MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1marepvsma1 Structured version   Visualization version   GIF version

Theorem 1marepvsma1 21192
Description: The submatrix of the identity matrix with the ith column replaced by the vector obtained by removing the ith row and the ith column is an identity matrix. (Contributed by AV, 14-Feb-2019.) (Revised by AV, 27-Feb-2019.)
Hypotheses
Ref Expression
1marepvsma1.v 𝑉 = ((Base‘𝑅) ↑m 𝑁)
1marepvsma1.1 1 = (1r‘(𝑁 Mat 𝑅))
1marepvsma1.x 𝑋 = (( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼)
Assertion
Ref Expression
1marepvsma1 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → (𝐼((𝑁 subMat 𝑅)‘𝑋)𝐼) = (1r‘((𝑁 ∖ {𝐼}) Mat 𝑅)))

Proof of Theorem 1marepvsma1
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1marepvsma1.x . . . . . 6 𝑋 = (( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼)
21oveqi 7152 . . . . 5 (𝑖𝑋𝑗) = (𝑖(( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼)𝑗)
32a1i 11 . . . 4 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗 ∈ (𝑁 ∖ {𝐼})) → (𝑖𝑋𝑗) = (𝑖(( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼)𝑗))
4 eqid 2801 . . . . . . . . 9 (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅)
5 eqid 2801 . . . . . . . . 9 (Base‘(𝑁 Mat 𝑅)) = (Base‘(𝑁 Mat 𝑅))
6 1marepvsma1.1 . . . . . . . . 9 1 = (1r‘(𝑁 Mat 𝑅))
74, 5, 6mat1bas 21058 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 1 ∈ (Base‘(𝑁 Mat 𝑅)))
87adantr 484 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → 1 ∈ (Base‘(𝑁 Mat 𝑅)))
9 simprr 772 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → 𝑍𝑉)
10 simprl 770 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → 𝐼𝑁)
118, 9, 103jca 1125 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → ( 1 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ 𝑍𝑉𝐼𝑁))
12113ad2ant1 1130 . . . . 5 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗 ∈ (𝑁 ∖ {𝐼})) → ( 1 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ 𝑍𝑉𝐼𝑁))
13 eldifi 4057 . . . . . . 7 (𝑖 ∈ (𝑁 ∖ {𝐼}) → 𝑖𝑁)
14 eldifi 4057 . . . . . . 7 (𝑗 ∈ (𝑁 ∖ {𝐼}) → 𝑗𝑁)
1513, 14anim12i 615 . . . . . 6 ((𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗 ∈ (𝑁 ∖ {𝐼})) → (𝑖𝑁𝑗𝑁))
16153adant1 1127 . . . . 5 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗 ∈ (𝑁 ∖ {𝐼})) → (𝑖𝑁𝑗𝑁))
17 eqid 2801 . . . . . 6 (𝑁 matRepV 𝑅) = (𝑁 matRepV 𝑅)
18 1marepvsma1.v . . . . . 6 𝑉 = ((Base‘𝑅) ↑m 𝑁)
194, 5, 17, 18marepveval 21177 . . . . 5 ((( 1 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ 𝑍𝑉𝐼𝑁) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼)𝑗) = if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗)))
2012, 16, 19syl2anc 587 . . . 4 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗 ∈ (𝑁 ∖ {𝐼})) → (𝑖(( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼)𝑗) = if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗)))
21 eldifsni 4686 . . . . . . . 8 (𝑗 ∈ (𝑁 ∖ {𝐼}) → 𝑗𝐼)
2221neneqd 2995 . . . . . . 7 (𝑗 ∈ (𝑁 ∖ {𝐼}) → ¬ 𝑗 = 𝐼)
23223ad2ant3 1132 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗 ∈ (𝑁 ∖ {𝐼})) → ¬ 𝑗 = 𝐼)
2423iffalsed 4439 . . . . 5 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗 ∈ (𝑁 ∖ {𝐼})) → if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗)) = (𝑖 1 𝑗))
25 eqid 2801 . . . . . 6 (1r𝑅) = (1r𝑅)
26 eqid 2801 . . . . . 6 (0g𝑅) = (0g𝑅)
27 simp1lr 1234 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗 ∈ (𝑁 ∖ {𝐼})) → 𝑁 ∈ Fin)
28 simp1ll 1233 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗 ∈ (𝑁 ∖ {𝐼})) → 𝑅 ∈ Ring)
29133ad2ant2 1131 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗 ∈ (𝑁 ∖ {𝐼})) → 𝑖𝑁)
30143ad2ant3 1132 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗 ∈ (𝑁 ∖ {𝐼})) → 𝑗𝑁)
314, 25, 26, 27, 28, 29, 30, 6mat1ov 21057 . . . . 5 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗 ∈ (𝑁 ∖ {𝐼})) → (𝑖 1 𝑗) = if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)))
3224, 31eqtrd 2836 . . . 4 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗 ∈ (𝑁 ∖ {𝐼})) → if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗)) = if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)))
333, 20, 323eqtrd 2840 . . 3 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗 ∈ (𝑁 ∖ {𝐼})) → (𝑖𝑋𝑗) = if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)))
3433mpoeq3dva 7214 . 2 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑖𝑋𝑗)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗 ∈ (𝑁 ∖ {𝐼}) ↦ if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))))
354, 5, 18, 6ma1repvcl 21179 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝑍𝑉𝐼𝑁)) → (( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼) ∈ (Base‘(𝑁 Mat 𝑅)))
3635ancom2s 649 . . . 4 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → (( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼) ∈ (Base‘(𝑁 Mat 𝑅)))
371, 36eqeltrid 2897 . . 3 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → 𝑋 ∈ (Base‘(𝑁 Mat 𝑅)))
38 eqid 2801 . . . 4 (𝑁 subMat 𝑅) = (𝑁 subMat 𝑅)
394, 38, 5submaval 21190 . . 3 ((𝑋 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ 𝐼𝑁𝐼𝑁) → (𝐼((𝑁 subMat 𝑅)‘𝑋)𝐼) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑖𝑋𝑗)))
4037, 10, 10, 39syl3anc 1368 . 2 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → (𝐼((𝑁 subMat 𝑅)‘𝑋)𝐼) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗 ∈ (𝑁 ∖ {𝐼}) ↦ (𝑖𝑋𝑗)))
41 diffi 8738 . . . . . 6 (𝑁 ∈ Fin → (𝑁 ∖ {𝐼}) ∈ Fin)
4241anim2i 619 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → (𝑅 ∈ Ring ∧ (𝑁 ∖ {𝐼}) ∈ Fin))
4342ancomd 465 . . . 4 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → ((𝑁 ∖ {𝐼}) ∈ Fin ∧ 𝑅 ∈ Ring))
4443adantr 484 . . 3 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → ((𝑁 ∖ {𝐼}) ∈ Fin ∧ 𝑅 ∈ Ring))
45 eqid 2801 . . . 4 ((𝑁 ∖ {𝐼}) Mat 𝑅) = ((𝑁 ∖ {𝐼}) Mat 𝑅)
4645, 25, 26mat1 21056 . . 3 (((𝑁 ∖ {𝐼}) ∈ Fin ∧ 𝑅 ∈ Ring) → (1r‘((𝑁 ∖ {𝐼}) Mat 𝑅)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗 ∈ (𝑁 ∖ {𝐼}) ↦ if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))))
4744, 46syl 17 . 2 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → (1r‘((𝑁 ∖ {𝐼}) Mat 𝑅)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗 ∈ (𝑁 ∖ {𝐼}) ↦ if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))))
4834, 40, 473eqtr4d 2846 1 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → (𝐼((𝑁 subMat 𝑅)‘𝑋)𝐼) = (1r‘((𝑁 ∖ {𝐼}) Mat 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2112  cdif 3881  ifcif 4428  {csn 4528  cfv 6328  (class class class)co 7139  cmpo 7141  m cmap 8393  Fincfn 8496  Basecbs 16479  0gc0g 16709  1rcur 19248  Ringcrg 19294   Mat cmat 21016   matRepV cmatrepV 21166   subMat csubma 21185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-ot 4537  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-sup 8894  df-oi 8962  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-fz 12890  df-fzo 13033  df-seq 13369  df-hash 13691  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-mulr 16575  df-sca 16577  df-vsca 16578  df-ip 16579  df-tset 16580  df-ple 16581  df-ds 16583  df-hom 16585  df-cco 16586  df-0g 16711  df-gsum 16712  df-prds 16717  df-pws 16719  df-mre 16853  df-mrc 16854  df-acs 16856  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-mhm 17952  df-submnd 17953  df-grp 18102  df-minusg 18103  df-sbg 18104  df-mulg 18221  df-subg 18272  df-ghm 18352  df-cntz 18443  df-cmn 18904  df-abl 18905  df-mgp 19237  df-ur 19249  df-ring 19296  df-subrg 19530  df-lmod 19633  df-lss 19701  df-sra 19941  df-rgmod 19942  df-dsmm 20425  df-frlm 20440  df-mamu 20995  df-mat 21017  df-marepv 21168  df-subma 21186
This theorem is referenced by:  cramerimplem1  21292
  Copyright terms: Public domain W3C validator