)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗 ∈ (𝑁 ∖ {𝐼}) ↦ if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅)))) |
47 | 44, 46 | syl 17 |
. 2
⊢ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) → (1r‘((𝑁 ∖ {𝐼}) Mat 𝑅)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗 ∈ (𝑁 ∖ {𝐼}) ↦ if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅)))) |
48 | 34, 40, 47 | 3eqtr4d 2788 |
1
⊢ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) → (𝐼((𝑁 subMat 𝑅)‘𝑋)𝐼) = (1r‘((𝑁 ∖ {𝐼}) Mat 𝑅))) |