Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoicl Structured version   Visualization version   GIF version

Theorem tendoicl 36872
Description: Closure of the additive inverse endomorphism. (Contributed by NM, 12-Jun-2013.)
Hypotheses
Ref Expression
tendoicl.h 𝐻 = (LHyp‘𝐾)
tendoicl.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendoicl.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
tendoicl.i 𝐼 = (𝑠𝐸 ↦ (𝑓𝑇(𝑠𝑓)))
Assertion
Ref Expression
tendoicl (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝐼𝑆) ∈ 𝐸)
Distinct variable groups:   𝐸,𝑠   𝑓,𝑠,𝑇   𝑓,𝑊,𝑠
Allowed substitution hints:   𝑆(𝑓,𝑠)   𝐸(𝑓)   𝐻(𝑓,𝑠)   𝐼(𝑓,𝑠)   𝐾(𝑓,𝑠)

Proof of Theorem tendoicl
Dummy variables 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2826 . 2 (le‘𝐾) = (le‘𝐾)
2 tendoicl.h . 2 𝐻 = (LHyp‘𝐾)
3 tendoicl.t . 2 𝑇 = ((LTrn‘𝐾)‘𝑊)
4 eqid 2826 . 2 ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊)
5 tendoicl.e . 2 𝐸 = ((TEndo‘𝐾)‘𝑊)
6 simpl 476 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝐾 ∈ HL ∧ 𝑊𝐻))
7 simpll 785 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
82, 3, 5tendocl 36843 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑔𝑇) → (𝑆𝑔) ∈ 𝑇)
983expa 1153 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (𝑆𝑔) ∈ 𝑇)
102, 3ltrncnv 36222 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝑔) ∈ 𝑇) → (𝑆𝑔) ∈ 𝑇)
117, 9, 10syl2anc 581 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (𝑆𝑔) ∈ 𝑇)
1211fmpttd 6635 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝑔𝑇(𝑆𝑔)):𝑇𝑇)
13 tendoicl.i . . . . . 6 𝐼 = (𝑠𝐸 ↦ (𝑓𝑇(𝑠𝑓)))
1413, 3tendoi 36870 . . . . 5 (𝑆𝐸 → (𝐼𝑆) = (𝑔𝑇(𝑆𝑔)))
1514adantl 475 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝐼𝑆) = (𝑔𝑇(𝑆𝑔)))
1615feq1d 6264 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → ((𝐼𝑆):𝑇𝑇 ↔ (𝑔𝑇(𝑆𝑔)):𝑇𝑇))
1712, 16mpbird 249 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝐼𝑆):𝑇𝑇)
18 simp1r 1261 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → 𝑆𝐸)
192, 3ltrnco 36795 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇𝑇) → (𝑔) ∈ 𝑇)
20193adant1r 1229 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → (𝑔) ∈ 𝑇)
2113, 3tendoi2 36871 . . . 4 ((𝑆𝐸 ∧ (𝑔) ∈ 𝑇) → ((𝐼𝑆)‘(𝑔)) = (𝑆‘(𝑔)))
2218, 20, 21syl2anc 581 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → ((𝐼𝑆)‘(𝑔)) = (𝑆‘(𝑔)))
23 cnvco 5541 . . . 4 ((𝑆) ∘ (𝑆𝑔)) = ((𝑆𝑔) ∘ (𝑆))
242, 3ltrncom 36814 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇𝑇) → (𝑔) = (𝑔))
25243adant1r 1229 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → (𝑔) = (𝑔))
2625fveq2d 6438 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → (𝑆‘(𝑔)) = (𝑆‘(𝑔)))
27 simp1ll 1323 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → 𝐾 ∈ HL)
28 simp1lr 1324 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → 𝑊𝐻)
29 simp3 1174 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → 𝑇)
30 simp2 1173 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → 𝑔𝑇)
312, 3, 5tendovalco 36841 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑆𝐸) ∧ (𝑇𝑔𝑇)) → (𝑆‘(𝑔)) = ((𝑆) ∘ (𝑆𝑔)))
3227, 28, 18, 29, 30, 31syl32anc 1503 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → (𝑆‘(𝑔)) = ((𝑆) ∘ (𝑆𝑔)))
3326, 32eqtrd 2862 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → (𝑆‘(𝑔)) = ((𝑆) ∘ (𝑆𝑔)))
3433cnveqd 5531 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → (𝑆‘(𝑔)) = ((𝑆) ∘ (𝑆𝑔)))
3513, 3tendoi2 36871 . . . . . 6 ((𝑆𝐸𝑔𝑇) → ((𝐼𝑆)‘𝑔) = (𝑆𝑔))
3618, 30, 35syl2anc 581 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → ((𝐼𝑆)‘𝑔) = (𝑆𝑔))
3713, 3tendoi2 36871 . . . . . 6 ((𝑆𝐸𝑇) → ((𝐼𝑆)‘) = (𝑆))
3818, 29, 37syl2anc 581 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → ((𝐼𝑆)‘) = (𝑆))
3936, 38coeq12d 5520 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → (((𝐼𝑆)‘𝑔) ∘ ((𝐼𝑆)‘)) = ((𝑆𝑔) ∘ (𝑆)))
4023, 34, 393eqtr4a 2888 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → (𝑆‘(𝑔)) = (((𝐼𝑆)‘𝑔) ∘ ((𝐼𝑆)‘)))
4122, 40eqtrd 2862 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → ((𝐼𝑆)‘(𝑔)) = (((𝐼𝑆)‘𝑔) ∘ ((𝐼𝑆)‘)))
4235adantll 707 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → ((𝐼𝑆)‘𝑔) = (𝑆𝑔))
4342fveq2d 6438 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (((trL‘𝐾)‘𝑊)‘((𝐼𝑆)‘𝑔)) = (((trL‘𝐾)‘𝑊)‘(𝑆𝑔)))
442, 3, 4trlcnv 36241 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝑔) ∈ 𝑇) → (((trL‘𝐾)‘𝑊)‘(𝑆𝑔)) = (((trL‘𝐾)‘𝑊)‘(𝑆𝑔)))
457, 9, 44syl2anc 581 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (((trL‘𝐾)‘𝑊)‘(𝑆𝑔)) = (((trL‘𝐾)‘𝑊)‘(𝑆𝑔)))
4643, 45eqtrd 2862 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (((trL‘𝐾)‘𝑊)‘((𝐼𝑆)‘𝑔)) = (((trL‘𝐾)‘𝑊)‘(𝑆𝑔)))
471, 2, 3, 4, 5tendotp 36837 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑔𝑇) → (((trL‘𝐾)‘𝑊)‘(𝑆𝑔))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑔))
48473expa 1153 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (((trL‘𝐾)‘𝑊)‘(𝑆𝑔))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑔))
4946, 48eqbrtrd 4896 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (((trL‘𝐾)‘𝑊)‘((𝐼𝑆)‘𝑔))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑔))
501, 2, 3, 4, 5, 6, 17, 41, 49istendod 36838 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝐼𝑆) ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1113   = wceq 1658  wcel 2166   class class class wbr 4874  cmpt 4953  ccnv 5342  ccom 5347  wf 6120  cfv 6124  lecple 16313  HLchlt 35426  LHypclh 36060  LTrncltrn 36177  trLctrl 36234  TEndoctendo 36828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-rep 4995  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-riotaBAD 35029
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-nel 3104  df-ral 3123  df-rex 3124  df-reu 3125  df-rmo 3126  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4660  df-iun 4743  df-iin 4744  df-br 4875  df-opab 4937  df-mpt 4954  df-id 5251  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-riota 6867  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-1st 7429  df-2nd 7430  df-undef 7665  df-map 8125  df-proset 17282  df-poset 17300  df-plt 17312  df-lub 17328  df-glb 17329  df-join 17330  df-meet 17331  df-p0 17393  df-p1 17394  df-lat 17400  df-clat 17462  df-oposet 35252  df-ol 35254  df-oml 35255  df-covers 35342  df-ats 35343  df-atl 35374  df-cvlat 35398  df-hlat 35427  df-llines 35574  df-lplanes 35575  df-lvols 35576  df-lines 35577  df-psubsp 35579  df-pmap 35580  df-padd 35872  df-lhyp 36064  df-laut 36065  df-ldil 36180  df-ltrn 36181  df-trl 36235  df-tendo 36831
This theorem is referenced by:  tendoipl  36873  tendoipl2  36874  erngdvlem1  37064  erngdvlem1-rN  37072  dihjatcclem4  37497
  Copyright terms: Public domain W3C validator