Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoicl Structured version   Visualization version   GIF version

Theorem tendoicl 38085
Description: Closure of the additive inverse endomorphism. (Contributed by NM, 12-Jun-2013.)
Hypotheses
Ref Expression
tendoicl.h 𝐻 = (LHyp‘𝐾)
tendoicl.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendoicl.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
tendoicl.i 𝐼 = (𝑠𝐸 ↦ (𝑓𝑇(𝑠𝑓)))
Assertion
Ref Expression
tendoicl (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝐼𝑆) ∈ 𝐸)
Distinct variable groups:   𝐸,𝑠   𝑓,𝑠,𝑇   𝑓,𝑊,𝑠
Allowed substitution hints:   𝑆(𝑓,𝑠)   𝐸(𝑓)   𝐻(𝑓,𝑠)   𝐼(𝑓,𝑠)   𝐾(𝑓,𝑠)

Proof of Theorem tendoicl
Dummy variables 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2801 . 2 (le‘𝐾) = (le‘𝐾)
2 tendoicl.h . 2 𝐻 = (LHyp‘𝐾)
3 tendoicl.t . 2 𝑇 = ((LTrn‘𝐾)‘𝑊)
4 eqid 2801 . 2 ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊)
5 tendoicl.e . 2 𝐸 = ((TEndo‘𝐾)‘𝑊)
6 simpl 486 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝐾 ∈ HL ∧ 𝑊𝐻))
7 simpll 766 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
82, 3, 5tendocl 38056 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑔𝑇) → (𝑆𝑔) ∈ 𝑇)
983expa 1115 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (𝑆𝑔) ∈ 𝑇)
102, 3ltrncnv 37435 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝑔) ∈ 𝑇) → (𝑆𝑔) ∈ 𝑇)
117, 9, 10syl2anc 587 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (𝑆𝑔) ∈ 𝑇)
1211fmpttd 6860 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝑔𝑇(𝑆𝑔)):𝑇𝑇)
13 tendoicl.i . . . . . 6 𝐼 = (𝑠𝐸 ↦ (𝑓𝑇(𝑠𝑓)))
1413, 3tendoi 38083 . . . . 5 (𝑆𝐸 → (𝐼𝑆) = (𝑔𝑇(𝑆𝑔)))
1514adantl 485 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝐼𝑆) = (𝑔𝑇(𝑆𝑔)))
1615feq1d 6476 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → ((𝐼𝑆):𝑇𝑇 ↔ (𝑔𝑇(𝑆𝑔)):𝑇𝑇))
1712, 16mpbird 260 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝐼𝑆):𝑇𝑇)
18 simp1r 1195 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → 𝑆𝐸)
192, 3ltrnco 38008 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇𝑇) → (𝑔) ∈ 𝑇)
20193adant1r 1174 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → (𝑔) ∈ 𝑇)
2113, 3tendoi2 38084 . . . 4 ((𝑆𝐸 ∧ (𝑔) ∈ 𝑇) → ((𝐼𝑆)‘(𝑔)) = (𝑆‘(𝑔)))
2218, 20, 21syl2anc 587 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → ((𝐼𝑆)‘(𝑔)) = (𝑆‘(𝑔)))
23 cnvco 5724 . . . 4 ((𝑆) ∘ (𝑆𝑔)) = ((𝑆𝑔) ∘ (𝑆))
242, 3ltrncom 38027 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇𝑇) → (𝑔) = (𝑔))
25243adant1r 1174 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → (𝑔) = (𝑔))
2625fveq2d 6653 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → (𝑆‘(𝑔)) = (𝑆‘(𝑔)))
27 simp1ll 1233 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → 𝐾 ∈ HL)
28 simp1lr 1234 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → 𝑊𝐻)
29 simp3 1135 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → 𝑇)
30 simp2 1134 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → 𝑔𝑇)
312, 3, 5tendovalco 38054 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑆𝐸) ∧ (𝑇𝑔𝑇)) → (𝑆‘(𝑔)) = ((𝑆) ∘ (𝑆𝑔)))
3227, 28, 18, 29, 30, 31syl32anc 1375 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → (𝑆‘(𝑔)) = ((𝑆) ∘ (𝑆𝑔)))
3326, 32eqtrd 2836 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → (𝑆‘(𝑔)) = ((𝑆) ∘ (𝑆𝑔)))
3433cnveqd 5714 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → (𝑆‘(𝑔)) = ((𝑆) ∘ (𝑆𝑔)))
3513, 3tendoi2 38084 . . . . . 6 ((𝑆𝐸𝑔𝑇) → ((𝐼𝑆)‘𝑔) = (𝑆𝑔))
3618, 30, 35syl2anc 587 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → ((𝐼𝑆)‘𝑔) = (𝑆𝑔))
3713, 3tendoi2 38084 . . . . . 6 ((𝑆𝐸𝑇) → ((𝐼𝑆)‘) = (𝑆))
3818, 29, 37syl2anc 587 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → ((𝐼𝑆)‘) = (𝑆))
3936, 38coeq12d 5703 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → (((𝐼𝑆)‘𝑔) ∘ ((𝐼𝑆)‘)) = ((𝑆𝑔) ∘ (𝑆)))
4023, 34, 393eqtr4a 2862 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → (𝑆‘(𝑔)) = (((𝐼𝑆)‘𝑔) ∘ ((𝐼𝑆)‘)))
4122, 40eqtrd 2836 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → ((𝐼𝑆)‘(𝑔)) = (((𝐼𝑆)‘𝑔) ∘ ((𝐼𝑆)‘)))
4235adantll 713 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → ((𝐼𝑆)‘𝑔) = (𝑆𝑔))
4342fveq2d 6653 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (((trL‘𝐾)‘𝑊)‘((𝐼𝑆)‘𝑔)) = (((trL‘𝐾)‘𝑊)‘(𝑆𝑔)))
442, 3, 4trlcnv 37454 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝑔) ∈ 𝑇) → (((trL‘𝐾)‘𝑊)‘(𝑆𝑔)) = (((trL‘𝐾)‘𝑊)‘(𝑆𝑔)))
457, 9, 44syl2anc 587 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (((trL‘𝐾)‘𝑊)‘(𝑆𝑔)) = (((trL‘𝐾)‘𝑊)‘(𝑆𝑔)))
4643, 45eqtrd 2836 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (((trL‘𝐾)‘𝑊)‘((𝐼𝑆)‘𝑔)) = (((trL‘𝐾)‘𝑊)‘(𝑆𝑔)))
471, 2, 3, 4, 5tendotp 38050 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑔𝑇) → (((trL‘𝐾)‘𝑊)‘(𝑆𝑔))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑔))
48473expa 1115 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (((trL‘𝐾)‘𝑊)‘(𝑆𝑔))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑔))
4946, 48eqbrtrd 5055 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (((trL‘𝐾)‘𝑊)‘((𝐼𝑆)‘𝑔))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑔))
501, 2, 3, 4, 5, 6, 17, 41, 49istendod 38051 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝐼𝑆) ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2112   class class class wbr 5033  cmpt 5113  ccnv 5522  ccom 5527  wf 6324  cfv 6328  lecple 16567  HLchlt 36639  LHypclh 37273  LTrncltrn 37390  trLctrl 37447  TEndoctendo 38041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-riotaBAD 36242
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-1st 7675  df-2nd 7676  df-undef 7926  df-map 8395  df-proset 17533  df-poset 17551  df-plt 17563  df-lub 17579  df-glb 17580  df-join 17581  df-meet 17582  df-p0 17644  df-p1 17645  df-lat 17651  df-clat 17713  df-oposet 36465  df-ol 36467  df-oml 36468  df-covers 36555  df-ats 36556  df-atl 36587  df-cvlat 36611  df-hlat 36640  df-llines 36787  df-lplanes 36788  df-lvols 36789  df-lines 36790  df-psubsp 36792  df-pmap 36793  df-padd 37085  df-lhyp 37277  df-laut 37278  df-ldil 37393  df-ltrn 37394  df-trl 37448  df-tendo 38044
This theorem is referenced by:  tendoipl  38086  tendoipl2  38087  erngdvlem1  38277  erngdvlem1-rN  38285  dihjatcclem4  38710
  Copyright terms: Public domain W3C validator