Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llnle Structured version   Visualization version   GIF version

Theorem llnle 39512
Description: Any element greater than 0 and not an atom majorizes a lattice line. (Contributed by NM, 28-Jun-2012.)
Hypotheses
Ref Expression
llnle.b 𝐵 = (Base‘𝐾)
llnle.l = (le‘𝐾)
llnle.z 0 = (0.‘𝐾)
llnle.a 𝐴 = (Atoms‘𝐾)
llnle.n 𝑁 = (LLines‘𝐾)
Assertion
Ref Expression
llnle (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) → ∃𝑦𝑁 𝑦 𝑋)
Distinct variable groups:   𝑦,𝐾   𝑦,   𝑦,𝑁   𝑦,𝑋
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑦)   0 (𝑦)

Proof of Theorem llnle
Dummy variables 𝑞 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) → 𝐾 ∈ HL)
2 simplr 768 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) → 𝑋𝐵)
3 simprl 770 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) → 𝑋0 )
4 llnle.b . . . 4 𝐵 = (Base‘𝐾)
5 llnle.l . . . 4 = (le‘𝐾)
6 llnle.z . . . 4 0 = (0.‘𝐾)
7 llnle.a . . . 4 𝐴 = (Atoms‘𝐾)
84, 5, 6, 7atle 39430 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) → ∃𝑝𝐴 𝑝 𝑋)
91, 2, 3, 8syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) → ∃𝑝𝐴 𝑝 𝑋)
10 simp1ll 1237 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ 𝑝𝐴𝑝 𝑋) → 𝐾 ∈ HL)
114, 7atbase 39282 . . . . . . 7 (𝑝𝐴𝑝𝐵)
12113ad2ant2 1134 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ 𝑝𝐴𝑝 𝑋) → 𝑝𝐵)
13 simp1lr 1238 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ 𝑝𝐴𝑝 𝑋) → 𝑋𝐵)
14 simp3 1138 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ 𝑝𝐴𝑝 𝑋) → 𝑝 𝑋)
15 simp2 1137 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ 𝑝𝐴𝑝 𝑋) → 𝑝𝐴)
16 simp1rr 1240 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ 𝑝𝐴𝑝 𝑋) → ¬ 𝑋𝐴)
17 nelne2 3023 . . . . . . . 8 ((𝑝𝐴 ∧ ¬ 𝑋𝐴) → 𝑝𝑋)
1815, 16, 17syl2anc 584 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ 𝑝𝐴𝑝 𝑋) → 𝑝𝑋)
19 eqid 2729 . . . . . . . . 9 (lt‘𝐾) = (lt‘𝐾)
205, 19pltval 18291 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑝𝐴𝑋𝐵) → (𝑝(lt‘𝐾)𝑋 ↔ (𝑝 𝑋𝑝𝑋)))
2110, 15, 13, 20syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ 𝑝𝐴𝑝 𝑋) → (𝑝(lt‘𝐾)𝑋 ↔ (𝑝 𝑋𝑝𝑋)))
2214, 18, 21mpbir2and 713 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ 𝑝𝐴𝑝 𝑋) → 𝑝(lt‘𝐾)𝑋)
23 eqid 2729 . . . . . . 7 (join‘𝐾) = (join‘𝐾)
24 eqid 2729 . . . . . . 7 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
254, 5, 19, 23, 24, 7hlrelat3 39406 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑝𝐵𝑋𝐵) ∧ 𝑝(lt‘𝐾)𝑋) → ∃𝑞𝐴 (𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞) 𝑋))
2610, 12, 13, 22, 25syl31anc 1375 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ 𝑝𝐴𝑝 𝑋) → ∃𝑞𝐴 (𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞) 𝑋))
27 simp1ll 1237 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ (𝑝𝐴𝑝 𝑋𝑞𝐴) ∧ (𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞) 𝑋)) → 𝐾 ∈ HL)
28 simp21 1207 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ (𝑝𝐴𝑝 𝑋𝑞𝐴) ∧ (𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞) 𝑋)) → 𝑝𝐴)
29 simp23 1209 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ (𝑝𝐴𝑝 𝑋𝑞𝐴) ∧ (𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞) 𝑋)) → 𝑞𝐴)
304, 23, 7hlatjcl 39360 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) → (𝑝(join‘𝐾)𝑞) ∈ 𝐵)
3127, 28, 29, 30syl3anc 1373 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ (𝑝𝐴𝑝 𝑋𝑞𝐴) ∧ (𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞) 𝑋)) → (𝑝(join‘𝐾)𝑞) ∈ 𝐵)
32 simp3l 1202 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ (𝑝𝐴𝑝 𝑋𝑞𝐴) ∧ (𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞) 𝑋)) → 𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞))
33 llnle.n . . . . . . . . . . . 12 𝑁 = (LLines‘𝐾)
344, 24, 7, 33llni 39502 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑝(join‘𝐾)𝑞) ∈ 𝐵𝑝𝐴) ∧ 𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞)) → (𝑝(join‘𝐾)𝑞) ∈ 𝑁)
3527, 31, 28, 32, 34syl31anc 1375 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ (𝑝𝐴𝑝 𝑋𝑞𝐴) ∧ (𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞) 𝑋)) → (𝑝(join‘𝐾)𝑞) ∈ 𝑁)
36 simp3r 1203 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ (𝑝𝐴𝑝 𝑋𝑞𝐴) ∧ (𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞) 𝑋)) → (𝑝(join‘𝐾)𝑞) 𝑋)
37 breq1 5110 . . . . . . . . . . 11 (𝑦 = (𝑝(join‘𝐾)𝑞) → (𝑦 𝑋 ↔ (𝑝(join‘𝐾)𝑞) 𝑋))
3837rspcev 3588 . . . . . . . . . 10 (((𝑝(join‘𝐾)𝑞) ∈ 𝑁 ∧ (𝑝(join‘𝐾)𝑞) 𝑋) → ∃𝑦𝑁 𝑦 𝑋)
3935, 36, 38syl2anc 584 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ (𝑝𝐴𝑝 𝑋𝑞𝐴) ∧ (𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞) 𝑋)) → ∃𝑦𝑁 𝑦 𝑋)
40393exp 1119 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) → ((𝑝𝐴𝑝 𝑋𝑞𝐴) → ((𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞) 𝑋) → ∃𝑦𝑁 𝑦 𝑋)))
41403expd 1354 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) → (𝑝𝐴 → (𝑝 𝑋 → (𝑞𝐴 → ((𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞) 𝑋) → ∃𝑦𝑁 𝑦 𝑋)))))
42413imp 1110 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ 𝑝𝐴𝑝 𝑋) → (𝑞𝐴 → ((𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞) 𝑋) → ∃𝑦𝑁 𝑦 𝑋)))
4342rexlimdv 3132 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ 𝑝𝐴𝑝 𝑋) → (∃𝑞𝐴 (𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞) 𝑋) → ∃𝑦𝑁 𝑦 𝑋))
4426, 43mpd 15 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ 𝑝𝐴𝑝 𝑋) → ∃𝑦𝑁 𝑦 𝑋)
45443exp 1119 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) → (𝑝𝐴 → (𝑝 𝑋 → ∃𝑦𝑁 𝑦 𝑋)))
4645rexlimdv 3132 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) → (∃𝑝𝐴 𝑝 𝑋 → ∃𝑦𝑁 𝑦 𝑋))
479, 46mpd 15 1 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) → ∃𝑦𝑁 𝑦 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  lecple 17227  ltcplt 18269  joincjn 18272  0.cp0 18382  ccvr 39255  Atomscatm 39256  HLchlt 39343  LLinesclln 39485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-lat 18391  df-clat 18458  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-llines 39492
This theorem is referenced by:  llnmlplnN  39533  lplnle  39534  llncvrlpln  39552
  Copyright terms: Public domain W3C validator