MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmatcrng Structured version   Visualization version   GIF version

Theorem scmatcrng 21775
Description: The subring of scalar matrices (over a commutative ring) is a commutative ring. (Contributed by AV, 21-Aug-2019.)
Hypotheses
Ref Expression
scmatid.a 𝐴 = (𝑁 Mat 𝑅)
scmatid.b 𝐵 = (Base‘𝐴)
scmatid.e 𝐸 = (Base‘𝑅)
scmatid.0 0 = (0g𝑅)
scmatid.s 𝑆 = (𝑁 ScMat 𝑅)
scmatcrng.c 𝐶 = (𝐴s 𝑆)
Assertion
Ref Expression
scmatcrng ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐶 ∈ CRing)

Proof of Theorem scmatcrng
Dummy variables 𝑥 𝑦 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crngring 19889 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2 scmatid.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
3 scmatid.b . . . . 5 𝐵 = (Base‘𝐴)
4 scmatid.e . . . . 5 𝐸 = (Base‘𝑅)
5 scmatid.0 . . . . 5 0 = (0g𝑅)
6 scmatid.s . . . . 5 𝑆 = (𝑁 ScMat 𝑅)
72, 3, 4, 5, 6scmatsrng 21774 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (SubRing‘𝐴))
81, 7sylan2 594 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑆 ∈ (SubRing‘𝐴))
9 scmatcrng.c . . . 4 𝐶 = (𝐴s 𝑆)
109subrgring 20131 . . 3 (𝑆 ∈ (SubRing‘𝐴) → 𝐶 ∈ Ring)
118, 10syl 17 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐶 ∈ Ring)
12 simp1lr 1237 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑎𝑁𝑏𝑁) → 𝑅 ∈ CRing)
13 eqid 2737 . . . . . . . . 9 (Base‘𝐴) = (Base‘𝐴)
14 simp2 1137 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑎𝑁𝑏𝑁) → 𝑎𝑁)
15 simp3 1138 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑎𝑁𝑏𝑁) → 𝑏𝑁)
162, 13, 6scmatmat 21763 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑥𝑆𝑥 ∈ (Base‘𝐴)))
1716imp 408 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑥𝑆) → 𝑥 ∈ (Base‘𝐴))
1817adantrr 715 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) → 𝑥 ∈ (Base‘𝐴))
19183ad2ant1 1133 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑎𝑁𝑏𝑁) → 𝑥 ∈ (Base‘𝐴))
202, 4, 13, 14, 15, 19matecld 21680 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑎𝑁𝑏𝑁) → (𝑎𝑥𝑏) ∈ 𝐸)
212, 13, 6scmatmat 21763 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑦𝑆𝑦 ∈ (Base‘𝐴)))
2221imp 408 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑦𝑆) → 𝑦 ∈ (Base‘𝐴))
2322adantrl 714 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) → 𝑦 ∈ (Base‘𝐴))
24233ad2ant1 1133 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑎𝑁𝑏𝑁) → 𝑦 ∈ (Base‘𝐴))
252, 4, 13, 14, 15, 24matecld 21680 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑎𝑁𝑏𝑁) → (𝑎𝑦𝑏) ∈ 𝐸)
26 eqid 2737 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
274, 26crngcom 19895 . . . . . . . 8 ((𝑅 ∈ CRing ∧ (𝑎𝑥𝑏) ∈ 𝐸 ∧ (𝑎𝑦𝑏) ∈ 𝐸) → ((𝑎𝑥𝑏)(.r𝑅)(𝑎𝑦𝑏)) = ((𝑎𝑦𝑏)(.r𝑅)(𝑎𝑥𝑏)))
2812, 20, 25, 27syl3anc 1371 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑎𝑁𝑏𝑁) → ((𝑎𝑥𝑏)(.r𝑅)(𝑎𝑦𝑏)) = ((𝑎𝑦𝑏)(.r𝑅)(𝑎𝑥𝑏)))
2928ifeq1d 4496 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑎𝑁𝑏𝑁) → if(𝑎 = 𝑏, ((𝑎𝑥𝑏)(.r𝑅)(𝑎𝑦𝑏)), 0 ) = if(𝑎 = 𝑏, ((𝑎𝑦𝑏)(.r𝑅)(𝑎𝑥𝑏)), 0 ))
3029mpoeq3dva 7418 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, ((𝑎𝑥𝑏)(.r𝑅)(𝑎𝑦𝑏)), 0 )) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, ((𝑎𝑦𝑏)(.r𝑅)(𝑎𝑥𝑏)), 0 )))
311anim2i 618 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
32 eqid 2737 . . . . . . . . . 10 (𝑁 DMat 𝑅) = (𝑁 DMat 𝑅)
332, 3, 4, 5, 6, 32scmatdmat 21769 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑥𝑆𝑥 ∈ (𝑁 DMat 𝑅)))
341, 33sylan2 594 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑥𝑆𝑥 ∈ (𝑁 DMat 𝑅)))
352, 3, 4, 5, 6, 32scmatdmat 21769 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑦𝑆𝑦 ∈ (𝑁 DMat 𝑅)))
361, 35sylan2 594 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑦𝑆𝑦 ∈ (𝑁 DMat 𝑅)))
3734, 36anim12d 610 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ((𝑥𝑆𝑦𝑆) → (𝑥 ∈ (𝑁 DMat 𝑅) ∧ 𝑦 ∈ (𝑁 DMat 𝑅))))
3837imp 408 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 ∈ (𝑁 DMat 𝑅) ∧ 𝑦 ∈ (𝑁 DMat 𝑅)))
392, 3, 5, 32dmatmul 21751 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (𝑁 DMat 𝑅) ∧ 𝑦 ∈ (𝑁 DMat 𝑅))) → (𝑥(.r𝐴)𝑦) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, ((𝑎𝑥𝑏)(.r𝑅)(𝑎𝑦𝑏)), 0 )))
4031, 38, 39syl2an2r 683 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(.r𝐴)𝑦) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, ((𝑎𝑥𝑏)(.r𝑅)(𝑎𝑦𝑏)), 0 )))
4138ancomd 463 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) → (𝑦 ∈ (𝑁 DMat 𝑅) ∧ 𝑥 ∈ (𝑁 DMat 𝑅)))
422, 3, 5, 32dmatmul 21751 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (𝑁 DMat 𝑅) ∧ 𝑥 ∈ (𝑁 DMat 𝑅))) → (𝑦(.r𝐴)𝑥) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, ((𝑎𝑦𝑏)(.r𝑅)(𝑎𝑥𝑏)), 0 )))
4331, 41, 42syl2an2r 683 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) → (𝑦(.r𝐴)𝑥) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, ((𝑎𝑦𝑏)(.r𝑅)(𝑎𝑥𝑏)), 0 )))
4430, 40, 433eqtr4d 2787 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥))
4544ralrimivva 3194 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ∀𝑥𝑆𝑦𝑆 (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥))
469subrgbas 20137 . . . . . 6 (𝑆 ∈ (SubRing‘𝐴) → 𝑆 = (Base‘𝐶))
4746eqcomd 2743 . . . . 5 (𝑆 ∈ (SubRing‘𝐴) → (Base‘𝐶) = 𝑆)
48 eqid 2737 . . . . . . . . . 10 (.r𝐴) = (.r𝐴)
499, 48ressmulr 17114 . . . . . . . . 9 (𝑆 ∈ (SubRing‘𝐴) → (.r𝐴) = (.r𝐶))
5049eqcomd 2743 . . . . . . . 8 (𝑆 ∈ (SubRing‘𝐴) → (.r𝐶) = (.r𝐴))
5150oveqd 7358 . . . . . . 7 (𝑆 ∈ (SubRing‘𝐴) → (𝑥(.r𝐶)𝑦) = (𝑥(.r𝐴)𝑦))
5250oveqd 7358 . . . . . . 7 (𝑆 ∈ (SubRing‘𝐴) → (𝑦(.r𝐶)𝑥) = (𝑦(.r𝐴)𝑥))
5351, 52eqeq12d 2753 . . . . . 6 (𝑆 ∈ (SubRing‘𝐴) → ((𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥) ↔ (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
5447, 53raleqbidv 3316 . . . . 5 (𝑆 ∈ (SubRing‘𝐴) → (∀𝑦 ∈ (Base‘𝐶)(𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥) ↔ ∀𝑦𝑆 (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
5547, 54raleqbidv 3316 . . . 4 (𝑆 ∈ (SubRing‘𝐴) → (∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥) ↔ ∀𝑥𝑆𝑦𝑆 (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
568, 55syl 17 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥) ↔ ∀𝑥𝑆𝑦𝑆 (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
5745, 56mpbird 257 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥))
58 eqid 2737 . . 3 (Base‘𝐶) = (Base‘𝐶)
59 eqid 2737 . . 3 (.r𝐶) = (.r𝐶)
6058, 59iscrng2 19896 . 2 (𝐶 ∈ CRing ↔ (𝐶 ∈ Ring ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥)))
6111, 57, 60sylanbrc 584 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐶 ∈ CRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1087   = wceq 1541  wcel 2106  wral 3062  ifcif 4477  cfv 6483  (class class class)co 7341  cmpo 7343  Fincfn 8808  Basecbs 17009  s cress 17038  .rcmulr 17060  0gc0g 17247  Ringcrg 19877  CRingccrg 19878  SubRingcsubrg 20124   Mat cmat 21659   DMat cdmat 21742   ScMat cscmat 21743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5233  ax-sep 5247  ax-nul 5254  ax-pow 5312  ax-pr 5376  ax-un 7654  ax-cnex 11032  ax-resscn 11033  ax-1cn 11034  ax-icn 11035  ax-addcl 11036  ax-addrcl 11037  ax-mulcl 11038  ax-mulrcl 11039  ax-mulcom 11040  ax-addass 11041  ax-mulass 11042  ax-distr 11043  ax-i2m1 11044  ax-1ne0 11045  ax-1rid 11046  ax-rnegex 11047  ax-rrecex 11048  ax-cnre 11049  ax-pre-lttri 11050  ax-pre-lttrn 11051  ax-pre-ltadd 11052  ax-pre-mulgt0 11053
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3731  df-csb 3847  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-pss 3920  df-nul 4274  df-if 4478  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-ot 4586  df-uni 4857  df-int 4899  df-iun 4947  df-iin 4948  df-br 5097  df-opab 5159  df-mpt 5180  df-tr 5214  df-id 5522  df-eprel 5528  df-po 5536  df-so 5537  df-fr 5579  df-se 5580  df-we 5581  df-xp 5630  df-rel 5631  df-cnv 5632  df-co 5633  df-dm 5634  df-rn 5635  df-res 5636  df-ima 5637  df-pred 6242  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6435  df-fun 6485  df-fn 6486  df-f 6487  df-f1 6488  df-fo 6489  df-f1o 6490  df-fv 6491  df-isom 6492  df-riota 7297  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7599  df-om 7785  df-1st 7903  df-2nd 7904  df-supp 8052  df-frecs 8171  df-wrecs 8202  df-recs 8276  df-rdg 8315  df-1o 8371  df-er 8573  df-map 8692  df-ixp 8761  df-en 8809  df-dom 8810  df-sdom 8811  df-fin 8812  df-fsupp 9231  df-sup 9303  df-oi 9371  df-card 9800  df-pnf 11116  df-mnf 11117  df-xr 11118  df-ltxr 11119  df-le 11120  df-sub 11312  df-neg 11313  df-nn 12079  df-2 12141  df-3 12142  df-4 12143  df-5 12144  df-6 12145  df-7 12146  df-8 12147  df-9 12148  df-n0 12339  df-z 12425  df-dec 12543  df-uz 12688  df-fz 13345  df-fzo 13488  df-seq 13827  df-hash 14150  df-struct 16945  df-sets 16962  df-slot 16980  df-ndx 16992  df-base 17010  df-ress 17039  df-plusg 17072  df-mulr 17073  df-sca 17075  df-vsca 17076  df-ip 17077  df-tset 17078  df-ple 17079  df-ds 17081  df-hom 17083  df-cco 17084  df-0g 17249  df-gsum 17250  df-prds 17255  df-pws 17257  df-mre 17392  df-mrc 17393  df-acs 17395  df-mgm 18423  df-sgrp 18472  df-mnd 18483  df-mhm 18527  df-submnd 18528  df-grp 18676  df-minusg 18677  df-sbg 18678  df-mulg 18797  df-subg 18848  df-ghm 18928  df-cntz 19019  df-cmn 19483  df-abl 19484  df-mgp 19815  df-ur 19832  df-ring 19879  df-cring 19880  df-subrg 20126  df-lmod 20230  df-lss 20299  df-sra 20539  df-rgmod 20540  df-dsmm 21044  df-frlm 21059  df-mamu 21638  df-mat 21660  df-dmat 21744  df-scmat 21745
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator