MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmatcrng Structured version   Visualization version   GIF version

Theorem scmatcrng 20834
Description: The subring of scalar matrices (over a commutative ring) is a commutative ring. (Contributed by AV, 21-Aug-2019.)
Hypotheses
Ref Expression
scmatid.a 𝐴 = (𝑁 Mat 𝑅)
scmatid.b 𝐵 = (Base‘𝐴)
scmatid.e 𝐸 = (Base‘𝑅)
scmatid.0 0 = (0g𝑅)
scmatid.s 𝑆 = (𝑁 ScMat 𝑅)
scmatcrng.c 𝐶 = (𝐴s 𝑆)
Assertion
Ref Expression
scmatcrng ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐶 ∈ CRing)

Proof of Theorem scmatcrng
Dummy variables 𝑥 𝑦 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crngring 19031 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2 scmatid.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
3 scmatid.b . . . . 5 𝐵 = (Base‘𝐴)
4 scmatid.e . . . . 5 𝐸 = (Base‘𝑅)
5 scmatid.0 . . . . 5 0 = (0g𝑅)
6 scmatid.s . . . . 5 𝑆 = (𝑁 ScMat 𝑅)
72, 3, 4, 5, 6scmatsrng 20833 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (SubRing‘𝐴))
81, 7sylan2 583 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑆 ∈ (SubRing‘𝐴))
9 scmatcrng.c . . . 4 𝐶 = (𝐴s 𝑆)
109subrgring 19261 . . 3 (𝑆 ∈ (SubRing‘𝐴) → 𝐶 ∈ Ring)
118, 10syl 17 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐶 ∈ Ring)
12 simp1lr 1217 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑎𝑁𝑏𝑁) → 𝑅 ∈ CRing)
13 eqid 2779 . . . . . . . . 9 (Base‘𝐴) = (Base‘𝐴)
14 simp2 1117 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑎𝑁𝑏𝑁) → 𝑎𝑁)
15 simp3 1118 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑎𝑁𝑏𝑁) → 𝑏𝑁)
162, 13, 6scmatmat 20822 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑥𝑆𝑥 ∈ (Base‘𝐴)))
1716imp 398 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑥𝑆) → 𝑥 ∈ (Base‘𝐴))
1817adantrr 704 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) → 𝑥 ∈ (Base‘𝐴))
19183ad2ant1 1113 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑎𝑁𝑏𝑁) → 𝑥 ∈ (Base‘𝐴))
202, 4, 13, 14, 15, 19matecld 20739 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑎𝑁𝑏𝑁) → (𝑎𝑥𝑏) ∈ 𝐸)
212, 13, 6scmatmat 20822 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑦𝑆𝑦 ∈ (Base‘𝐴)))
2221imp 398 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑦𝑆) → 𝑦 ∈ (Base‘𝐴))
2322adantrl 703 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) → 𝑦 ∈ (Base‘𝐴))
24233ad2ant1 1113 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑎𝑁𝑏𝑁) → 𝑦 ∈ (Base‘𝐴))
252, 4, 13, 14, 15, 24matecld 20739 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑎𝑁𝑏𝑁) → (𝑎𝑦𝑏) ∈ 𝐸)
26 eqid 2779 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
274, 26crngcom 19035 . . . . . . . 8 ((𝑅 ∈ CRing ∧ (𝑎𝑥𝑏) ∈ 𝐸 ∧ (𝑎𝑦𝑏) ∈ 𝐸) → ((𝑎𝑥𝑏)(.r𝑅)(𝑎𝑦𝑏)) = ((𝑎𝑦𝑏)(.r𝑅)(𝑎𝑥𝑏)))
2812, 20, 25, 27syl3anc 1351 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑎𝑁𝑏𝑁) → ((𝑎𝑥𝑏)(.r𝑅)(𝑎𝑦𝑏)) = ((𝑎𝑦𝑏)(.r𝑅)(𝑎𝑥𝑏)))
2928ifeq1d 4368 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑎𝑁𝑏𝑁) → if(𝑎 = 𝑏, ((𝑎𝑥𝑏)(.r𝑅)(𝑎𝑦𝑏)), 0 ) = if(𝑎 = 𝑏, ((𝑎𝑦𝑏)(.r𝑅)(𝑎𝑥𝑏)), 0 ))
3029mpoeq3dva 7049 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, ((𝑎𝑥𝑏)(.r𝑅)(𝑎𝑦𝑏)), 0 )) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, ((𝑎𝑦𝑏)(.r𝑅)(𝑎𝑥𝑏)), 0 )))
311anim2i 607 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
32 eqid 2779 . . . . . . . . . 10 (𝑁 DMat 𝑅) = (𝑁 DMat 𝑅)
332, 3, 4, 5, 6, 32scmatdmat 20828 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑥𝑆𝑥 ∈ (𝑁 DMat 𝑅)))
341, 33sylan2 583 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑥𝑆𝑥 ∈ (𝑁 DMat 𝑅)))
352, 3, 4, 5, 6, 32scmatdmat 20828 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑦𝑆𝑦 ∈ (𝑁 DMat 𝑅)))
361, 35sylan2 583 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑦𝑆𝑦 ∈ (𝑁 DMat 𝑅)))
3734, 36anim12d 599 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ((𝑥𝑆𝑦𝑆) → (𝑥 ∈ (𝑁 DMat 𝑅) ∧ 𝑦 ∈ (𝑁 DMat 𝑅))))
3837imp 398 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 ∈ (𝑁 DMat 𝑅) ∧ 𝑦 ∈ (𝑁 DMat 𝑅)))
392, 3, 5, 32dmatmul 20810 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (𝑁 DMat 𝑅) ∧ 𝑦 ∈ (𝑁 DMat 𝑅))) → (𝑥(.r𝐴)𝑦) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, ((𝑎𝑥𝑏)(.r𝑅)(𝑎𝑦𝑏)), 0 )))
4031, 38, 39syl2an2r 672 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(.r𝐴)𝑦) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, ((𝑎𝑥𝑏)(.r𝑅)(𝑎𝑦𝑏)), 0 )))
4138ancomd 454 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) → (𝑦 ∈ (𝑁 DMat 𝑅) ∧ 𝑥 ∈ (𝑁 DMat 𝑅)))
422, 3, 5, 32dmatmul 20810 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (𝑁 DMat 𝑅) ∧ 𝑥 ∈ (𝑁 DMat 𝑅))) → (𝑦(.r𝐴)𝑥) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, ((𝑎𝑦𝑏)(.r𝑅)(𝑎𝑥𝑏)), 0 )))
4331, 41, 42syl2an2r 672 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) → (𝑦(.r𝐴)𝑥) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, ((𝑎𝑦𝑏)(.r𝑅)(𝑎𝑥𝑏)), 0 )))
4430, 40, 433eqtr4d 2825 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥))
4544ralrimivva 3142 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ∀𝑥𝑆𝑦𝑆 (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥))
469subrgbas 19267 . . . . . 6 (𝑆 ∈ (SubRing‘𝐴) → 𝑆 = (Base‘𝐶))
4746eqcomd 2785 . . . . 5 (𝑆 ∈ (SubRing‘𝐴) → (Base‘𝐶) = 𝑆)
48 eqid 2779 . . . . . . . . . 10 (.r𝐴) = (.r𝐴)
499, 48ressmulr 16481 . . . . . . . . 9 (𝑆 ∈ (SubRing‘𝐴) → (.r𝐴) = (.r𝐶))
5049eqcomd 2785 . . . . . . . 8 (𝑆 ∈ (SubRing‘𝐴) → (.r𝐶) = (.r𝐴))
5150oveqd 6993 . . . . . . 7 (𝑆 ∈ (SubRing‘𝐴) → (𝑥(.r𝐶)𝑦) = (𝑥(.r𝐴)𝑦))
5250oveqd 6993 . . . . . . 7 (𝑆 ∈ (SubRing‘𝐴) → (𝑦(.r𝐶)𝑥) = (𝑦(.r𝐴)𝑥))
5351, 52eqeq12d 2794 . . . . . 6 (𝑆 ∈ (SubRing‘𝐴) → ((𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥) ↔ (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
5447, 53raleqbidv 3342 . . . . 5 (𝑆 ∈ (SubRing‘𝐴) → (∀𝑦 ∈ (Base‘𝐶)(𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥) ↔ ∀𝑦𝑆 (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
5547, 54raleqbidv 3342 . . . 4 (𝑆 ∈ (SubRing‘𝐴) → (∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥) ↔ ∀𝑥𝑆𝑦𝑆 (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
568, 55syl 17 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥) ↔ ∀𝑥𝑆𝑦𝑆 (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
5745, 56mpbird 249 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥))
58 eqid 2779 . . 3 (Base‘𝐶) = (Base‘𝐶)
59 eqid 2779 . . 3 (.r𝐶) = (.r𝐶)
6058, 59iscrng2 19036 . 2 (𝐶 ∈ CRing ↔ (𝐶 ∈ Ring ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥)))
6111, 57, 60sylanbrc 575 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐶 ∈ CRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2050  wral 3089  ifcif 4350  cfv 6188  (class class class)co 6976  cmpo 6978  Fincfn 8306  Basecbs 16339  s cress 16340  .rcmulr 16422  0gc0g 16569  Ringcrg 19020  CRingccrg 19021  SubRingcsubrg 19254   Mat cmat 20720   DMat cdmat 20801   ScMat cscmat 20802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2751  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3418  df-sbc 3683  df-csb 3788  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-pss 3846  df-nul 4180  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-ot 4450  df-uni 4713  df-int 4750  df-iun 4794  df-iin 4795  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-se 5367  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-isom 6197  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-of 7227  df-om 7397  df-1st 7501  df-2nd 7502  df-supp 7634  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-1o 7905  df-oadd 7909  df-er 8089  df-map 8208  df-ixp 8260  df-en 8307  df-dom 8308  df-sdom 8309  df-fin 8310  df-fsupp 8629  df-sup 8701  df-oi 8769  df-card 9162  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-nn 11440  df-2 11503  df-3 11504  df-4 11505  df-5 11506  df-6 11507  df-7 11508  df-8 11509  df-9 11510  df-n0 11708  df-z 11794  df-dec 11912  df-uz 12059  df-fz 12709  df-fzo 12850  df-seq 13185  df-hash 13506  df-struct 16341  df-ndx 16342  df-slot 16343  df-base 16345  df-sets 16346  df-ress 16347  df-plusg 16434  df-mulr 16435  df-sca 16437  df-vsca 16438  df-ip 16439  df-tset 16440  df-ple 16441  df-ds 16443  df-hom 16445  df-cco 16446  df-0g 16571  df-gsum 16572  df-prds 16577  df-pws 16579  df-mre 16715  df-mrc 16716  df-acs 16718  df-mgm 17710  df-sgrp 17752  df-mnd 17763  df-mhm 17803  df-submnd 17804  df-grp 17894  df-minusg 17895  df-sbg 17896  df-mulg 18012  df-subg 18060  df-ghm 18127  df-cntz 18218  df-cmn 18668  df-abl 18669  df-mgp 18963  df-ur 18975  df-ring 19022  df-cring 19023  df-subrg 19256  df-lmod 19358  df-lss 19426  df-sra 19666  df-rgmod 19667  df-dsmm 20578  df-frlm 20593  df-mamu 20697  df-mat 20721  df-dmat 20803  df-scmat 20804
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator