Step | Hyp | Ref
| Expression |
1 | | crngring 20061 |
. . . 4
β’ (π
β CRing β π
β Ring) |
2 | | scmatid.a |
. . . . 5
β’ π΄ = (π Mat π
) |
3 | | scmatid.b |
. . . . 5
β’ π΅ = (Baseβπ΄) |
4 | | scmatid.e |
. . . . 5
β’ πΈ = (Baseβπ
) |
5 | | scmatid.0 |
. . . . 5
β’ 0 =
(0gβπ
) |
6 | | scmatid.s |
. . . . 5
β’ π = (π ScMat π
) |
7 | 2, 3, 4, 5, 6 | scmatsrng 22013 |
. . . 4
β’ ((π β Fin β§ π
β Ring) β π β (SubRingβπ΄)) |
8 | 1, 7 | sylan2 593 |
. . 3
β’ ((π β Fin β§ π
β CRing) β π β (SubRingβπ΄)) |
9 | | scmatcrng.c |
. . . 4
β’ πΆ = (π΄ βΎs π) |
10 | 9 | subrgring 20358 |
. . 3
β’ (π β (SubRingβπ΄) β πΆ β Ring) |
11 | 8, 10 | syl 17 |
. 2
β’ ((π β Fin β§ π
β CRing) β πΆ β Ring) |
12 | | simp1lr 1237 |
. . . . . . . 8
β’ ((((π β Fin β§ π
β CRing) β§ (π₯ β π β§ π¦ β π)) β§ π β π β§ π β π) β π
β CRing) |
13 | | eqid 2732 |
. . . . . . . . 9
β’
(Baseβπ΄) =
(Baseβπ΄) |
14 | | simp2 1137 |
. . . . . . . . 9
β’ ((((π β Fin β§ π
β CRing) β§ (π₯ β π β§ π¦ β π)) β§ π β π β§ π β π) β π β π) |
15 | | simp3 1138 |
. . . . . . . . 9
β’ ((((π β Fin β§ π
β CRing) β§ (π₯ β π β§ π¦ β π)) β§ π β π β§ π β π) β π β π) |
16 | 2, 13, 6 | scmatmat 22002 |
. . . . . . . . . . . 12
β’ ((π β Fin β§ π
β CRing) β (π₯ β π β π₯ β (Baseβπ΄))) |
17 | 16 | imp 407 |
. . . . . . . . . . 11
β’ (((π β Fin β§ π
β CRing) β§ π₯ β π) β π₯ β (Baseβπ΄)) |
18 | 17 | adantrr 715 |
. . . . . . . . . 10
β’ (((π β Fin β§ π
β CRing) β§ (π₯ β π β§ π¦ β π)) β π₯ β (Baseβπ΄)) |
19 | 18 | 3ad2ant1 1133 |
. . . . . . . . 9
β’ ((((π β Fin β§ π
β CRing) β§ (π₯ β π β§ π¦ β π)) β§ π β π β§ π β π) β π₯ β (Baseβπ΄)) |
20 | 2, 4, 13, 14, 15, 19 | matecld 21919 |
. . . . . . . 8
β’ ((((π β Fin β§ π
β CRing) β§ (π₯ β π β§ π¦ β π)) β§ π β π β§ π β π) β (ππ₯π) β πΈ) |
21 | 2, 13, 6 | scmatmat 22002 |
. . . . . . . . . . . 12
β’ ((π β Fin β§ π
β CRing) β (π¦ β π β π¦ β (Baseβπ΄))) |
22 | 21 | imp 407 |
. . . . . . . . . . 11
β’ (((π β Fin β§ π
β CRing) β§ π¦ β π) β π¦ β (Baseβπ΄)) |
23 | 22 | adantrl 714 |
. . . . . . . . . 10
β’ (((π β Fin β§ π
β CRing) β§ (π₯ β π β§ π¦ β π)) β π¦ β (Baseβπ΄)) |
24 | 23 | 3ad2ant1 1133 |
. . . . . . . . 9
β’ ((((π β Fin β§ π
β CRing) β§ (π₯ β π β§ π¦ β π)) β§ π β π β§ π β π) β π¦ β (Baseβπ΄)) |
25 | 2, 4, 13, 14, 15, 24 | matecld 21919 |
. . . . . . . 8
β’ ((((π β Fin β§ π
β CRing) β§ (π₯ β π β§ π¦ β π)) β§ π β π β§ π β π) β (ππ¦π) β πΈ) |
26 | | eqid 2732 |
. . . . . . . . 9
β’
(.rβπ
) = (.rβπ
) |
27 | 4, 26 | crngcom 20067 |
. . . . . . . 8
β’ ((π
β CRing β§ (ππ₯π) β πΈ β§ (ππ¦π) β πΈ) β ((ππ₯π)(.rβπ
)(ππ¦π)) = ((ππ¦π)(.rβπ
)(ππ₯π))) |
28 | 12, 20, 25, 27 | syl3anc 1371 |
. . . . . . 7
β’ ((((π β Fin β§ π
β CRing) β§ (π₯ β π β§ π¦ β π)) β§ π β π β§ π β π) β ((ππ₯π)(.rβπ
)(ππ¦π)) = ((ππ¦π)(.rβπ
)(ππ₯π))) |
29 | 28 | ifeq1d 4546 |
. . . . . 6
β’ ((((π β Fin β§ π
β CRing) β§ (π₯ β π β§ π¦ β π)) β§ π β π β§ π β π) β if(π = π, ((ππ₯π)(.rβπ
)(ππ¦π)), 0 ) = if(π = π, ((ππ¦π)(.rβπ
)(ππ₯π)), 0 )) |
30 | 29 | mpoeq3dva 7482 |
. . . . 5
β’ (((π β Fin β§ π
β CRing) β§ (π₯ β π β§ π¦ β π)) β (π β π, π β π β¦ if(π = π, ((ππ₯π)(.rβπ
)(ππ¦π)), 0 )) = (π β π, π β π β¦ if(π = π, ((ππ¦π)(.rβπ
)(ππ₯π)), 0 ))) |
31 | 1 | anim2i 617 |
. . . . . 6
β’ ((π β Fin β§ π
β CRing) β (π β Fin β§ π
β Ring)) |
32 | | eqid 2732 |
. . . . . . . . . 10
β’ (π DMat π
) = (π DMat π
) |
33 | 2, 3, 4, 5, 6, 32 | scmatdmat 22008 |
. . . . . . . . 9
β’ ((π β Fin β§ π
β Ring) β (π₯ β π β π₯ β (π DMat π
))) |
34 | 1, 33 | sylan2 593 |
. . . . . . . 8
β’ ((π β Fin β§ π
β CRing) β (π₯ β π β π₯ β (π DMat π
))) |
35 | 2, 3, 4, 5, 6, 32 | scmatdmat 22008 |
. . . . . . . . 9
β’ ((π β Fin β§ π
β Ring) β (π¦ β π β π¦ β (π DMat π
))) |
36 | 1, 35 | sylan2 593 |
. . . . . . . 8
β’ ((π β Fin β§ π
β CRing) β (π¦ β π β π¦ β (π DMat π
))) |
37 | 34, 36 | anim12d 609 |
. . . . . . 7
β’ ((π β Fin β§ π
β CRing) β ((π₯ β π β§ π¦ β π) β (π₯ β (π DMat π
) β§ π¦ β (π DMat π
)))) |
38 | 37 | imp 407 |
. . . . . 6
β’ (((π β Fin β§ π
β CRing) β§ (π₯ β π β§ π¦ β π)) β (π₯ β (π DMat π
) β§ π¦ β (π DMat π
))) |
39 | 2, 3, 5, 32 | dmatmul 21990 |
. . . . . 6
β’ (((π β Fin β§ π
β Ring) β§ (π₯ β (π DMat π
) β§ π¦ β (π DMat π
))) β (π₯(.rβπ΄)π¦) = (π β π, π β π β¦ if(π = π, ((ππ₯π)(.rβπ
)(ππ¦π)), 0 ))) |
40 | 31, 38, 39 | syl2an2r 683 |
. . . . 5
β’ (((π β Fin β§ π
β CRing) β§ (π₯ β π β§ π¦ β π)) β (π₯(.rβπ΄)π¦) = (π β π, π β π β¦ if(π = π, ((ππ₯π)(.rβπ
)(ππ¦π)), 0 ))) |
41 | 38 | ancomd 462 |
. . . . . 6
β’ (((π β Fin β§ π
β CRing) β§ (π₯ β π β§ π¦ β π)) β (π¦ β (π DMat π
) β§ π₯ β (π DMat π
))) |
42 | 2, 3, 5, 32 | dmatmul 21990 |
. . . . . 6
β’ (((π β Fin β§ π
β Ring) β§ (π¦ β (π DMat π
) β§ π₯ β (π DMat π
))) β (π¦(.rβπ΄)π₯) = (π β π, π β π β¦ if(π = π, ((ππ¦π)(.rβπ
)(ππ₯π)), 0 ))) |
43 | 31, 41, 42 | syl2an2r 683 |
. . . . 5
β’ (((π β Fin β§ π
β CRing) β§ (π₯ β π β§ π¦ β π)) β (π¦(.rβπ΄)π₯) = (π β π, π β π β¦ if(π = π, ((ππ¦π)(.rβπ
)(ππ₯π)), 0 ))) |
44 | 30, 40, 43 | 3eqtr4d 2782 |
. . . 4
β’ (((π β Fin β§ π
β CRing) β§ (π₯ β π β§ π¦ β π)) β (π₯(.rβπ΄)π¦) = (π¦(.rβπ΄)π₯)) |
45 | 44 | ralrimivva 3200 |
. . 3
β’ ((π β Fin β§ π
β CRing) β
βπ₯ β π βπ¦ β π (π₯(.rβπ΄)π¦) = (π¦(.rβπ΄)π₯)) |
46 | 9 | subrgbas 20364 |
. . . . . 6
β’ (π β (SubRingβπ΄) β π = (BaseβπΆ)) |
47 | 46 | eqcomd 2738 |
. . . . 5
β’ (π β (SubRingβπ΄) β (BaseβπΆ) = π) |
48 | | eqid 2732 |
. . . . . . . . . 10
β’
(.rβπ΄) = (.rβπ΄) |
49 | 9, 48 | ressmulr 17248 |
. . . . . . . . 9
β’ (π β (SubRingβπ΄) β
(.rβπ΄) =
(.rβπΆ)) |
50 | 49 | eqcomd 2738 |
. . . . . . . 8
β’ (π β (SubRingβπ΄) β
(.rβπΆ) =
(.rβπ΄)) |
51 | 50 | oveqd 7422 |
. . . . . . 7
β’ (π β (SubRingβπ΄) β (π₯(.rβπΆ)π¦) = (π₯(.rβπ΄)π¦)) |
52 | 50 | oveqd 7422 |
. . . . . . 7
β’ (π β (SubRingβπ΄) β (π¦(.rβπΆ)π₯) = (π¦(.rβπ΄)π₯)) |
53 | 51, 52 | eqeq12d 2748 |
. . . . . 6
β’ (π β (SubRingβπ΄) β ((π₯(.rβπΆ)π¦) = (π¦(.rβπΆ)π₯) β (π₯(.rβπ΄)π¦) = (π¦(.rβπ΄)π₯))) |
54 | 47, 53 | raleqbidv 3342 |
. . . . 5
β’ (π β (SubRingβπ΄) β (βπ¦ β (BaseβπΆ)(π₯(.rβπΆ)π¦) = (π¦(.rβπΆ)π₯) β βπ¦ β π (π₯(.rβπ΄)π¦) = (π¦(.rβπ΄)π₯))) |
55 | 47, 54 | raleqbidv 3342 |
. . . 4
β’ (π β (SubRingβπ΄) β (βπ₯ β (BaseβπΆ)βπ¦ β (BaseβπΆ)(π₯(.rβπΆ)π¦) = (π¦(.rβπΆ)π₯) β βπ₯ β π βπ¦ β π (π₯(.rβπ΄)π¦) = (π¦(.rβπ΄)π₯))) |
56 | 8, 55 | syl 17 |
. . 3
β’ ((π β Fin β§ π
β CRing) β
(βπ₯ β
(BaseβπΆ)βπ¦ β (BaseβπΆ)(π₯(.rβπΆ)π¦) = (π¦(.rβπΆ)π₯) β βπ₯ β π βπ¦ β π (π₯(.rβπ΄)π¦) = (π¦(.rβπ΄)π₯))) |
57 | 45, 56 | mpbird 256 |
. 2
β’ ((π β Fin β§ π
β CRing) β
βπ₯ β
(BaseβπΆ)βπ¦ β (BaseβπΆ)(π₯(.rβπΆ)π¦) = (π¦(.rβπΆ)π₯)) |
58 | | eqid 2732 |
. . 3
β’
(BaseβπΆ) =
(BaseβπΆ) |
59 | | eqid 2732 |
. . 3
β’
(.rβπΆ) = (.rβπΆ) |
60 | 58, 59 | iscrng2 20068 |
. 2
β’ (πΆ β CRing β (πΆ β Ring β§ βπ₯ β (BaseβπΆ)βπ¦ β (BaseβπΆ)(π₯(.rβπΆ)π¦) = (π¦(.rβπΆ)π₯))) |
61 | 11, 57, 60 | sylanbrc 583 |
1
β’ ((π β Fin β§ π
β CRing) β πΆ β CRing) |