Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llnle Structured version   Visualization version   GIF version

Theorem llnle 39519
Description: Any element greater than 0 and not an atom majorizes a lattice line. (Contributed by NM, 28-Jun-2012.)
Hypotheses
Ref Expression
llnle.b 𝐵 = (Base‘𝐾)
llnle.l = (le‘𝐾)
llnle.z 0 = (0.‘𝐾)
llnle.a 𝐴 = (Atoms‘𝐾)
llnle.n 𝑁 = (LLines‘𝐾)
Assertion
Ref Expression
llnle (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) → ∃𝑦𝑁 𝑦 𝑋)
Distinct variable groups:   𝑦,𝐾   𝑦,   𝑦,𝑁   𝑦,𝑋
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑦)   0 (𝑦)

Proof of Theorem llnle
Dummy variables 𝑞 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) → 𝐾 ∈ HL)
2 simplr 768 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) → 𝑋𝐵)
3 simprl 770 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) → 𝑋0 )
4 llnle.b . . . 4 𝐵 = (Base‘𝐾)
5 llnle.l . . . 4 = (le‘𝐾)
6 llnle.z . . . 4 0 = (0.‘𝐾)
7 llnle.a . . . 4 𝐴 = (Atoms‘𝐾)
84, 5, 6, 7atle 39437 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) → ∃𝑝𝐴 𝑝 𝑋)
91, 2, 3, 8syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) → ∃𝑝𝐴 𝑝 𝑋)
10 simp1ll 1237 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ 𝑝𝐴𝑝 𝑋) → 𝐾 ∈ HL)
114, 7atbase 39289 . . . . . . 7 (𝑝𝐴𝑝𝐵)
12113ad2ant2 1134 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ 𝑝𝐴𝑝 𝑋) → 𝑝𝐵)
13 simp1lr 1238 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ 𝑝𝐴𝑝 𝑋) → 𝑋𝐵)
14 simp3 1138 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ 𝑝𝐴𝑝 𝑋) → 𝑝 𝑋)
15 simp2 1137 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ 𝑝𝐴𝑝 𝑋) → 𝑝𝐴)
16 simp1rr 1240 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ 𝑝𝐴𝑝 𝑋) → ¬ 𝑋𝐴)
17 nelne2 3024 . . . . . . . 8 ((𝑝𝐴 ∧ ¬ 𝑋𝐴) → 𝑝𝑋)
1815, 16, 17syl2anc 584 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ 𝑝𝐴𝑝 𝑋) → 𝑝𝑋)
19 eqid 2730 . . . . . . . . 9 (lt‘𝐾) = (lt‘𝐾)
205, 19pltval 18298 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑝𝐴𝑋𝐵) → (𝑝(lt‘𝐾)𝑋 ↔ (𝑝 𝑋𝑝𝑋)))
2110, 15, 13, 20syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ 𝑝𝐴𝑝 𝑋) → (𝑝(lt‘𝐾)𝑋 ↔ (𝑝 𝑋𝑝𝑋)))
2214, 18, 21mpbir2and 713 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ 𝑝𝐴𝑝 𝑋) → 𝑝(lt‘𝐾)𝑋)
23 eqid 2730 . . . . . . 7 (join‘𝐾) = (join‘𝐾)
24 eqid 2730 . . . . . . 7 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
254, 5, 19, 23, 24, 7hlrelat3 39413 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑝𝐵𝑋𝐵) ∧ 𝑝(lt‘𝐾)𝑋) → ∃𝑞𝐴 (𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞) 𝑋))
2610, 12, 13, 22, 25syl31anc 1375 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ 𝑝𝐴𝑝 𝑋) → ∃𝑞𝐴 (𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞) 𝑋))
27 simp1ll 1237 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ (𝑝𝐴𝑝 𝑋𝑞𝐴) ∧ (𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞) 𝑋)) → 𝐾 ∈ HL)
28 simp21 1207 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ (𝑝𝐴𝑝 𝑋𝑞𝐴) ∧ (𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞) 𝑋)) → 𝑝𝐴)
29 simp23 1209 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ (𝑝𝐴𝑝 𝑋𝑞𝐴) ∧ (𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞) 𝑋)) → 𝑞𝐴)
304, 23, 7hlatjcl 39367 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) → (𝑝(join‘𝐾)𝑞) ∈ 𝐵)
3127, 28, 29, 30syl3anc 1373 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ (𝑝𝐴𝑝 𝑋𝑞𝐴) ∧ (𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞) 𝑋)) → (𝑝(join‘𝐾)𝑞) ∈ 𝐵)
32 simp3l 1202 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ (𝑝𝐴𝑝 𝑋𝑞𝐴) ∧ (𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞) 𝑋)) → 𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞))
33 llnle.n . . . . . . . . . . . 12 𝑁 = (LLines‘𝐾)
344, 24, 7, 33llni 39509 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑝(join‘𝐾)𝑞) ∈ 𝐵𝑝𝐴) ∧ 𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞)) → (𝑝(join‘𝐾)𝑞) ∈ 𝑁)
3527, 31, 28, 32, 34syl31anc 1375 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ (𝑝𝐴𝑝 𝑋𝑞𝐴) ∧ (𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞) 𝑋)) → (𝑝(join‘𝐾)𝑞) ∈ 𝑁)
36 simp3r 1203 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ (𝑝𝐴𝑝 𝑋𝑞𝐴) ∧ (𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞) 𝑋)) → (𝑝(join‘𝐾)𝑞) 𝑋)
37 breq1 5113 . . . . . . . . . . 11 (𝑦 = (𝑝(join‘𝐾)𝑞) → (𝑦 𝑋 ↔ (𝑝(join‘𝐾)𝑞) 𝑋))
3837rspcev 3591 . . . . . . . . . 10 (((𝑝(join‘𝐾)𝑞) ∈ 𝑁 ∧ (𝑝(join‘𝐾)𝑞) 𝑋) → ∃𝑦𝑁 𝑦 𝑋)
3935, 36, 38syl2anc 584 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ (𝑝𝐴𝑝 𝑋𝑞𝐴) ∧ (𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞) 𝑋)) → ∃𝑦𝑁 𝑦 𝑋)
40393exp 1119 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) → ((𝑝𝐴𝑝 𝑋𝑞𝐴) → ((𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞) 𝑋) → ∃𝑦𝑁 𝑦 𝑋)))
41403expd 1354 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) → (𝑝𝐴 → (𝑝 𝑋 → (𝑞𝐴 → ((𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞) 𝑋) → ∃𝑦𝑁 𝑦 𝑋)))))
42413imp 1110 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ 𝑝𝐴𝑝 𝑋) → (𝑞𝐴 → ((𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞) 𝑋) → ∃𝑦𝑁 𝑦 𝑋)))
4342rexlimdv 3133 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ 𝑝𝐴𝑝 𝑋) → (∃𝑞𝐴 (𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞) 𝑋) → ∃𝑦𝑁 𝑦 𝑋))
4426, 43mpd 15 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ 𝑝𝐴𝑝 𝑋) → ∃𝑦𝑁 𝑦 𝑋)
45443exp 1119 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) → (𝑝𝐴 → (𝑝 𝑋 → ∃𝑦𝑁 𝑦 𝑋)))
4645rexlimdv 3133 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) → (∃𝑝𝐴 𝑝 𝑋 → ∃𝑦𝑁 𝑦 𝑋))
479, 46mpd 15 1 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) → ∃𝑦𝑁 𝑦 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wrex 3054   class class class wbr 5110  cfv 6514  (class class class)co 7390  Basecbs 17186  lecple 17234  ltcplt 18276  joincjn 18279  0.cp0 18389  ccvr 39262  Atomscatm 39263  HLchlt 39350  LLinesclln 39492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-proset 18262  df-poset 18281  df-plt 18296  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-p0 18391  df-lat 18398  df-clat 18465  df-oposet 39176  df-ol 39178  df-oml 39179  df-covers 39266  df-ats 39267  df-atl 39298  df-cvlat 39322  df-hlat 39351  df-llines 39499
This theorem is referenced by:  llnmlplnN  39540  lplnle  39541  llncvrlpln  39559
  Copyright terms: Public domain W3C validator