Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llnle Structured version   Visualization version   GIF version

Theorem llnle 38853
Description: Any element greater than 0 and not an atom majorizes a lattice line. (Contributed by NM, 28-Jun-2012.)
Hypotheses
Ref Expression
llnle.b 𝐵 = (Base‘𝐾)
llnle.l = (le‘𝐾)
llnle.z 0 = (0.‘𝐾)
llnle.a 𝐴 = (Atoms‘𝐾)
llnle.n 𝑁 = (LLines‘𝐾)
Assertion
Ref Expression
llnle (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) → ∃𝑦𝑁 𝑦 𝑋)
Distinct variable groups:   𝑦,𝐾   𝑦,   𝑦,𝑁   𝑦,𝑋
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑦)   0 (𝑦)

Proof of Theorem llnle
Dummy variables 𝑞 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 764 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) → 𝐾 ∈ HL)
2 simplr 766 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) → 𝑋𝐵)
3 simprl 768 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) → 𝑋0 )
4 llnle.b . . . 4 𝐵 = (Base‘𝐾)
5 llnle.l . . . 4 = (le‘𝐾)
6 llnle.z . . . 4 0 = (0.‘𝐾)
7 llnle.a . . . 4 𝐴 = (Atoms‘𝐾)
84, 5, 6, 7atle 38771 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) → ∃𝑝𝐴 𝑝 𝑋)
91, 2, 3, 8syl3anc 1370 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) → ∃𝑝𝐴 𝑝 𝑋)
10 simp1ll 1235 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ 𝑝𝐴𝑝 𝑋) → 𝐾 ∈ HL)
114, 7atbase 38623 . . . . . . 7 (𝑝𝐴𝑝𝐵)
12113ad2ant2 1133 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ 𝑝𝐴𝑝 𝑋) → 𝑝𝐵)
13 simp1lr 1236 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ 𝑝𝐴𝑝 𝑋) → 𝑋𝐵)
14 simp3 1137 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ 𝑝𝐴𝑝 𝑋) → 𝑝 𝑋)
15 simp2 1136 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ 𝑝𝐴𝑝 𝑋) → 𝑝𝐴)
16 simp1rr 1238 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ 𝑝𝐴𝑝 𝑋) → ¬ 𝑋𝐴)
17 nelne2 3039 . . . . . . . 8 ((𝑝𝐴 ∧ ¬ 𝑋𝐴) → 𝑝𝑋)
1815, 16, 17syl2anc 583 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ 𝑝𝐴𝑝 𝑋) → 𝑝𝑋)
19 eqid 2731 . . . . . . . . 9 (lt‘𝐾) = (lt‘𝐾)
205, 19pltval 18295 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑝𝐴𝑋𝐵) → (𝑝(lt‘𝐾)𝑋 ↔ (𝑝 𝑋𝑝𝑋)))
2110, 15, 13, 20syl3anc 1370 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ 𝑝𝐴𝑝 𝑋) → (𝑝(lt‘𝐾)𝑋 ↔ (𝑝 𝑋𝑝𝑋)))
2214, 18, 21mpbir2and 710 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ 𝑝𝐴𝑝 𝑋) → 𝑝(lt‘𝐾)𝑋)
23 eqid 2731 . . . . . . 7 (join‘𝐾) = (join‘𝐾)
24 eqid 2731 . . . . . . 7 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
254, 5, 19, 23, 24, 7hlrelat3 38747 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑝𝐵𝑋𝐵) ∧ 𝑝(lt‘𝐾)𝑋) → ∃𝑞𝐴 (𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞) 𝑋))
2610, 12, 13, 22, 25syl31anc 1372 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ 𝑝𝐴𝑝 𝑋) → ∃𝑞𝐴 (𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞) 𝑋))
27 simp1ll 1235 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ (𝑝𝐴𝑝 𝑋𝑞𝐴) ∧ (𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞) 𝑋)) → 𝐾 ∈ HL)
28 simp21 1205 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ (𝑝𝐴𝑝 𝑋𝑞𝐴) ∧ (𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞) 𝑋)) → 𝑝𝐴)
29 simp23 1207 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ (𝑝𝐴𝑝 𝑋𝑞𝐴) ∧ (𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞) 𝑋)) → 𝑞𝐴)
304, 23, 7hlatjcl 38701 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) → (𝑝(join‘𝐾)𝑞) ∈ 𝐵)
3127, 28, 29, 30syl3anc 1370 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ (𝑝𝐴𝑝 𝑋𝑞𝐴) ∧ (𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞) 𝑋)) → (𝑝(join‘𝐾)𝑞) ∈ 𝐵)
32 simp3l 1200 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ (𝑝𝐴𝑝 𝑋𝑞𝐴) ∧ (𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞) 𝑋)) → 𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞))
33 llnle.n . . . . . . . . . . . 12 𝑁 = (LLines‘𝐾)
344, 24, 7, 33llni 38843 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑝(join‘𝐾)𝑞) ∈ 𝐵𝑝𝐴) ∧ 𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞)) → (𝑝(join‘𝐾)𝑞) ∈ 𝑁)
3527, 31, 28, 32, 34syl31anc 1372 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ (𝑝𝐴𝑝 𝑋𝑞𝐴) ∧ (𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞) 𝑋)) → (𝑝(join‘𝐾)𝑞) ∈ 𝑁)
36 simp3r 1201 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ (𝑝𝐴𝑝 𝑋𝑞𝐴) ∧ (𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞) 𝑋)) → (𝑝(join‘𝐾)𝑞) 𝑋)
37 breq1 5151 . . . . . . . . . . 11 (𝑦 = (𝑝(join‘𝐾)𝑞) → (𝑦 𝑋 ↔ (𝑝(join‘𝐾)𝑞) 𝑋))
3837rspcev 3612 . . . . . . . . . 10 (((𝑝(join‘𝐾)𝑞) ∈ 𝑁 ∧ (𝑝(join‘𝐾)𝑞) 𝑋) → ∃𝑦𝑁 𝑦 𝑋)
3935, 36, 38syl2anc 583 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ (𝑝𝐴𝑝 𝑋𝑞𝐴) ∧ (𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞) 𝑋)) → ∃𝑦𝑁 𝑦 𝑋)
40393exp 1118 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) → ((𝑝𝐴𝑝 𝑋𝑞𝐴) → ((𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞) 𝑋) → ∃𝑦𝑁 𝑦 𝑋)))
41403expd 1352 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) → (𝑝𝐴 → (𝑝 𝑋 → (𝑞𝐴 → ((𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞) 𝑋) → ∃𝑦𝑁 𝑦 𝑋)))))
42413imp 1110 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ 𝑝𝐴𝑝 𝑋) → (𝑞𝐴 → ((𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞) 𝑋) → ∃𝑦𝑁 𝑦 𝑋)))
4342rexlimdv 3152 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ 𝑝𝐴𝑝 𝑋) → (∃𝑞𝐴 (𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞) 𝑋) → ∃𝑦𝑁 𝑦 𝑋))
4426, 43mpd 15 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ 𝑝𝐴𝑝 𝑋) → ∃𝑦𝑁 𝑦 𝑋)
45443exp 1118 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) → (𝑝𝐴 → (𝑝 𝑋 → ∃𝑦𝑁 𝑦 𝑋)))
4645rexlimdv 3152 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) → (∃𝑝𝐴 𝑝 𝑋 → ∃𝑦𝑁 𝑦 𝑋))
479, 46mpd 15 1 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) → ∃𝑦𝑁 𝑦 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wcel 2105  wne 2939  wrex 3069   class class class wbr 5148  cfv 6543  (class class class)co 7412  Basecbs 17151  lecple 17211  ltcplt 18271  joincjn 18274  0.cp0 18386  ccvr 38596  Atomscatm 38597  HLchlt 38684  LLinesclln 38826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-proset 18258  df-poset 18276  df-plt 18293  df-lub 18309  df-glb 18310  df-join 18311  df-meet 18312  df-p0 18388  df-lat 18395  df-clat 18462  df-oposet 38510  df-ol 38512  df-oml 38513  df-covers 38600  df-ats 38601  df-atl 38632  df-cvlat 38656  df-hlat 38685  df-llines 38833
This theorem is referenced by:  llnmlplnN  38874  lplnle  38875  llncvrlpln  38893
  Copyright terms: Public domain W3C validator