MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1marepvsma1 Structured version   Visualization version   GIF version

Theorem 1marepvsma1 22605
Description: The submatrix of the identity matrix with the ith column replaced by the vector obtained by removing the ith row and the ith column is an identity matrix. (Contributed by AV, 14-Feb-2019.) (Revised by AV, 27-Feb-2019.)
Hypotheses
Ref Expression
1marepvsma1.v 𝑉 = ((Base‘𝑅) ↑m 𝑁)
1marepvsma1.1 1 = (1r‘(𝑁 Mat 𝑅))
1marepvsma1.x 𝑋 = (( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼)
Assertion
Ref Expression
1marepvsma1 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → (𝐼((𝑁 subMat 𝑅)‘𝑋)𝐼) = (1r‘((𝑁 ∖ {𝐼}) Mat 𝑅)))

Proof of Theorem 1marepvsma1
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1marepvsma1.x . . . . . 6 𝑋 = (( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼)
21oveqi 7444 . . . . 5 (𝑖𝑋𝑗) = (𝑖(( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼)𝑗)
32a1i 11 . . . 4 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗 ∈ (𝑁 ∖ {𝐼})) → (𝑖𝑋𝑗) = (𝑖(( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼)𝑗))
4 eqid 2735 . . . . . . . . 9 (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅)
5 eqid 2735 . . . . . . . . 9 (Base‘(𝑁 Mat 𝑅)) = (Base‘(𝑁 Mat 𝑅))
6 1marepvsma1.1 . . . . . . . . 9 1 = (1r‘(𝑁 Mat 𝑅))
74, 5, 6mat1bas 22471 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 1 ∈ (Base‘(𝑁 Mat 𝑅)))
87adantr 480 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → 1 ∈ (Base‘(𝑁 Mat 𝑅)))
9 simprr 773 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → 𝑍𝑉)
10 simprl 771 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → 𝐼𝑁)
118, 9, 103jca 1127 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → ( 1 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ 𝑍𝑉𝐼𝑁))
12113ad2ant1 1132 . . . . 5 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗 ∈ (𝑁 ∖ {𝐼})) → ( 1 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ 𝑍𝑉𝐼𝑁))
13 eldifi 4141 . . . . . . 7 (𝑖 ∈ (𝑁 ∖ {𝐼}) → 𝑖𝑁)
14 eldifi 4141 . . . . . . 7 (𝑗 ∈ (𝑁 ∖ {𝐼}) → 𝑗𝑁)
1513, 14anim12i 613 . . . . . 6 ((𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗 ∈ (𝑁 ∖ {𝐼})) → (𝑖𝑁𝑗𝑁))
16153adant1 1129 . . . . 5 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗 ∈ (𝑁 ∖ {𝐼})) → (𝑖𝑁𝑗𝑁))
17 eqid 2735 . . . . . 6 (𝑁 matRepV 𝑅) = (𝑁 matRepV 𝑅)
18 1marepvsma1.v . . . . . 6 𝑉 = ((Base‘𝑅) ↑m 𝑁)
194, 5, 17, 18marepveval 22590 . . . . 5 ((( 1 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ 𝑍𝑉𝐼𝑁) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼)𝑗) = if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗)))
2012, 16, 19syl2anc 584 . . . 4 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗 ∈ (𝑁 ∖ {𝐼})) → (𝑖(( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼)𝑗) = if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗)))
21 eldifsni 4795 . . . . . . . 8 (𝑗 ∈ (𝑁 ∖ {𝐼}) → 𝑗𝐼)
2221neneqd 2943 . . . . . . 7 (𝑗 ∈ (𝑁 ∖ {𝐼}) → ¬ 𝑗 = 𝐼)
23223ad2ant3 1134 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗 ∈ (𝑁 ∖ {𝐼})) → ¬ 𝑗 = 𝐼)
2423iffalsed 4542 . . . . 5 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗 ∈ (𝑁 ∖ {𝐼})) → if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗)) = (𝑖 1 𝑗))
25 eqid 2735 . . . . . 6 (1r𝑅) = (1r𝑅)
26 eqid 2735 . . . . . 6 (0g𝑅) = (0g𝑅)
27 simp1lr 1236 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗 ∈ (𝑁 ∖ {𝐼})) → 𝑁 ∈ Fin)
28 simp1ll 1235 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗 ∈ (𝑁 ∖ {𝐼})) → 𝑅 ∈ Ring)
29133ad2ant2 1133 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗 ∈ (𝑁 ∖ {𝐼})) → 𝑖𝑁)
30143ad2ant3 1134 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗 ∈ (𝑁 ∖ {𝐼})) → 𝑗𝑁)
314, 25, 26, 27, 28, 29, 30, 6mat1ov 22470 . . . . 5 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗 ∈ (𝑁 ∖ {𝐼})) → (𝑖 1 𝑗) = if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)))
3224, 31eqtrd 2775 . . . 4 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗 ∈ (𝑁 ∖ {𝐼})) → if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗)) = if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)))
333, 20, 323eqtrd 2779 . . 3 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗 ∈ (𝑁 ∖ {𝐼})) → (𝑖𝑋𝑗) = if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)))
3433mpoeq3dva 7510 . 2 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑖𝑋𝑗)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗 ∈ (𝑁 ∖ {𝐼}) ↦ if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))))
354, 5, 18, 6ma1repvcl 22592 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝑍𝑉𝐼𝑁)) → (( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼) ∈ (Base‘(𝑁 Mat 𝑅)))
3635ancom2s 650 . . . 4 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → (( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼) ∈ (Base‘(𝑁 Mat 𝑅)))
371, 36eqeltrid 2843 . . 3 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → 𝑋 ∈ (Base‘(𝑁 Mat 𝑅)))
38 eqid 2735 . . . 4 (𝑁 subMat 𝑅) = (𝑁 subMat 𝑅)
394, 38, 5submaval 22603 . . 3 ((𝑋 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ 𝐼𝑁𝐼𝑁) → (𝐼((𝑁 subMat 𝑅)‘𝑋)𝐼) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑖𝑋𝑗)))
4037, 10, 10, 39syl3anc 1370 . 2 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → (𝐼((𝑁 subMat 𝑅)‘𝑋)𝐼) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑖𝑋𝑗)))
41 diffi 9214 . . . . . 6 (𝑁 ∈ Fin → (𝑁 ∖ {𝐼}) ∈ Fin)
4241anim2i 617 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → (𝑅 ∈ Ring ∧ (𝑁 ∖ {𝐼}) ∈ Fin))
4342ancomd 461 . . . 4 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → ((𝑁 ∖ {𝐼}) ∈ Fin ∧ 𝑅 ∈ Ring))
4443adantr 480 . . 3 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → ((𝑁 ∖ {𝐼}) ∈ Fin ∧ 𝑅 ∈ Ring))
45 eqid 2735 . . . 4 ((𝑁 ∖ {𝐼}) Mat 𝑅) = ((𝑁 ∖ {𝐼}) Mat 𝑅)
4645, 25, 26mat1 22469 . . 3 (((𝑁 ∖ {𝐼}) ∈ Fin ∧ 𝑅 ∈ Ring) → (1r‘((𝑁 ∖ {𝐼}) Mat 𝑅)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗 ∈ (𝑁 ∖ {𝐼}) ↦ if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))))
4744, 46syl 17 . 2 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → (1r‘((𝑁 ∖ {𝐼}) Mat 𝑅)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗 ∈ (𝑁 ∖ {𝐼}) ↦ if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))))
4834, 40, 473eqtr4d 2785 1 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → (𝐼((𝑁 subMat 𝑅)‘𝑋)𝐼) = (1r‘((𝑁 ∖ {𝐼}) Mat 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  cdif 3960  ifcif 4531  {csn 4631  cfv 6563  (class class class)co 7431  cmpo 7433  m cmap 8865  Fincfn 8984  Basecbs 17245  0gc0g 17486  1rcur 20199  Ringcrg 20251   Mat cmat 22427   matRepV cmatrepV 22579   subMat csubma 22598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-ot 4640  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-fzo 13692  df-seq 14040  df-hash 14367  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17488  df-gsum 17489  df-prds 17494  df-pws 17496  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-ghm 19244  df-cntz 19348  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-subrg 20587  df-lmod 20877  df-lss 20948  df-sra 21190  df-rgmod 21191  df-dsmm 21770  df-frlm 21785  df-mamu 22411  df-mat 22428  df-marepv 22581  df-subma 22599
This theorem is referenced by:  cramerimplem1  22705
  Copyright terms: Public domain W3C validator