Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. 2
⊢
(le‘𝐾) =
(le‘𝐾) |
2 | | tendoicl.h |
. 2
⊢ 𝐻 = (LHyp‘𝐾) |
3 | | tendoicl.t |
. 2
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
4 | | eqid 2738 |
. 2
⊢
((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊) |
5 | | tendoicl.e |
. 2
⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
6 | | simpl 482 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
7 | | simpll 763 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
8 | 2, 3, 5 | tendocl 38708 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) → (𝑆‘𝑔) ∈ 𝑇) |
9 | 8 | 3expa 1116 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → (𝑆‘𝑔) ∈ 𝑇) |
10 | 2, 3 | ltrncnv 38087 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆‘𝑔) ∈ 𝑇) → ◡(𝑆‘𝑔) ∈ 𝑇) |
11 | 7, 9, 10 | syl2anc 583 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → ◡(𝑆‘𝑔) ∈ 𝑇) |
12 | 11 | fmpttd 6971 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → (𝑔 ∈ 𝑇 ↦ ◡(𝑆‘𝑔)):𝑇⟶𝑇) |
13 | | tendoicl.i |
. . . . . 6
⊢ 𝐼 = (𝑠 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ◡(𝑠‘𝑓))) |
14 | 13, 3 | tendoi 38735 |
. . . . 5
⊢ (𝑆 ∈ 𝐸 → (𝐼‘𝑆) = (𝑔 ∈ 𝑇 ↦ ◡(𝑆‘𝑔))) |
15 | 14 | adantl 481 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → (𝐼‘𝑆) = (𝑔 ∈ 𝑇 ↦ ◡(𝑆‘𝑔))) |
16 | 15 | feq1d 6569 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → ((𝐼‘𝑆):𝑇⟶𝑇 ↔ (𝑔 ∈ 𝑇 ↦ ◡(𝑆‘𝑔)):𝑇⟶𝑇)) |
17 | 12, 16 | mpbird 256 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → (𝐼‘𝑆):𝑇⟶𝑇) |
18 | | simp1r 1196 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇 ∧ ℎ ∈ 𝑇) → 𝑆 ∈ 𝐸) |
19 | 2, 3 | ltrnco 38660 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑔 ∈ 𝑇 ∧ ℎ ∈ 𝑇) → (𝑔 ∘ ℎ) ∈ 𝑇) |
20 | 19 | 3adant1r 1175 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇 ∧ ℎ ∈ 𝑇) → (𝑔 ∘ ℎ) ∈ 𝑇) |
21 | 13, 3 | tendoi2 38736 |
. . . 4
⊢ ((𝑆 ∈ 𝐸 ∧ (𝑔 ∘ ℎ) ∈ 𝑇) → ((𝐼‘𝑆)‘(𝑔 ∘ ℎ)) = ◡(𝑆‘(𝑔 ∘ ℎ))) |
22 | 18, 20, 21 | syl2anc 583 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇 ∧ ℎ ∈ 𝑇) → ((𝐼‘𝑆)‘(𝑔 ∘ ℎ)) = ◡(𝑆‘(𝑔 ∘ ℎ))) |
23 | | cnvco 5783 |
. . . 4
⊢ ◡((𝑆‘ℎ) ∘ (𝑆‘𝑔)) = (◡(𝑆‘𝑔) ∘ ◡(𝑆‘ℎ)) |
24 | 2, 3 | ltrncom 38679 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑔 ∈ 𝑇 ∧ ℎ ∈ 𝑇) → (𝑔 ∘ ℎ) = (ℎ ∘ 𝑔)) |
25 | 24 | 3adant1r 1175 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇 ∧ ℎ ∈ 𝑇) → (𝑔 ∘ ℎ) = (ℎ ∘ 𝑔)) |
26 | 25 | fveq2d 6760 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇 ∧ ℎ ∈ 𝑇) → (𝑆‘(𝑔 ∘ ℎ)) = (𝑆‘(ℎ ∘ 𝑔))) |
27 | | simp1ll 1234 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇 ∧ ℎ ∈ 𝑇) → 𝐾 ∈ HL) |
28 | | simp1lr 1235 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇 ∧ ℎ ∈ 𝑇) → 𝑊 ∈ 𝐻) |
29 | | simp3 1136 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇 ∧ ℎ ∈ 𝑇) → ℎ ∈ 𝑇) |
30 | | simp2 1135 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇 ∧ ℎ ∈ 𝑇) → 𝑔 ∈ 𝑇) |
31 | 2, 3, 5 | tendovalco 38706 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑆 ∈ 𝐸) ∧ (ℎ ∈ 𝑇 ∧ 𝑔 ∈ 𝑇)) → (𝑆‘(ℎ ∘ 𝑔)) = ((𝑆‘ℎ) ∘ (𝑆‘𝑔))) |
32 | 27, 28, 18, 29, 30, 31 | syl32anc 1376 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇 ∧ ℎ ∈ 𝑇) → (𝑆‘(ℎ ∘ 𝑔)) = ((𝑆‘ℎ) ∘ (𝑆‘𝑔))) |
33 | 26, 32 | eqtrd 2778 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇 ∧ ℎ ∈ 𝑇) → (𝑆‘(𝑔 ∘ ℎ)) = ((𝑆‘ℎ) ∘ (𝑆‘𝑔))) |
34 | 33 | cnveqd 5773 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇 ∧ ℎ ∈ 𝑇) → ◡(𝑆‘(𝑔 ∘ ℎ)) = ◡((𝑆‘ℎ) ∘ (𝑆‘𝑔))) |
35 | 13, 3 | tendoi2 38736 |
. . . . . 6
⊢ ((𝑆 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) → ((𝐼‘𝑆)‘𝑔) = ◡(𝑆‘𝑔)) |
36 | 18, 30, 35 | syl2anc 583 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇 ∧ ℎ ∈ 𝑇) → ((𝐼‘𝑆)‘𝑔) = ◡(𝑆‘𝑔)) |
37 | 13, 3 | tendoi2 38736 |
. . . . . 6
⊢ ((𝑆 ∈ 𝐸 ∧ ℎ ∈ 𝑇) → ((𝐼‘𝑆)‘ℎ) = ◡(𝑆‘ℎ)) |
38 | 18, 29, 37 | syl2anc 583 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇 ∧ ℎ ∈ 𝑇) → ((𝐼‘𝑆)‘ℎ) = ◡(𝑆‘ℎ)) |
39 | 36, 38 | coeq12d 5762 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇 ∧ ℎ ∈ 𝑇) → (((𝐼‘𝑆)‘𝑔) ∘ ((𝐼‘𝑆)‘ℎ)) = (◡(𝑆‘𝑔) ∘ ◡(𝑆‘ℎ))) |
40 | 23, 34, 39 | 3eqtr4a 2805 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇 ∧ ℎ ∈ 𝑇) → ◡(𝑆‘(𝑔 ∘ ℎ)) = (((𝐼‘𝑆)‘𝑔) ∘ ((𝐼‘𝑆)‘ℎ))) |
41 | 22, 40 | eqtrd 2778 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇 ∧ ℎ ∈ 𝑇) → ((𝐼‘𝑆)‘(𝑔 ∘ ℎ)) = (((𝐼‘𝑆)‘𝑔) ∘ ((𝐼‘𝑆)‘ℎ))) |
42 | 35 | adantll 710 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → ((𝐼‘𝑆)‘𝑔) = ◡(𝑆‘𝑔)) |
43 | 42 | fveq2d 6760 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → (((trL‘𝐾)‘𝑊)‘((𝐼‘𝑆)‘𝑔)) = (((trL‘𝐾)‘𝑊)‘◡(𝑆‘𝑔))) |
44 | 2, 3, 4 | trlcnv 38106 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆‘𝑔) ∈ 𝑇) → (((trL‘𝐾)‘𝑊)‘◡(𝑆‘𝑔)) = (((trL‘𝐾)‘𝑊)‘(𝑆‘𝑔))) |
45 | 7, 9, 44 | syl2anc 583 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → (((trL‘𝐾)‘𝑊)‘◡(𝑆‘𝑔)) = (((trL‘𝐾)‘𝑊)‘(𝑆‘𝑔))) |
46 | 43, 45 | eqtrd 2778 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → (((trL‘𝐾)‘𝑊)‘((𝐼‘𝑆)‘𝑔)) = (((trL‘𝐾)‘𝑊)‘(𝑆‘𝑔))) |
47 | 1, 2, 3, 4, 5 | tendotp 38702 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) → (((trL‘𝐾)‘𝑊)‘(𝑆‘𝑔))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑔)) |
48 | 47 | 3expa 1116 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → (((trL‘𝐾)‘𝑊)‘(𝑆‘𝑔))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑔)) |
49 | 46, 48 | eqbrtrd 5092 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → (((trL‘𝐾)‘𝑊)‘((𝐼‘𝑆)‘𝑔))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑔)) |
50 | 1, 2, 3, 4, 5, 6, 17, 41, 49 | istendod 38703 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → (𝐼‘𝑆) ∈ 𝐸) |