MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmatcrng Structured version   Visualization version   GIF version

Theorem scmatcrng 22424
Description: The subring of scalar matrices (over a commutative ring) is a commutative ring. (Contributed by AV, 21-Aug-2019.)
Hypotheses
Ref Expression
scmatid.a 𝐴 = (𝑁 Mat 𝑅)
scmatid.b 𝐵 = (Base‘𝐴)
scmatid.e 𝐸 = (Base‘𝑅)
scmatid.0 0 = (0g𝑅)
scmatid.s 𝑆 = (𝑁 ScMat 𝑅)
scmatcrng.c 𝐶 = (𝐴s 𝑆)
Assertion
Ref Expression
scmatcrng ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐶 ∈ CRing)

Proof of Theorem scmatcrng
Dummy variables 𝑥 𝑦 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crngring 20148 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2 scmatid.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
3 scmatid.b . . . . 5 𝐵 = (Base‘𝐴)
4 scmatid.e . . . . 5 𝐸 = (Base‘𝑅)
5 scmatid.0 . . . . 5 0 = (0g𝑅)
6 scmatid.s . . . . 5 𝑆 = (𝑁 ScMat 𝑅)
72, 3, 4, 5, 6scmatsrng 22423 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (SubRing‘𝐴))
81, 7sylan2 593 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑆 ∈ (SubRing‘𝐴))
9 scmatcrng.c . . . 4 𝐶 = (𝐴s 𝑆)
109subrgring 20477 . . 3 (𝑆 ∈ (SubRing‘𝐴) → 𝐶 ∈ Ring)
118, 10syl 17 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐶 ∈ Ring)
12 simp1lr 1238 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑎𝑁𝑏𝑁) → 𝑅 ∈ CRing)
13 eqid 2729 . . . . . . . . 9 (Base‘𝐴) = (Base‘𝐴)
14 simp2 1137 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑎𝑁𝑏𝑁) → 𝑎𝑁)
15 simp3 1138 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑎𝑁𝑏𝑁) → 𝑏𝑁)
162, 13, 6scmatmat 22412 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑥𝑆𝑥 ∈ (Base‘𝐴)))
1716imp 406 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑥𝑆) → 𝑥 ∈ (Base‘𝐴))
1817adantrr 717 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) → 𝑥 ∈ (Base‘𝐴))
19183ad2ant1 1133 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑎𝑁𝑏𝑁) → 𝑥 ∈ (Base‘𝐴))
202, 4, 13, 14, 15, 19matecld 22329 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑎𝑁𝑏𝑁) → (𝑎𝑥𝑏) ∈ 𝐸)
212, 13, 6scmatmat 22412 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑦𝑆𝑦 ∈ (Base‘𝐴)))
2221imp 406 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑦𝑆) → 𝑦 ∈ (Base‘𝐴))
2322adantrl 716 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) → 𝑦 ∈ (Base‘𝐴))
24233ad2ant1 1133 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑎𝑁𝑏𝑁) → 𝑦 ∈ (Base‘𝐴))
252, 4, 13, 14, 15, 24matecld 22329 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑎𝑁𝑏𝑁) → (𝑎𝑦𝑏) ∈ 𝐸)
26 eqid 2729 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
274, 26crngcom 20154 . . . . . . . 8 ((𝑅 ∈ CRing ∧ (𝑎𝑥𝑏) ∈ 𝐸 ∧ (𝑎𝑦𝑏) ∈ 𝐸) → ((𝑎𝑥𝑏)(.r𝑅)(𝑎𝑦𝑏)) = ((𝑎𝑦𝑏)(.r𝑅)(𝑎𝑥𝑏)))
2812, 20, 25, 27syl3anc 1373 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑎𝑁𝑏𝑁) → ((𝑎𝑥𝑏)(.r𝑅)(𝑎𝑦𝑏)) = ((𝑎𝑦𝑏)(.r𝑅)(𝑎𝑥𝑏)))
2928ifeq1d 4498 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑎𝑁𝑏𝑁) → if(𝑎 = 𝑏, ((𝑎𝑥𝑏)(.r𝑅)(𝑎𝑦𝑏)), 0 ) = if(𝑎 = 𝑏, ((𝑎𝑦𝑏)(.r𝑅)(𝑎𝑥𝑏)), 0 ))
3029mpoeq3dva 7430 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, ((𝑎𝑥𝑏)(.r𝑅)(𝑎𝑦𝑏)), 0 )) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, ((𝑎𝑦𝑏)(.r𝑅)(𝑎𝑥𝑏)), 0 )))
311anim2i 617 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
32 eqid 2729 . . . . . . . . . 10 (𝑁 DMat 𝑅) = (𝑁 DMat 𝑅)
332, 3, 4, 5, 6, 32scmatdmat 22418 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑥𝑆𝑥 ∈ (𝑁 DMat 𝑅)))
341, 33sylan2 593 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑥𝑆𝑥 ∈ (𝑁 DMat 𝑅)))
352, 3, 4, 5, 6, 32scmatdmat 22418 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑦𝑆𝑦 ∈ (𝑁 DMat 𝑅)))
361, 35sylan2 593 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑦𝑆𝑦 ∈ (𝑁 DMat 𝑅)))
3734, 36anim12d 609 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ((𝑥𝑆𝑦𝑆) → (𝑥 ∈ (𝑁 DMat 𝑅) ∧ 𝑦 ∈ (𝑁 DMat 𝑅))))
3837imp 406 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 ∈ (𝑁 DMat 𝑅) ∧ 𝑦 ∈ (𝑁 DMat 𝑅)))
392, 3, 5, 32dmatmul 22400 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (𝑁 DMat 𝑅) ∧ 𝑦 ∈ (𝑁 DMat 𝑅))) → (𝑥(.r𝐴)𝑦) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, ((𝑎𝑥𝑏)(.r𝑅)(𝑎𝑦𝑏)), 0 )))
4031, 38, 39syl2an2r 685 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(.r𝐴)𝑦) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, ((𝑎𝑥𝑏)(.r𝑅)(𝑎𝑦𝑏)), 0 )))
4138ancomd 461 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) → (𝑦 ∈ (𝑁 DMat 𝑅) ∧ 𝑥 ∈ (𝑁 DMat 𝑅)))
422, 3, 5, 32dmatmul 22400 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (𝑁 DMat 𝑅) ∧ 𝑥 ∈ (𝑁 DMat 𝑅))) → (𝑦(.r𝐴)𝑥) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, ((𝑎𝑦𝑏)(.r𝑅)(𝑎𝑥𝑏)), 0 )))
4331, 41, 42syl2an2r 685 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) → (𝑦(.r𝐴)𝑥) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, ((𝑎𝑦𝑏)(.r𝑅)(𝑎𝑥𝑏)), 0 )))
4430, 40, 433eqtr4d 2774 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥))
4544ralrimivva 3172 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ∀𝑥𝑆𝑦𝑆 (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥))
469subrgbas 20484 . . . . . 6 (𝑆 ∈ (SubRing‘𝐴) → 𝑆 = (Base‘𝐶))
4746eqcomd 2735 . . . . 5 (𝑆 ∈ (SubRing‘𝐴) → (Base‘𝐶) = 𝑆)
48 eqid 2729 . . . . . . . . . 10 (.r𝐴) = (.r𝐴)
499, 48ressmulr 17229 . . . . . . . . 9 (𝑆 ∈ (SubRing‘𝐴) → (.r𝐴) = (.r𝐶))
5049eqcomd 2735 . . . . . . . 8 (𝑆 ∈ (SubRing‘𝐴) → (.r𝐶) = (.r𝐴))
5150oveqd 7370 . . . . . . 7 (𝑆 ∈ (SubRing‘𝐴) → (𝑥(.r𝐶)𝑦) = (𝑥(.r𝐴)𝑦))
5250oveqd 7370 . . . . . . 7 (𝑆 ∈ (SubRing‘𝐴) → (𝑦(.r𝐶)𝑥) = (𝑦(.r𝐴)𝑥))
5351, 52eqeq12d 2745 . . . . . 6 (𝑆 ∈ (SubRing‘𝐴) → ((𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥) ↔ (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
5447, 53raleqbidv 3310 . . . . 5 (𝑆 ∈ (SubRing‘𝐴) → (∀𝑦 ∈ (Base‘𝐶)(𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥) ↔ ∀𝑦𝑆 (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
5547, 54raleqbidv 3310 . . . 4 (𝑆 ∈ (SubRing‘𝐴) → (∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥) ↔ ∀𝑥𝑆𝑦𝑆 (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
568, 55syl 17 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥) ↔ ∀𝑥𝑆𝑦𝑆 (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
5745, 56mpbird 257 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥))
58 eqid 2729 . . 3 (Base‘𝐶) = (Base‘𝐶)
59 eqid 2729 . . 3 (.r𝐶) = (.r𝐶)
6058, 59iscrng2 20155 . 2 (𝐶 ∈ CRing ↔ (𝐶 ∈ Ring ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥)))
6111, 57, 60sylanbrc 583 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐶 ∈ CRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  ifcif 4478  cfv 6486  (class class class)co 7353  cmpo 7355  Fincfn 8879  Basecbs 17138  s cress 17159  .rcmulr 17180  0gc0g 17361  Ringcrg 20136  CRingccrg 20137  SubRingcsubrg 20472   Mat cmat 22310   DMat cdmat 22391   ScMat cscmat 22392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-ot 4588  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-sup 9351  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-fz 13429  df-fzo 13576  df-seq 13927  df-hash 14256  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-hom 17203  df-cco 17204  df-0g 17363  df-gsum 17364  df-prds 17369  df-pws 17371  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-mulg 18965  df-subg 19020  df-ghm 19110  df-cntz 19214  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-cring 20139  df-subrng 20449  df-subrg 20473  df-lmod 20783  df-lss 20853  df-sra 21095  df-rgmod 21096  df-dsmm 21657  df-frlm 21672  df-mamu 22294  df-mat 22311  df-dmat 22393  df-scmat 22394
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator