MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1marepvsma1 Structured version   Visualization version   GIF version

Theorem 1marepvsma1 21452
Description: The submatrix of the identity matrix with the ith column replaced by the vector obtained by removing the ith row and the ith column is an identity matrix. (Contributed by AV, 14-Feb-2019.) (Revised by AV, 27-Feb-2019.)
Hypotheses
Ref Expression
1marepvsma1.v 𝑉 = ((Base‘𝑅) ↑m 𝑁)
1marepvsma1.1 1 = (1r‘(𝑁 Mat 𝑅))
1marepvsma1.x 𝑋 = (( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼)
Assertion
Ref Expression
1marepvsma1 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → (𝐼((𝑁 subMat 𝑅)‘𝑋)𝐼) = (1r‘((𝑁 ∖ {𝐼}) Mat 𝑅)))

Proof of Theorem 1marepvsma1
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1marepvsma1.x . . . . . 6 𝑋 = (( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼)
21oveqi 7215 . . . . 5 (𝑖𝑋𝑗) = (𝑖(( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼)𝑗)
32a1i 11 . . . 4 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗 ∈ (𝑁 ∖ {𝐼})) → (𝑖𝑋𝑗) = (𝑖(( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼)𝑗))
4 eqid 2734 . . . . . . . . 9 (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅)
5 eqid 2734 . . . . . . . . 9 (Base‘(𝑁 Mat 𝑅)) = (Base‘(𝑁 Mat 𝑅))
6 1marepvsma1.1 . . . . . . . . 9 1 = (1r‘(𝑁 Mat 𝑅))
74, 5, 6mat1bas 21318 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 1 ∈ (Base‘(𝑁 Mat 𝑅)))
87adantr 484 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → 1 ∈ (Base‘(𝑁 Mat 𝑅)))
9 simprr 773 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → 𝑍𝑉)
10 simprl 771 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → 𝐼𝑁)
118, 9, 103jca 1130 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → ( 1 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ 𝑍𝑉𝐼𝑁))
12113ad2ant1 1135 . . . . 5 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗 ∈ (𝑁 ∖ {𝐼})) → ( 1 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ 𝑍𝑉𝐼𝑁))
13 eldifi 4031 . . . . . . 7 (𝑖 ∈ (𝑁 ∖ {𝐼}) → 𝑖𝑁)
14 eldifi 4031 . . . . . . 7 (𝑗 ∈ (𝑁 ∖ {𝐼}) → 𝑗𝑁)
1513, 14anim12i 616 . . . . . 6 ((𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗 ∈ (𝑁 ∖ {𝐼})) → (𝑖𝑁𝑗𝑁))
16153adant1 1132 . . . . 5 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗 ∈ (𝑁 ∖ {𝐼})) → (𝑖𝑁𝑗𝑁))
17 eqid 2734 . . . . . 6 (𝑁 matRepV 𝑅) = (𝑁 matRepV 𝑅)
18 1marepvsma1.v . . . . . 6 𝑉 = ((Base‘𝑅) ↑m 𝑁)
194, 5, 17, 18marepveval 21437 . . . . 5 ((( 1 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ 𝑍𝑉𝐼𝑁) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼)𝑗) = if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗)))
2012, 16, 19syl2anc 587 . . . 4 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗 ∈ (𝑁 ∖ {𝐼})) → (𝑖(( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼)𝑗) = if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗)))
21 eldifsni 4693 . . . . . . . 8 (𝑗 ∈ (𝑁 ∖ {𝐼}) → 𝑗𝐼)
2221neneqd 2940 . . . . . . 7 (𝑗 ∈ (𝑁 ∖ {𝐼}) → ¬ 𝑗 = 𝐼)
23223ad2ant3 1137 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗 ∈ (𝑁 ∖ {𝐼})) → ¬ 𝑗 = 𝐼)
2423iffalsed 4440 . . . . 5 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗 ∈ (𝑁 ∖ {𝐼})) → if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗)) = (𝑖 1 𝑗))
25 eqid 2734 . . . . . 6 (1r𝑅) = (1r𝑅)
26 eqid 2734 . . . . . 6 (0g𝑅) = (0g𝑅)
27 simp1lr 1239 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗 ∈ (𝑁 ∖ {𝐼})) → 𝑁 ∈ Fin)
28 simp1ll 1238 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗 ∈ (𝑁 ∖ {𝐼})) → 𝑅 ∈ Ring)
29133ad2ant2 1136 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗 ∈ (𝑁 ∖ {𝐼})) → 𝑖𝑁)
30143ad2ant3 1137 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗 ∈ (𝑁 ∖ {𝐼})) → 𝑗𝑁)
314, 25, 26, 27, 28, 29, 30, 6mat1ov 21317 . . . . 5 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗 ∈ (𝑁 ∖ {𝐼})) → (𝑖 1 𝑗) = if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)))
3224, 31eqtrd 2774 . . . 4 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗 ∈ (𝑁 ∖ {𝐼})) → if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗)) = if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)))
333, 20, 323eqtrd 2778 . . 3 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗 ∈ (𝑁 ∖ {𝐼})) → (𝑖𝑋𝑗) = if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)))
3433mpoeq3dva 7277 . 2 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑖𝑋𝑗)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗 ∈ (𝑁 ∖ {𝐼}) ↦ if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))))
354, 5, 18, 6ma1repvcl 21439 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝑍𝑉𝐼𝑁)) → (( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼) ∈ (Base‘(𝑁 Mat 𝑅)))
3635ancom2s 650 . . . 4 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → (( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼) ∈ (Base‘(𝑁 Mat 𝑅)))
371, 36eqeltrid 2838 . . 3 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → 𝑋 ∈ (Base‘(𝑁 Mat 𝑅)))
38 eqid 2734 . . . 4 (𝑁 subMat 𝑅) = (𝑁 subMat 𝑅)
394, 38, 5submaval 21450 . . 3 ((𝑋 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ 𝐼𝑁𝐼𝑁) → (𝐼((𝑁 subMat 𝑅)‘𝑋)𝐼) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑖𝑋𝑗)))
4037, 10, 10, 39syl3anc 1373 . 2 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → (𝐼((𝑁 subMat 𝑅)‘𝑋)𝐼) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑖𝑋𝑗)))
41 diffi 8895 . . . . . 6 (𝑁 ∈ Fin → (𝑁 ∖ {𝐼}) ∈ Fin)
4241anim2i 620 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → (𝑅 ∈ Ring ∧ (𝑁 ∖ {𝐼}) ∈ Fin))
4342ancomd 465 . . . 4 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → ((𝑁 ∖ {𝐼}) ∈ Fin ∧ 𝑅 ∈ Ring))
4443adantr 484 . . 3 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → ((𝑁 ∖ {𝐼}) ∈ Fin ∧ 𝑅 ∈ Ring))
45 eqid 2734 . . . 4 ((𝑁 ∖ {𝐼}) Mat 𝑅) = ((𝑁 ∖ {𝐼}) Mat 𝑅)
4645, 25, 26mat1 21316 . . 3 (((𝑁 ∖ {𝐼}) ∈ Fin ∧ 𝑅 ∈ Ring) → (1r‘((𝑁 ∖ {𝐼}) Mat 𝑅)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗 ∈ (𝑁 ∖ {𝐼}) ↦ if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))))
4744, 46syl 17 . 2 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → (1r‘((𝑁 ∖ {𝐼}) Mat 𝑅)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗 ∈ (𝑁 ∖ {𝐼}) ↦ if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))))
4834, 40, 473eqtr4d 2784 1 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → (𝐼((𝑁 subMat 𝑅)‘𝑋)𝐼) = (1r‘((𝑁 ∖ {𝐼}) Mat 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  cdif 3854  ifcif 4429  {csn 4531  cfv 6369  (class class class)co 7202  cmpo 7204  m cmap 8497  Fincfn 8615  Basecbs 16684  0gc0g 16916  1rcur 19488  Ringcrg 19534   Mat cmat 21276   matRepV cmatrepV 21426   subMat csubma 21445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-ot 4540  df-uni 4810  df-int 4850  df-iun 4896  df-iin 4897  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-se 5499  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-isom 6378  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-of 7458  df-om 7634  df-1st 7750  df-2nd 7751  df-supp 7893  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-er 8380  df-map 8499  df-ixp 8568  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-fsupp 8975  df-sup 9047  df-oi 9115  df-card 9538  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-nn 11814  df-2 11876  df-3 11877  df-4 11878  df-5 11879  df-6 11880  df-7 11881  df-8 11882  df-9 11883  df-n0 12074  df-z 12160  df-dec 12277  df-uz 12422  df-fz 13079  df-fzo 13222  df-seq 13558  df-hash 13880  df-struct 16686  df-ndx 16687  df-slot 16688  df-base 16690  df-sets 16691  df-ress 16692  df-plusg 16780  df-mulr 16781  df-sca 16783  df-vsca 16784  df-ip 16785  df-tset 16786  df-ple 16787  df-ds 16789  df-hom 16791  df-cco 16792  df-0g 16918  df-gsum 16919  df-prds 16924  df-pws 16926  df-mre 17061  df-mrc 17062  df-acs 17064  df-mgm 18086  df-sgrp 18135  df-mnd 18146  df-mhm 18190  df-submnd 18191  df-grp 18340  df-minusg 18341  df-sbg 18342  df-mulg 18461  df-subg 18512  df-ghm 18592  df-cntz 18683  df-cmn 19144  df-abl 19145  df-mgp 19477  df-ur 19489  df-ring 19536  df-subrg 19770  df-lmod 19873  df-lss 19941  df-sra 20181  df-rgmod 20182  df-dsmm 20666  df-frlm 20681  df-mamu 21255  df-mat 21277  df-marepv 21428  df-subma 21446
This theorem is referenced by:  cramerimplem1  21552
  Copyright terms: Public domain W3C validator