Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoicl Structured version   Visualization version   GIF version

Theorem tendoicl 38085
 Description: Closure of the additive inverse endomorphism. (Contributed by NM, 12-Jun-2013.)
Hypotheses
Ref Expression
tendoicl.h 𝐻 = (LHyp‘𝐾)
tendoicl.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendoicl.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
tendoicl.i 𝐼 = (𝑠𝐸 ↦ (𝑓𝑇(𝑠𝑓)))
Assertion
Ref Expression
tendoicl (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝐼𝑆) ∈ 𝐸)
Distinct variable groups:   𝐸,𝑠   𝑓,𝑠,𝑇   𝑓,𝑊,𝑠
Allowed substitution hints:   𝑆(𝑓,𝑠)   𝐸(𝑓)   𝐻(𝑓,𝑠)   𝐼(𝑓,𝑠)   𝐾(𝑓,𝑠)

Proof of Theorem tendoicl
Dummy variables 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2801 . 2 (le‘𝐾) = (le‘𝐾)
2 tendoicl.h . 2 𝐻 = (LHyp‘𝐾)
3 tendoicl.t . 2 𝑇 = ((LTrn‘𝐾)‘𝑊)
4 eqid 2801 . 2 ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊)
5 tendoicl.e . 2 𝐸 = ((TEndo‘𝐾)‘𝑊)
6 simpl 486 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝐾 ∈ HL ∧ 𝑊𝐻))
7 simpll 766 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
82, 3, 5tendocl 38056 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑔𝑇) → (𝑆𝑔) ∈ 𝑇)
983expa 1115 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (𝑆𝑔) ∈ 𝑇)
102, 3ltrncnv 37435 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝑔) ∈ 𝑇) → (𝑆𝑔) ∈ 𝑇)
117, 9, 10syl2anc 587 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (𝑆𝑔) ∈ 𝑇)
1211fmpttd 6860 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝑔𝑇(𝑆𝑔)):𝑇𝑇)
13 tendoicl.i . . . . . 6 𝐼 = (𝑠𝐸 ↦ (𝑓𝑇(𝑠𝑓)))
1413, 3tendoi 38083 . . . . 5 (𝑆𝐸 → (𝐼𝑆) = (𝑔𝑇(𝑆𝑔)))
1514adantl 485 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝐼𝑆) = (𝑔𝑇(𝑆𝑔)))
1615feq1d 6476 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → ((𝐼𝑆):𝑇𝑇 ↔ (𝑔𝑇(𝑆𝑔)):𝑇𝑇))
1712, 16mpbird 260 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝐼𝑆):𝑇𝑇)
18 simp1r 1195 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → 𝑆𝐸)
192, 3ltrnco 38008 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇𝑇) → (𝑔) ∈ 𝑇)
20193adant1r 1174 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → (𝑔) ∈ 𝑇)
2113, 3tendoi2 38084 . . . 4 ((𝑆𝐸 ∧ (𝑔) ∈ 𝑇) → ((𝐼𝑆)‘(𝑔)) = (𝑆‘(𝑔)))
2218, 20, 21syl2anc 587 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → ((𝐼𝑆)‘(𝑔)) = (𝑆‘(𝑔)))
23 cnvco 5724 . . . 4 ((𝑆) ∘ (𝑆𝑔)) = ((𝑆𝑔) ∘ (𝑆))
242, 3ltrncom 38027 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇𝑇) → (𝑔) = (𝑔))
25243adant1r 1174 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → (𝑔) = (𝑔))
2625fveq2d 6653 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → (𝑆‘(𝑔)) = (𝑆‘(𝑔)))
27 simp1ll 1233 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → 𝐾 ∈ HL)
28 simp1lr 1234 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → 𝑊𝐻)
29 simp3 1135 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → 𝑇)
30 simp2 1134 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → 𝑔𝑇)
312, 3, 5tendovalco 38054 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑆𝐸) ∧ (𝑇𝑔𝑇)) → (𝑆‘(𝑔)) = ((𝑆) ∘ (𝑆𝑔)))
3227, 28, 18, 29, 30, 31syl32anc 1375 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → (𝑆‘(𝑔)) = ((𝑆) ∘ (𝑆𝑔)))
3326, 32eqtrd 2836 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → (𝑆‘(𝑔)) = ((𝑆) ∘ (𝑆𝑔)))
3433cnveqd 5714 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → (𝑆‘(𝑔)) = ((𝑆) ∘ (𝑆𝑔)))
3513, 3tendoi2 38084 . . . . . 6 ((𝑆𝐸𝑔𝑇) → ((𝐼𝑆)‘𝑔) = (𝑆𝑔))
3618, 30, 35syl2anc 587 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → ((𝐼𝑆)‘𝑔) = (𝑆𝑔))
3713, 3tendoi2 38084 . . . . . 6 ((𝑆𝐸𝑇) → ((𝐼𝑆)‘) = (𝑆))
3818, 29, 37syl2anc 587 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → ((𝐼𝑆)‘) = (𝑆))
3936, 38coeq12d 5703 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → (((𝐼𝑆)‘𝑔) ∘ ((𝐼𝑆)‘)) = ((𝑆𝑔) ∘ (𝑆)))
4023, 34, 393eqtr4a 2862 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → (𝑆‘(𝑔)) = (((𝐼𝑆)‘𝑔) ∘ ((𝐼𝑆)‘)))
4122, 40eqtrd 2836 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇𝑇) → ((𝐼𝑆)‘(𝑔)) = (((𝐼𝑆)‘𝑔) ∘ ((𝐼𝑆)‘)))
4235adantll 713 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → ((𝐼𝑆)‘𝑔) = (𝑆𝑔))
4342fveq2d 6653 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (((trL‘𝐾)‘𝑊)‘((𝐼𝑆)‘𝑔)) = (((trL‘𝐾)‘𝑊)‘(𝑆𝑔)))
442, 3, 4trlcnv 37454 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝑔) ∈ 𝑇) → (((trL‘𝐾)‘𝑊)‘(𝑆𝑔)) = (((trL‘𝐾)‘𝑊)‘(𝑆𝑔)))
457, 9, 44syl2anc 587 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (((trL‘𝐾)‘𝑊)‘(𝑆𝑔)) = (((trL‘𝐾)‘𝑊)‘(𝑆𝑔)))
4643, 45eqtrd 2836 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (((trL‘𝐾)‘𝑊)‘((𝐼𝑆)‘𝑔)) = (((trL‘𝐾)‘𝑊)‘(𝑆𝑔)))
471, 2, 3, 4, 5tendotp 38050 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑔𝑇) → (((trL‘𝐾)‘𝑊)‘(𝑆𝑔))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑔))
48473expa 1115 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (((trL‘𝐾)‘𝑊)‘(𝑆𝑔))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑔))
4946, 48eqbrtrd 5055 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (((trL‘𝐾)‘𝑊)‘((𝐼𝑆)‘𝑔))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑔))
501, 2, 3, 4, 5, 6, 17, 41, 49istendod 38051 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝐼𝑆) ∈ 𝐸)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2112   class class class wbr 5033   ↦ cmpt 5113  ◡ccnv 5522   ∘ ccom 5527  ⟶wf 6324  ‘cfv 6328  lecple 16567  HLchlt 36639  LHypclh 37273  LTrncltrn 37390  trLctrl 37447  TEndoctendo 38041 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-riotaBAD 36242 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-1st 7675  df-2nd 7676  df-undef 7926  df-map 8395  df-proset 17533  df-poset 17551  df-plt 17563  df-lub 17579  df-glb 17580  df-join 17581  df-meet 17582  df-p0 17644  df-p1 17645  df-lat 17651  df-clat 17713  df-oposet 36465  df-ol 36467  df-oml 36468  df-covers 36555  df-ats 36556  df-atl 36587  df-cvlat 36611  df-hlat 36640  df-llines 36787  df-lplanes 36788  df-lvols 36789  df-lines 36790  df-psubsp 36792  df-pmap 36793  df-padd 37085  df-lhyp 37277  df-laut 37278  df-ldil 37393  df-ltrn 37394  df-trl 37448  df-tendo 38044 This theorem is referenced by:  tendoipl  38086  tendoipl2  38087  erngdvlem1  38277  erngdvlem1-rN  38285  dihjatcclem4  38710
 Copyright terms: Public domain W3C validator