MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat2pmatghm Structured version   Visualization version   GIF version

Theorem mat2pmatghm 21879
Description: The transformation of matrices into polynomial matrices is an additive group homomorphism. (Contributed by AV, 28-Oct-2019.) (Proof shortened by AV, 28-Nov-2019.)
Hypotheses
Ref Expression
mat2pmatbas.t 𝑇 = (𝑁 matToPolyMat 𝑅)
mat2pmatbas.a 𝐴 = (𝑁 Mat 𝑅)
mat2pmatbas.b 𝐵 = (Base‘𝐴)
mat2pmatbas.p 𝑃 = (Poly1𝑅)
mat2pmatbas.c 𝐶 = (𝑁 Mat 𝑃)
mat2pmatbas0.h 𝐻 = (Base‘𝐶)
Assertion
Ref Expression
mat2pmatghm ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇 ∈ (𝐴 GrpHom 𝐶))

Proof of Theorem mat2pmatghm
Dummy variables 𝑥 𝑦 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mat2pmatbas.b . 2 𝐵 = (Base‘𝐴)
2 mat2pmatbas0.h . 2 𝐻 = (Base‘𝐶)
3 eqid 2738 . 2 (+g𝐴) = (+g𝐴)
4 eqid 2738 . 2 (+g𝐶) = (+g𝐶)
5 mat2pmatbas.a . . 3 𝐴 = (𝑁 Mat 𝑅)
65matgrp 21579 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Grp)
7 mat2pmatbas.p . . . 4 𝑃 = (Poly1𝑅)
8 mat2pmatbas.c . . . 4 𝐶 = (𝑁 Mat 𝑃)
97, 8pmatring 21841 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring)
10 ringgrp 19788 . . 3 (𝐶 ∈ Ring → 𝐶 ∈ Grp)
119, 10syl 17 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Grp)
12 mat2pmatbas.t . . 3 𝑇 = (𝑁 matToPolyMat 𝑅)
1312, 5, 1, 7, 8, 2mat2pmatf 21877 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵𝐻)
14 eqid 2738 . . . . . 6 (Base‘𝑃) = (Base‘𝑃)
15 simpl 483 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑁 ∈ Fin)
1615adantr 481 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → 𝑁 ∈ Fin)
177ply1ring 21419 . . . . . . 7 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
1817ad2antlr 724 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → 𝑃 ∈ Ring)
19 simp1lr 1236 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → 𝑅 ∈ Ring)
20 eqid 2738 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
21 simp2 1136 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → 𝑖𝑁)
22 simp3 1137 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → 𝑗𝑁)
23 simp1rl 1237 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → 𝑥𝐵)
245, 20, 1, 21, 22, 23matecld 21575 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑥𝑗) ∈ (Base‘𝑅))
25 eqid 2738 . . . . . . . 8 (algSc‘𝑃) = (algSc‘𝑃)
267, 25, 20, 14ply1sclcl 21457 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑖𝑥𝑗) ∈ (Base‘𝑅)) → ((algSc‘𝑃)‘(𝑖𝑥𝑗)) ∈ (Base‘𝑃))
2719, 24, 26syl2anc 584 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → ((algSc‘𝑃)‘(𝑖𝑥𝑗)) ∈ (Base‘𝑃))
288, 14, 2, 16, 18, 27matbas2d 21572 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗))) ∈ 𝐻)
29 simp1rr 1238 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → 𝑦𝐵)
305, 20, 1, 21, 22, 29matecld 21575 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑦𝑗) ∈ (Base‘𝑅))
317, 25, 20, 14ply1sclcl 21457 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑖𝑦𝑗) ∈ (Base‘𝑅)) → ((algSc‘𝑃)‘(𝑖𝑦𝑗)) ∈ (Base‘𝑃))
3219, 30, 31syl2anc 584 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → ((algSc‘𝑃)‘(𝑖𝑦𝑗)) ∈ (Base‘𝑃))
338, 14, 2, 16, 18, 32matbas2d 21572 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗))) ∈ 𝐻)
34 eqid 2738 . . . . . 6 (+g𝑃) = (+g𝑃)
358, 2, 4, 34matplusg2 21576 . . . . 5 (((𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗))) ∈ 𝐻 ∧ (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗))) ∈ 𝐻) → ((𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗)))(+g𝐶)(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗)))) = ((𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗))) ∘f (+g𝑃)(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗)))))
3628, 33, 35syl2anc 584 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗)))(+g𝐶)(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗)))) = ((𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗))) ∘f (+g𝑃)(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗)))))
37 fvexd 6789 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → ((algSc‘𝑃)‘(𝑖𝑥𝑗)) ∈ V)
38 fvexd 6789 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → ((algSc‘𝑃)‘(𝑖𝑦𝑗)) ∈ V)
39 eqidd 2739 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗))))
40 eqidd 2739 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗))))
4116, 16, 37, 38, 39, 40offval22 7928 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗))) ∘f (+g𝑃)(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗)))) = (𝑖𝑁, 𝑗𝑁 ↦ (((algSc‘𝑃)‘(𝑖𝑥𝑗))(+g𝑃)((algSc‘𝑃)‘(𝑖𝑦𝑗)))))
42 simpr 485 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥𝐵𝑦𝐵))
43423ad2ant1 1132 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → (𝑥𝐵𝑦𝐵))
44 3simpc 1149 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑁𝑗𝑁))
45 eqid 2738 . . . . . . . . . . 11 (+g𝑅) = (+g𝑅)
465, 1, 3, 45matplusgcell 21582 . . . . . . . . . 10 (((𝑥𝐵𝑦𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑥(+g𝐴)𝑦)𝑗) = ((𝑖𝑥𝑗)(+g𝑅)(𝑖𝑦𝑗)))
4743, 44, 46syl2anc 584 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖(𝑥(+g𝐴)𝑦)𝑗) = ((𝑖𝑥𝑗)(+g𝑅)(𝑖𝑦𝑗)))
487ply1sca 21424 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃))
4948adantl 482 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 = (Scalar‘𝑃))
5049fveq2d 6778 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (+g𝑅) = (+g‘(Scalar‘𝑃)))
5150oveqd 7292 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑖𝑥𝑗)(+g𝑅)(𝑖𝑦𝑗)) = ((𝑖𝑥𝑗)(+g‘(Scalar‘𝑃))(𝑖𝑦𝑗)))
5251adantr 481 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑖𝑥𝑗)(+g𝑅)(𝑖𝑦𝑗)) = ((𝑖𝑥𝑗)(+g‘(Scalar‘𝑃))(𝑖𝑦𝑗)))
53523ad2ant1 1132 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → ((𝑖𝑥𝑗)(+g𝑅)(𝑖𝑦𝑗)) = ((𝑖𝑥𝑗)(+g‘(Scalar‘𝑃))(𝑖𝑦𝑗)))
5447, 53eqtrd 2778 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖(𝑥(+g𝐴)𝑦)𝑗) = ((𝑖𝑥𝑗)(+g‘(Scalar‘𝑃))(𝑖𝑦𝑗)))
5554fveq2d 6778 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → ((algSc‘𝑃)‘(𝑖(𝑥(+g𝐴)𝑦)𝑗)) = ((algSc‘𝑃)‘((𝑖𝑥𝑗)(+g‘(Scalar‘𝑃))(𝑖𝑦𝑗))))
56 eqid 2738 . . . . . . . . 9 (Scalar‘𝑃) = (Scalar‘𝑃)
57183ad2ant1 1132 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → 𝑃 ∈ Ring)
587ply1lmod 21423 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
5958ad2antlr 724 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → 𝑃 ∈ LMod)
60593ad2ant1 1132 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → 𝑃 ∈ LMod)
6125, 56, 57, 60asclghm 21087 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → (algSc‘𝑃) ∈ ((Scalar‘𝑃) GrpHom 𝑃))
6249eqcomd 2744 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Scalar‘𝑃) = 𝑅)
6362fveq2d 6778 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘(Scalar‘𝑃)) = (Base‘𝑅))
6463eleq2d 2824 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑖𝑥𝑗) ∈ (Base‘(Scalar‘𝑃)) ↔ (𝑖𝑥𝑗) ∈ (Base‘𝑅)))
6564adantr 481 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑖𝑥𝑗) ∈ (Base‘(Scalar‘𝑃)) ↔ (𝑖𝑥𝑗) ∈ (Base‘𝑅)))
66653ad2ant1 1132 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → ((𝑖𝑥𝑗) ∈ (Base‘(Scalar‘𝑃)) ↔ (𝑖𝑥𝑗) ∈ (Base‘𝑅)))
6724, 66mpbird 256 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑥𝑗) ∈ (Base‘(Scalar‘𝑃)))
6863eleq2d 2824 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑖𝑦𝑗) ∈ (Base‘(Scalar‘𝑃)) ↔ (𝑖𝑦𝑗) ∈ (Base‘𝑅)))
6968adantr 481 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑖𝑦𝑗) ∈ (Base‘(Scalar‘𝑃)) ↔ (𝑖𝑦𝑗) ∈ (Base‘𝑅)))
70693ad2ant1 1132 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → ((𝑖𝑦𝑗) ∈ (Base‘(Scalar‘𝑃)) ↔ (𝑖𝑦𝑗) ∈ (Base‘𝑅)))
7130, 70mpbird 256 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑦𝑗) ∈ (Base‘(Scalar‘𝑃)))
72 eqid 2738 . . . . . . . . 9 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
73 eqid 2738 . . . . . . . . 9 (+g‘(Scalar‘𝑃)) = (+g‘(Scalar‘𝑃))
7472, 73, 34ghmlin 18839 . . . . . . . 8 (((algSc‘𝑃) ∈ ((Scalar‘𝑃) GrpHom 𝑃) ∧ (𝑖𝑥𝑗) ∈ (Base‘(Scalar‘𝑃)) ∧ (𝑖𝑦𝑗) ∈ (Base‘(Scalar‘𝑃))) → ((algSc‘𝑃)‘((𝑖𝑥𝑗)(+g‘(Scalar‘𝑃))(𝑖𝑦𝑗))) = (((algSc‘𝑃)‘(𝑖𝑥𝑗))(+g𝑃)((algSc‘𝑃)‘(𝑖𝑦𝑗))))
7561, 67, 71, 74syl3anc 1370 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → ((algSc‘𝑃)‘((𝑖𝑥𝑗)(+g‘(Scalar‘𝑃))(𝑖𝑦𝑗))) = (((algSc‘𝑃)‘(𝑖𝑥𝑗))(+g𝑃)((algSc‘𝑃)‘(𝑖𝑦𝑗))))
7655, 75eqtr2d 2779 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → (((algSc‘𝑃)‘(𝑖𝑥𝑗))(+g𝑃)((algSc‘𝑃)‘(𝑖𝑦𝑗))) = ((algSc‘𝑃)‘(𝑖(𝑥(+g𝐴)𝑦)𝑗)))
7776mpoeq3dva 7352 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑖𝑁, 𝑗𝑁 ↦ (((algSc‘𝑃)‘(𝑖𝑥𝑗))(+g𝑃)((algSc‘𝑃)‘(𝑖𝑦𝑗)))) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑥(+g𝐴)𝑦)𝑗))))
7841, 77eqtrd 2778 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗))) ∘f (+g𝑃)(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗)))) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑥(+g𝐴)𝑦)𝑗))))
7936, 78eqtr2d 2779 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑥(+g𝐴)𝑦)𝑗))) = ((𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗)))(+g𝐶)(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗)))))
80 simpl 483 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
815matring 21592 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
82 ringmnd 19793 . . . . . . . . 9 (𝐴 ∈ Ring → 𝐴 ∈ Mnd)
8381, 82syl 17 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Mnd)
8483anim1i 615 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝐴 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵)))
85 3anass 1094 . . . . . . 7 ((𝐴 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵) ↔ (𝐴 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵)))
8684, 85sylibr 233 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝐴 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵))
871, 3mndcl 18393 . . . . . 6 ((𝐴 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝐴)𝑦) ∈ 𝐵)
8886, 87syl 17 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐴)𝑦) ∈ 𝐵)
89 df-3an 1088 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑥(+g𝐴)𝑦) ∈ 𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥(+g𝐴)𝑦) ∈ 𝐵))
9080, 88, 89sylanbrc 583 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑥(+g𝐴)𝑦) ∈ 𝐵))
9112, 5, 1, 7, 25mat2pmatval 21873 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑥(+g𝐴)𝑦) ∈ 𝐵) → (𝑇‘(𝑥(+g𝐴)𝑦)) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑥(+g𝐴)𝑦)𝑗))))
9290, 91syl 17 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑇‘(𝑥(+g𝐴)𝑦)) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑥(+g𝐴)𝑦)𝑗))))
93 simpl 483 . . . . . . 7 ((𝑥𝐵𝑦𝐵) → 𝑥𝐵)
9493anim2i 617 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝐵))
95 df-3an 1088 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝐵))
9694, 95sylibr 233 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝐵))
9712, 5, 1, 7, 25mat2pmatval 21873 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝐵) → (𝑇𝑥) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗))))
9896, 97syl 17 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑇𝑥) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗))))
99 simpr 485 . . . . . . 7 ((𝑥𝐵𝑦𝐵) → 𝑦𝐵)
10099anim2i 617 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦𝐵))
101 df-3an 1088 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦𝐵))
102100, 101sylibr 233 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐵))
10312, 5, 1, 7, 25mat2pmatval 21873 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐵) → (𝑇𝑦) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗))))
104102, 103syl 17 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑇𝑦) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗))))
10598, 104oveq12d 7293 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑇𝑥)(+g𝐶)(𝑇𝑦)) = ((𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗)))(+g𝐶)(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗)))))
10679, 92, 1053eqtr4d 2788 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑇‘(𝑥(+g𝐴)𝑦)) = ((𝑇𝑥)(+g𝐶)(𝑇𝑦)))
1071, 2, 3, 4, 6, 11, 13, 106isghmd 18843 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇 ∈ (𝐴 GrpHom 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  Vcvv 3432  cfv 6433  (class class class)co 7275  cmpo 7277  f cof 7531  Fincfn 8733  Basecbs 16912  +gcplusg 16962  Scalarcsca 16965  Mndcmnd 18385  Grpcgrp 18577   GrpHom cghm 18831  Ringcrg 19783  LModclmod 20123  algSccascl 21059  Poly1cpl1 21348   Mat cmat 21554   matToPolyMat cmat2pmat 21853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-ot 4570  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-ofr 7534  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-fzo 13383  df-seq 13722  df-hash 14045  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-hom 16986  df-cco 16987  df-0g 17152  df-gsum 17153  df-prds 17158  df-pws 17160  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-subg 18752  df-ghm 18832  df-cntz 18923  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-subrg 20022  df-lmod 20125  df-lss 20194  df-sra 20434  df-rgmod 20435  df-dsmm 20939  df-frlm 20954  df-ascl 21062  df-psr 21112  df-mpl 21114  df-opsr 21116  df-psr1 21351  df-ply1 21353  df-mamu 21533  df-mat 21555  df-mat2pmat 21856
This theorem is referenced by:  mat2pmatrhm  21883  0mat2pmat  21885  m2cpmghm  21893  pm2mp  21974  cayhamlem4  22037
  Copyright terms: Public domain W3C validator