Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoicl Structured version   Visualization version   GIF version

Theorem tendoicl 40841
Description: Closure of the additive inverse endomorphism. (Contributed by NM, 12-Jun-2013.)
Hypotheses
Ref Expression
tendoicl.h 𝐻 = (LHyp‘𝐾)
tendoicl.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendoicl.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
tendoicl.i 𝐼 = (𝑠𝐸 ↦ (𝑓𝑇(𝑠𝑓)))
Assertion
Ref Expression
tendoicl (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝐼𝑆) ∈ 𝐸)
Distinct variable groups:   𝐸,𝑠   𝑓,𝑠,𝑇   𝑓,𝑊,𝑠
Allowed substitution hints:   𝑆(𝑓,𝑠)   𝐸(𝑓)   𝐻(𝑓,𝑠)   𝐼(𝑓,𝑠)   𝐾(𝑓,𝑠)

Proof of Theorem tendoicl
Dummy variables 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . 2 (le‘𝐾) = (le‘𝐾)
2 tendoicl.h . 2 𝐻 = (LHyp‘𝐾)
3 tendoicl.t . 2 𝑇 = ((LTrn‘𝐾)‘𝑊)
4 eqid 2731 . 2 ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊)
5 tendoicl.e . 2 𝐸 = ((TEndo‘𝐾)‘𝑊)
6 simpl 482 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝐾 ∈ HL ∧ 𝑊𝐻))
7 simpll 766 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
82, 3, 5tendocl 40812 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑔𝑇) → (𝑆𝑔) ∈ 𝑇)
983expa 1118 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (𝑆𝑔) ∈ 𝑇)
102, 3ltrncnv 40191 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝑔) ∈ 𝑇) → (𝑆𝑔) ∈ 𝑇)
117, 9, 10syl2anc 584 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (𝑆𝑔) ∈ 𝑇)
1211fmpttd 7048 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝑔𝑇(𝑆𝑔)):𝑇𝑇)
13 tendoicl.i . . . . . 6 𝐼 = (𝑠𝐸 ↦ (𝑓𝑇(𝑠𝑓)))
1413, 3tendoi 40839 . . . . 5 (𝑆𝐸 → (𝐼𝑆) = (𝑔𝑇(𝑆𝑔)))
1514adantl 481 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝐼𝑆) = (𝑔𝑇(𝑆𝑔)))
1615feq1d 6633 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → ((𝐼𝑆):𝑇𝑇 ↔ (𝑔𝑇(𝑆𝑔)):𝑇𝑇))
1712, 16mpbird 257 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝐼𝑆):𝑇𝑇)
18 simp1r 1199 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → 𝑆𝐸)
192, 3ltrnco 40764 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇𝑇) → (𝑔) ∈ 𝑇)
20193adant1r 1178 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → (𝑔) ∈ 𝑇)
2113, 3tendoi2 40840 . . . 4 ((𝑆𝐸 ∧ (𝑔) ∈ 𝑇) → ((𝐼𝑆)‘(𝑔)) = (𝑆‘(𝑔)))
2218, 20, 21syl2anc 584 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → ((𝐼𝑆)‘(𝑔)) = (𝑆‘(𝑔)))
23 cnvco 5825 . . . 4 ((𝑆) ∘ (𝑆𝑔)) = ((𝑆𝑔) ∘ (𝑆))
242, 3ltrncom 40783 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇𝑇) → (𝑔) = (𝑔))
25243adant1r 1178 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → (𝑔) = (𝑔))
2625fveq2d 6826 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → (𝑆‘(𝑔)) = (𝑆‘(𝑔)))
27 simp1ll 1237 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → 𝐾 ∈ HL)
28 simp1lr 1238 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → 𝑊𝐻)
29 simp3 1138 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → 𝑇)
30 simp2 1137 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → 𝑔𝑇)
312, 3, 5tendovalco 40810 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑆𝐸) ∧ (𝑇𝑔𝑇)) → (𝑆‘(𝑔)) = ((𝑆) ∘ (𝑆𝑔)))
3227, 28, 18, 29, 30, 31syl32anc 1380 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → (𝑆‘(𝑔)) = ((𝑆) ∘ (𝑆𝑔)))
3326, 32eqtrd 2766 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → (𝑆‘(𝑔)) = ((𝑆) ∘ (𝑆𝑔)))
3433cnveqd 5815 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → (𝑆‘(𝑔)) = ((𝑆) ∘ (𝑆𝑔)))
3513, 3tendoi2 40840 . . . . . 6 ((𝑆𝐸𝑔𝑇) → ((𝐼𝑆)‘𝑔) = (𝑆𝑔))
3618, 30, 35syl2anc 584 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → ((𝐼𝑆)‘𝑔) = (𝑆𝑔))
3713, 3tendoi2 40840 . . . . . 6 ((𝑆𝐸𝑇) → ((𝐼𝑆)‘) = (𝑆))
3818, 29, 37syl2anc 584 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → ((𝐼𝑆)‘) = (𝑆))
3936, 38coeq12d 5804 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → (((𝐼𝑆)‘𝑔) ∘ ((𝐼𝑆)‘)) = ((𝑆𝑔) ∘ (𝑆)))
4023, 34, 393eqtr4a 2792 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → (𝑆‘(𝑔)) = (((𝐼𝑆)‘𝑔) ∘ ((𝐼𝑆)‘)))
4122, 40eqtrd 2766 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → ((𝐼𝑆)‘(𝑔)) = (((𝐼𝑆)‘𝑔) ∘ ((𝐼𝑆)‘)))
4235adantll 714 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → ((𝐼𝑆)‘𝑔) = (𝑆𝑔))
4342fveq2d 6826 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (((trL‘𝐾)‘𝑊)‘((𝐼𝑆)‘𝑔)) = (((trL‘𝐾)‘𝑊)‘(𝑆𝑔)))
442, 3, 4trlcnv 40210 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝑔) ∈ 𝑇) → (((trL‘𝐾)‘𝑊)‘(𝑆𝑔)) = (((trL‘𝐾)‘𝑊)‘(𝑆𝑔)))
457, 9, 44syl2anc 584 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (((trL‘𝐾)‘𝑊)‘(𝑆𝑔)) = (((trL‘𝐾)‘𝑊)‘(𝑆𝑔)))
4643, 45eqtrd 2766 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (((trL‘𝐾)‘𝑊)‘((𝐼𝑆)‘𝑔)) = (((trL‘𝐾)‘𝑊)‘(𝑆𝑔)))
471, 2, 3, 4, 5tendotp 40806 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑔𝑇) → (((trL‘𝐾)‘𝑊)‘(𝑆𝑔))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑔))
48473expa 1118 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (((trL‘𝐾)‘𝑊)‘(𝑆𝑔))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑔))
4946, 48eqbrtrd 5113 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (((trL‘𝐾)‘𝑊)‘((𝐼𝑆)‘𝑔))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑔))
501, 2, 3, 4, 5, 6, 17, 41, 49istendod 40807 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝐼𝑆) ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111   class class class wbr 5091  cmpt 5172  ccnv 5615  ccom 5620  wf 6477  cfv 6481  lecple 17168  HLchlt 39395  LHypclh 40029  LTrncltrn 40146  trLctrl 40203  TEndoctendo 40797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-riotaBAD 38998
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-undef 8203  df-map 8752  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39221  df-ol 39223  df-oml 39224  df-covers 39311  df-ats 39312  df-atl 39343  df-cvlat 39367  df-hlat 39396  df-llines 39543  df-lplanes 39544  df-lvols 39545  df-lines 39546  df-psubsp 39548  df-pmap 39549  df-padd 39841  df-lhyp 40033  df-laut 40034  df-ldil 40149  df-ltrn 40150  df-trl 40204  df-tendo 40800
This theorem is referenced by:  tendoipl  40842  tendoipl2  40843  erngdvlem1  41033  erngdvlem1-rN  41041  dihjatcclem4  41466
  Copyright terms: Public domain W3C validator