Step | Hyp | Ref
| Expression |
1 | | mat2pmatbas.b |
. 2
⊢ 𝐵 = (Base‘𝐴) |
2 | | mat2pmatbas0.h |
. 2
⊢ 𝐻 = (Base‘𝐶) |
3 | | eqid 2738 |
. 2
⊢
(+g‘𝐴) = (+g‘𝐴) |
4 | | eqid 2738 |
. 2
⊢
(+g‘𝐶) = (+g‘𝐶) |
5 | | mat2pmatbas.a |
. . 3
⊢ 𝐴 = (𝑁 Mat 𝑅) |
6 | 5 | matgrp 21579 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Grp) |
7 | | mat2pmatbas.p |
. . . 4
⊢ 𝑃 = (Poly1‘𝑅) |
8 | | mat2pmatbas.c |
. . . 4
⊢ 𝐶 = (𝑁 Mat 𝑃) |
9 | 7, 8 | pmatring 21841 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring) |
10 | | ringgrp 19788 |
. . 3
⊢ (𝐶 ∈ Ring → 𝐶 ∈ Grp) |
11 | 9, 10 | syl 17 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Grp) |
12 | | mat2pmatbas.t |
. . 3
⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
13 | 12, 5, 1, 7, 8, 2 | mat2pmatf 21877 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵⟶𝐻) |
14 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝑃) =
(Base‘𝑃) |
15 | | simpl 483 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑁 ∈ Fin) |
16 | 15 | adantr 481 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑁 ∈ Fin) |
17 | 7 | ply1ring 21419 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
18 | 17 | ad2antlr 724 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑃 ∈ Ring) |
19 | | simp1lr 1236 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑅 ∈ Ring) |
20 | | eqid 2738 |
. . . . . . . 8
⊢
(Base‘𝑅) =
(Base‘𝑅) |
21 | | simp2 1136 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑖 ∈ 𝑁) |
22 | | simp3 1137 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑗 ∈ 𝑁) |
23 | | simp1rl 1237 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑥 ∈ 𝐵) |
24 | 5, 20, 1, 21, 22, 23 | matecld 21575 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑖𝑥𝑗) ∈ (Base‘𝑅)) |
25 | | eqid 2738 |
. . . . . . . 8
⊢
(algSc‘𝑃) =
(algSc‘𝑃) |
26 | 7, 25, 20, 14 | ply1sclcl 21457 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝑖𝑥𝑗) ∈ (Base‘𝑅)) → ((algSc‘𝑃)‘(𝑖𝑥𝑗)) ∈ (Base‘𝑃)) |
27 | 19, 24, 26 | syl2anc 584 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((algSc‘𝑃)‘(𝑖𝑥𝑗)) ∈ (Base‘𝑃)) |
28 | 8, 14, 2, 16, 18, 27 | matbas2d 21572 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗))) ∈ 𝐻) |
29 | | simp1rr 1238 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑦 ∈ 𝐵) |
30 | 5, 20, 1, 21, 22, 29 | matecld 21575 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑖𝑦𝑗) ∈ (Base‘𝑅)) |
31 | 7, 25, 20, 14 | ply1sclcl 21457 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝑖𝑦𝑗) ∈ (Base‘𝑅)) → ((algSc‘𝑃)‘(𝑖𝑦𝑗)) ∈ (Base‘𝑃)) |
32 | 19, 30, 31 | syl2anc 584 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((algSc‘𝑃)‘(𝑖𝑦𝑗)) ∈ (Base‘𝑃)) |
33 | 8, 14, 2, 16, 18, 32 | matbas2d 21572 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗))) ∈ 𝐻) |
34 | | eqid 2738 |
. . . . . 6
⊢
(+g‘𝑃) = (+g‘𝑃) |
35 | 8, 2, 4, 34 | matplusg2 21576 |
. . . . 5
⊢ (((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗))) ∈ 𝐻 ∧ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗))) ∈ 𝐻) → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗)))(+g‘𝐶)(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗)))) = ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗))) ∘f
(+g‘𝑃)(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗))))) |
36 | 28, 33, 35 | syl2anc 584 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗)))(+g‘𝐶)(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗)))) = ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗))) ∘f
(+g‘𝑃)(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗))))) |
37 | | fvexd 6789 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((algSc‘𝑃)‘(𝑖𝑥𝑗)) ∈ V) |
38 | | fvexd 6789 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((algSc‘𝑃)‘(𝑖𝑦𝑗)) ∈ V) |
39 | | eqidd 2739 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗)))) |
40 | | eqidd 2739 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗)))) |
41 | 16, 16, 37, 38, 39, 40 | offval22 7928 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗))) ∘f
(+g‘𝑃)(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗)))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (((algSc‘𝑃)‘(𝑖𝑥𝑗))(+g‘𝑃)((algSc‘𝑃)‘(𝑖𝑦𝑗))))) |
42 | | simpr 485 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) |
43 | 42 | 3ad2ant1 1132 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) |
44 | | 3simpc 1149 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) |
45 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(+g‘𝑅) = (+g‘𝑅) |
46 | 5, 1, 3, 45 | matplusgcell 21582 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖(𝑥(+g‘𝐴)𝑦)𝑗) = ((𝑖𝑥𝑗)(+g‘𝑅)(𝑖𝑦𝑗))) |
47 | 43, 44, 46 | syl2anc 584 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑖(𝑥(+g‘𝐴)𝑦)𝑗) = ((𝑖𝑥𝑗)(+g‘𝑅)(𝑖𝑦𝑗))) |
48 | 7 | ply1sca 21424 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃)) |
49 | 48 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 = (Scalar‘𝑃)) |
50 | 49 | fveq2d 6778 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
(+g‘𝑅) =
(+g‘(Scalar‘𝑃))) |
51 | 50 | oveqd 7292 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑖𝑥𝑗)(+g‘𝑅)(𝑖𝑦𝑗)) = ((𝑖𝑥𝑗)(+g‘(Scalar‘𝑃))(𝑖𝑦𝑗))) |
52 | 51 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑖𝑥𝑗)(+g‘𝑅)(𝑖𝑦𝑗)) = ((𝑖𝑥𝑗)(+g‘(Scalar‘𝑃))(𝑖𝑦𝑗))) |
53 | 52 | 3ad2ant1 1132 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((𝑖𝑥𝑗)(+g‘𝑅)(𝑖𝑦𝑗)) = ((𝑖𝑥𝑗)(+g‘(Scalar‘𝑃))(𝑖𝑦𝑗))) |
54 | 47, 53 | eqtrd 2778 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑖(𝑥(+g‘𝐴)𝑦)𝑗) = ((𝑖𝑥𝑗)(+g‘(Scalar‘𝑃))(𝑖𝑦𝑗))) |
55 | 54 | fveq2d 6778 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((algSc‘𝑃)‘(𝑖(𝑥(+g‘𝐴)𝑦)𝑗)) = ((algSc‘𝑃)‘((𝑖𝑥𝑗)(+g‘(Scalar‘𝑃))(𝑖𝑦𝑗)))) |
56 | | eqid 2738 |
. . . . . . . . 9
⊢
(Scalar‘𝑃) =
(Scalar‘𝑃) |
57 | 18 | 3ad2ant1 1132 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑃 ∈ Ring) |
58 | 7 | ply1lmod 21423 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ Ring → 𝑃 ∈ LMod) |
59 | 58 | ad2antlr 724 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑃 ∈ LMod) |
60 | 59 | 3ad2ant1 1132 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑃 ∈ LMod) |
61 | 25, 56, 57, 60 | asclghm 21087 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (algSc‘𝑃) ∈ ((Scalar‘𝑃) GrpHom 𝑃)) |
62 | 49 | eqcomd 2744 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
(Scalar‘𝑃) = 𝑅) |
63 | 62 | fveq2d 6778 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
(Base‘(Scalar‘𝑃)) = (Base‘𝑅)) |
64 | 63 | eleq2d 2824 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑖𝑥𝑗) ∈ (Base‘(Scalar‘𝑃)) ↔ (𝑖𝑥𝑗) ∈ (Base‘𝑅))) |
65 | 64 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑖𝑥𝑗) ∈ (Base‘(Scalar‘𝑃)) ↔ (𝑖𝑥𝑗) ∈ (Base‘𝑅))) |
66 | 65 | 3ad2ant1 1132 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((𝑖𝑥𝑗) ∈ (Base‘(Scalar‘𝑃)) ↔ (𝑖𝑥𝑗) ∈ (Base‘𝑅))) |
67 | 24, 66 | mpbird 256 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑖𝑥𝑗) ∈ (Base‘(Scalar‘𝑃))) |
68 | 63 | eleq2d 2824 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑖𝑦𝑗) ∈ (Base‘(Scalar‘𝑃)) ↔ (𝑖𝑦𝑗) ∈ (Base‘𝑅))) |
69 | 68 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑖𝑦𝑗) ∈ (Base‘(Scalar‘𝑃)) ↔ (𝑖𝑦𝑗) ∈ (Base‘𝑅))) |
70 | 69 | 3ad2ant1 1132 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((𝑖𝑦𝑗) ∈ (Base‘(Scalar‘𝑃)) ↔ (𝑖𝑦𝑗) ∈ (Base‘𝑅))) |
71 | 30, 70 | mpbird 256 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑖𝑦𝑗) ∈ (Base‘(Scalar‘𝑃))) |
72 | | eqid 2738 |
. . . . . . . . 9
⊢
(Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃)) |
73 | | eqid 2738 |
. . . . . . . . 9
⊢
(+g‘(Scalar‘𝑃)) =
(+g‘(Scalar‘𝑃)) |
74 | 72, 73, 34 | ghmlin 18839 |
. . . . . . . 8
⊢
(((algSc‘𝑃)
∈ ((Scalar‘𝑃)
GrpHom 𝑃) ∧ (𝑖𝑥𝑗) ∈ (Base‘(Scalar‘𝑃)) ∧ (𝑖𝑦𝑗) ∈ (Base‘(Scalar‘𝑃))) → ((algSc‘𝑃)‘((𝑖𝑥𝑗)(+g‘(Scalar‘𝑃))(𝑖𝑦𝑗))) = (((algSc‘𝑃)‘(𝑖𝑥𝑗))(+g‘𝑃)((algSc‘𝑃)‘(𝑖𝑦𝑗)))) |
75 | 61, 67, 71, 74 | syl3anc 1370 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((algSc‘𝑃)‘((𝑖𝑥𝑗)(+g‘(Scalar‘𝑃))(𝑖𝑦𝑗))) = (((algSc‘𝑃)‘(𝑖𝑥𝑗))(+g‘𝑃)((algSc‘𝑃)‘(𝑖𝑦𝑗)))) |
76 | 55, 75 | eqtr2d 2779 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (((algSc‘𝑃)‘(𝑖𝑥𝑗))(+g‘𝑃)((algSc‘𝑃)‘(𝑖𝑦𝑗))) = ((algSc‘𝑃)‘(𝑖(𝑥(+g‘𝐴)𝑦)𝑗))) |
77 | 76 | mpoeq3dva 7352 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (((algSc‘𝑃)‘(𝑖𝑥𝑗))(+g‘𝑃)((algSc‘𝑃)‘(𝑖𝑦𝑗)))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑥(+g‘𝐴)𝑦)𝑗)))) |
78 | 41, 77 | eqtrd 2778 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗))) ∘f
(+g‘𝑃)(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗)))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑥(+g‘𝐴)𝑦)𝑗)))) |
79 | 36, 78 | eqtr2d 2779 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑥(+g‘𝐴)𝑦)𝑗))) = ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗)))(+g‘𝐶)(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗))))) |
80 | | simpl 483 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
81 | 5 | matring 21592 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
82 | | ringmnd 19793 |
. . . . . . . . 9
⊢ (𝐴 ∈ Ring → 𝐴 ∈ Mnd) |
83 | 81, 82 | syl 17 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Mnd) |
84 | 83 | anim1i 615 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐴 ∈ Mnd ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) |
85 | | 3anass 1094 |
. . . . . . 7
⊢ ((𝐴 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ↔ (𝐴 ∈ Mnd ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) |
86 | 84, 85 | sylibr 233 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐴 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) |
87 | 1, 3 | mndcl 18393 |
. . . . . 6
⊢ ((𝐴 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝐴)𝑦) ∈ 𝐵) |
88 | 86, 87 | syl 17 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐴)𝑦) ∈ 𝐵) |
89 | | df-3an 1088 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑥(+g‘𝐴)𝑦) ∈ 𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥(+g‘𝐴)𝑦) ∈ 𝐵)) |
90 | 80, 88, 89 | sylanbrc 583 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑥(+g‘𝐴)𝑦) ∈ 𝐵)) |
91 | 12, 5, 1, 7, 25 | mat2pmatval 21873 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑥(+g‘𝐴)𝑦) ∈ 𝐵) → (𝑇‘(𝑥(+g‘𝐴)𝑦)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑥(+g‘𝐴)𝑦)𝑗)))) |
92 | 90, 91 | syl 17 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑇‘(𝑥(+g‘𝐴)𝑦)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑥(+g‘𝐴)𝑦)𝑗)))) |
93 | | simpl 483 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝑥 ∈ 𝐵) |
94 | 93 | anim2i 617 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ 𝐵)) |
95 | | df-3an 1088 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ 𝐵)) |
96 | 94, 95 | sylibr 233 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵)) |
97 | 12, 5, 1, 7, 25 | mat2pmatval 21873 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵) → (𝑇‘𝑥) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗)))) |
98 | 96, 97 | syl 17 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑇‘𝑥) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗)))) |
99 | | simpr 485 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) |
100 | 99 | anim2i 617 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦 ∈ 𝐵)) |
101 | | df-3an 1088 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦 ∈ 𝐵)) |
102 | 100, 101 | sylibr 233 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵)) |
103 | 12, 5, 1, 7, 25 | mat2pmatval 21873 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵) → (𝑇‘𝑦) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗)))) |
104 | 102, 103 | syl 17 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑇‘𝑦) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗)))) |
105 | 98, 104 | oveq12d 7293 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑇‘𝑥)(+g‘𝐶)(𝑇‘𝑦)) = ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗)))(+g‘𝐶)(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗))))) |
106 | 79, 92, 105 | 3eqtr4d 2788 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑇‘(𝑥(+g‘𝐴)𝑦)) = ((𝑇‘𝑥)(+g‘𝐶)(𝑇‘𝑦))) |
107 | 1, 2, 3, 4, 6, 11,
13, 106 | isghmd 18843 |
1
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇 ∈ (𝐴 GrpHom 𝐶)) |