MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmatcrng Structured version   Visualization version   GIF version

Theorem scmatcrng 21870
Description: The subring of scalar matrices (over a commutative ring) is a commutative ring. (Contributed by AV, 21-Aug-2019.)
Hypotheses
Ref Expression
scmatid.a 𝐴 = (𝑁 Mat 𝑅)
scmatid.b 𝐵 = (Base‘𝐴)
scmatid.e 𝐸 = (Base‘𝑅)
scmatid.0 0 = (0g𝑅)
scmatid.s 𝑆 = (𝑁 ScMat 𝑅)
scmatcrng.c 𝐶 = (𝐴s 𝑆)
Assertion
Ref Expression
scmatcrng ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐶 ∈ CRing)

Proof of Theorem scmatcrng
Dummy variables 𝑥 𝑦 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crngring 19976 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2 scmatid.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
3 scmatid.b . . . . 5 𝐵 = (Base‘𝐴)
4 scmatid.e . . . . 5 𝐸 = (Base‘𝑅)
5 scmatid.0 . . . . 5 0 = (0g𝑅)
6 scmatid.s . . . . 5 𝑆 = (𝑁 ScMat 𝑅)
72, 3, 4, 5, 6scmatsrng 21869 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (SubRing‘𝐴))
81, 7sylan2 593 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑆 ∈ (SubRing‘𝐴))
9 scmatcrng.c . . . 4 𝐶 = (𝐴s 𝑆)
109subrgring 20225 . . 3 (𝑆 ∈ (SubRing‘𝐴) → 𝐶 ∈ Ring)
118, 10syl 17 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐶 ∈ Ring)
12 simp1lr 1237 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑎𝑁𝑏𝑁) → 𝑅 ∈ CRing)
13 eqid 2736 . . . . . . . . 9 (Base‘𝐴) = (Base‘𝐴)
14 simp2 1137 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑎𝑁𝑏𝑁) → 𝑎𝑁)
15 simp3 1138 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑎𝑁𝑏𝑁) → 𝑏𝑁)
162, 13, 6scmatmat 21858 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑥𝑆𝑥 ∈ (Base‘𝐴)))
1716imp 407 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑥𝑆) → 𝑥 ∈ (Base‘𝐴))
1817adantrr 715 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) → 𝑥 ∈ (Base‘𝐴))
19183ad2ant1 1133 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑎𝑁𝑏𝑁) → 𝑥 ∈ (Base‘𝐴))
202, 4, 13, 14, 15, 19matecld 21775 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑎𝑁𝑏𝑁) → (𝑎𝑥𝑏) ∈ 𝐸)
212, 13, 6scmatmat 21858 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑦𝑆𝑦 ∈ (Base‘𝐴)))
2221imp 407 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑦𝑆) → 𝑦 ∈ (Base‘𝐴))
2322adantrl 714 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) → 𝑦 ∈ (Base‘𝐴))
24233ad2ant1 1133 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑎𝑁𝑏𝑁) → 𝑦 ∈ (Base‘𝐴))
252, 4, 13, 14, 15, 24matecld 21775 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑎𝑁𝑏𝑁) → (𝑎𝑦𝑏) ∈ 𝐸)
26 eqid 2736 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
274, 26crngcom 19982 . . . . . . . 8 ((𝑅 ∈ CRing ∧ (𝑎𝑥𝑏) ∈ 𝐸 ∧ (𝑎𝑦𝑏) ∈ 𝐸) → ((𝑎𝑥𝑏)(.r𝑅)(𝑎𝑦𝑏)) = ((𝑎𝑦𝑏)(.r𝑅)(𝑎𝑥𝑏)))
2812, 20, 25, 27syl3anc 1371 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑎𝑁𝑏𝑁) → ((𝑎𝑥𝑏)(.r𝑅)(𝑎𝑦𝑏)) = ((𝑎𝑦𝑏)(.r𝑅)(𝑎𝑥𝑏)))
2928ifeq1d 4505 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑎𝑁𝑏𝑁) → if(𝑎 = 𝑏, ((𝑎𝑥𝑏)(.r𝑅)(𝑎𝑦𝑏)), 0 ) = if(𝑎 = 𝑏, ((𝑎𝑦𝑏)(.r𝑅)(𝑎𝑥𝑏)), 0 ))
3029mpoeq3dva 7434 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, ((𝑎𝑥𝑏)(.r𝑅)(𝑎𝑦𝑏)), 0 )) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, ((𝑎𝑦𝑏)(.r𝑅)(𝑎𝑥𝑏)), 0 )))
311anim2i 617 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
32 eqid 2736 . . . . . . . . . 10 (𝑁 DMat 𝑅) = (𝑁 DMat 𝑅)
332, 3, 4, 5, 6, 32scmatdmat 21864 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑥𝑆𝑥 ∈ (𝑁 DMat 𝑅)))
341, 33sylan2 593 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑥𝑆𝑥 ∈ (𝑁 DMat 𝑅)))
352, 3, 4, 5, 6, 32scmatdmat 21864 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑦𝑆𝑦 ∈ (𝑁 DMat 𝑅)))
361, 35sylan2 593 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑦𝑆𝑦 ∈ (𝑁 DMat 𝑅)))
3734, 36anim12d 609 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ((𝑥𝑆𝑦𝑆) → (𝑥 ∈ (𝑁 DMat 𝑅) ∧ 𝑦 ∈ (𝑁 DMat 𝑅))))
3837imp 407 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 ∈ (𝑁 DMat 𝑅) ∧ 𝑦 ∈ (𝑁 DMat 𝑅)))
392, 3, 5, 32dmatmul 21846 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (𝑁 DMat 𝑅) ∧ 𝑦 ∈ (𝑁 DMat 𝑅))) → (𝑥(.r𝐴)𝑦) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, ((𝑎𝑥𝑏)(.r𝑅)(𝑎𝑦𝑏)), 0 )))
4031, 38, 39syl2an2r 683 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(.r𝐴)𝑦) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, ((𝑎𝑥𝑏)(.r𝑅)(𝑎𝑦𝑏)), 0 )))
4138ancomd 462 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) → (𝑦 ∈ (𝑁 DMat 𝑅) ∧ 𝑥 ∈ (𝑁 DMat 𝑅)))
422, 3, 5, 32dmatmul 21846 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (𝑁 DMat 𝑅) ∧ 𝑥 ∈ (𝑁 DMat 𝑅))) → (𝑦(.r𝐴)𝑥) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, ((𝑎𝑦𝑏)(.r𝑅)(𝑎𝑥𝑏)), 0 )))
4331, 41, 42syl2an2r 683 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) → (𝑦(.r𝐴)𝑥) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, ((𝑎𝑦𝑏)(.r𝑅)(𝑎𝑥𝑏)), 0 )))
4430, 40, 433eqtr4d 2786 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥))
4544ralrimivva 3197 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ∀𝑥𝑆𝑦𝑆 (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥))
469subrgbas 20231 . . . . . 6 (𝑆 ∈ (SubRing‘𝐴) → 𝑆 = (Base‘𝐶))
4746eqcomd 2742 . . . . 5 (𝑆 ∈ (SubRing‘𝐴) → (Base‘𝐶) = 𝑆)
48 eqid 2736 . . . . . . . . . 10 (.r𝐴) = (.r𝐴)
499, 48ressmulr 17188 . . . . . . . . 9 (𝑆 ∈ (SubRing‘𝐴) → (.r𝐴) = (.r𝐶))
5049eqcomd 2742 . . . . . . . 8 (𝑆 ∈ (SubRing‘𝐴) → (.r𝐶) = (.r𝐴))
5150oveqd 7374 . . . . . . 7 (𝑆 ∈ (SubRing‘𝐴) → (𝑥(.r𝐶)𝑦) = (𝑥(.r𝐴)𝑦))
5250oveqd 7374 . . . . . . 7 (𝑆 ∈ (SubRing‘𝐴) → (𝑦(.r𝐶)𝑥) = (𝑦(.r𝐴)𝑥))
5351, 52eqeq12d 2752 . . . . . 6 (𝑆 ∈ (SubRing‘𝐴) → ((𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥) ↔ (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
5447, 53raleqbidv 3319 . . . . 5 (𝑆 ∈ (SubRing‘𝐴) → (∀𝑦 ∈ (Base‘𝐶)(𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥) ↔ ∀𝑦𝑆 (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
5547, 54raleqbidv 3319 . . . 4 (𝑆 ∈ (SubRing‘𝐴) → (∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥) ↔ ∀𝑥𝑆𝑦𝑆 (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
568, 55syl 17 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥) ↔ ∀𝑥𝑆𝑦𝑆 (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
5745, 56mpbird 256 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥))
58 eqid 2736 . . 3 (Base‘𝐶) = (Base‘𝐶)
59 eqid 2736 . . 3 (.r𝐶) = (.r𝐶)
6058, 59iscrng2 19983 . 2 (𝐶 ∈ CRing ↔ (𝐶 ∈ Ring ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥)))
6111, 57, 60sylanbrc 583 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐶 ∈ CRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  ifcif 4486  cfv 6496  (class class class)co 7357  cmpo 7359  Fincfn 8883  Basecbs 17083  s cress 17112  .rcmulr 17134  0gc0g 17321  Ringcrg 19964  CRingccrg 19965  SubRingcsubrg 20218   Mat cmat 21754   DMat cdmat 21837   ScMat cscmat 21838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-ot 4595  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-sup 9378  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-fzo 13568  df-seq 13907  df-hash 14231  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-hom 17157  df-cco 17158  df-0g 17323  df-gsum 17324  df-prds 17329  df-pws 17331  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-mulg 18873  df-subg 18925  df-ghm 19006  df-cntz 19097  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-cring 19967  df-subrg 20220  df-lmod 20324  df-lss 20393  df-sra 20633  df-rgmod 20634  df-dsmm 21138  df-frlm 21153  df-mamu 21733  df-mat 21755  df-dmat 21839  df-scmat 21840
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator