Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llnle Structured version   Visualization version   GIF version

Theorem llnle 39507
Description: Any element greater than 0 and not an atom majorizes a lattice line. (Contributed by NM, 28-Jun-2012.)
Hypotheses
Ref Expression
llnle.b 𝐵 = (Base‘𝐾)
llnle.l = (le‘𝐾)
llnle.z 0 = (0.‘𝐾)
llnle.a 𝐴 = (Atoms‘𝐾)
llnle.n 𝑁 = (LLines‘𝐾)
Assertion
Ref Expression
llnle (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) → ∃𝑦𝑁 𝑦 𝑋)
Distinct variable groups:   𝑦,𝐾   𝑦,   𝑦,𝑁   𝑦,𝑋
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑦)   0 (𝑦)

Proof of Theorem llnle
Dummy variables 𝑞 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) → 𝐾 ∈ HL)
2 simplr 768 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) → 𝑋𝐵)
3 simprl 770 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) → 𝑋0 )
4 llnle.b . . . 4 𝐵 = (Base‘𝐾)
5 llnle.l . . . 4 = (le‘𝐾)
6 llnle.z . . . 4 0 = (0.‘𝐾)
7 llnle.a . . . 4 𝐴 = (Atoms‘𝐾)
84, 5, 6, 7atle 39425 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) → ∃𝑝𝐴 𝑝 𝑋)
91, 2, 3, 8syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) → ∃𝑝𝐴 𝑝 𝑋)
10 simp1ll 1237 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ 𝑝𝐴𝑝 𝑋) → 𝐾 ∈ HL)
114, 7atbase 39278 . . . . . . 7 (𝑝𝐴𝑝𝐵)
12113ad2ant2 1134 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ 𝑝𝐴𝑝 𝑋) → 𝑝𝐵)
13 simp1lr 1238 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ 𝑝𝐴𝑝 𝑋) → 𝑋𝐵)
14 simp3 1138 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ 𝑝𝐴𝑝 𝑋) → 𝑝 𝑋)
15 simp2 1137 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ 𝑝𝐴𝑝 𝑋) → 𝑝𝐴)
16 simp1rr 1240 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ 𝑝𝐴𝑝 𝑋) → ¬ 𝑋𝐴)
17 nelne2 3023 . . . . . . . 8 ((𝑝𝐴 ∧ ¬ 𝑋𝐴) → 𝑝𝑋)
1815, 16, 17syl2anc 584 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ 𝑝𝐴𝑝 𝑋) → 𝑝𝑋)
19 eqid 2729 . . . . . . . . 9 (lt‘𝐾) = (lt‘𝐾)
205, 19pltval 18236 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑝𝐴𝑋𝐵) → (𝑝(lt‘𝐾)𝑋 ↔ (𝑝 𝑋𝑝𝑋)))
2110, 15, 13, 20syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ 𝑝𝐴𝑝 𝑋) → (𝑝(lt‘𝐾)𝑋 ↔ (𝑝 𝑋𝑝𝑋)))
2214, 18, 21mpbir2and 713 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ 𝑝𝐴𝑝 𝑋) → 𝑝(lt‘𝐾)𝑋)
23 eqid 2729 . . . . . . 7 (join‘𝐾) = (join‘𝐾)
24 eqid 2729 . . . . . . 7 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
254, 5, 19, 23, 24, 7hlrelat3 39401 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑝𝐵𝑋𝐵) ∧ 𝑝(lt‘𝐾)𝑋) → ∃𝑞𝐴 (𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞) 𝑋))
2610, 12, 13, 22, 25syl31anc 1375 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ 𝑝𝐴𝑝 𝑋) → ∃𝑞𝐴 (𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞) 𝑋))
27 simp1ll 1237 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ (𝑝𝐴𝑝 𝑋𝑞𝐴) ∧ (𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞) 𝑋)) → 𝐾 ∈ HL)
28 simp21 1207 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ (𝑝𝐴𝑝 𝑋𝑞𝐴) ∧ (𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞) 𝑋)) → 𝑝𝐴)
29 simp23 1209 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ (𝑝𝐴𝑝 𝑋𝑞𝐴) ∧ (𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞) 𝑋)) → 𝑞𝐴)
304, 23, 7hlatjcl 39356 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) → (𝑝(join‘𝐾)𝑞) ∈ 𝐵)
3127, 28, 29, 30syl3anc 1373 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ (𝑝𝐴𝑝 𝑋𝑞𝐴) ∧ (𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞) 𝑋)) → (𝑝(join‘𝐾)𝑞) ∈ 𝐵)
32 simp3l 1202 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ (𝑝𝐴𝑝 𝑋𝑞𝐴) ∧ (𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞) 𝑋)) → 𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞))
33 llnle.n . . . . . . . . . . . 12 𝑁 = (LLines‘𝐾)
344, 24, 7, 33llni 39497 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑝(join‘𝐾)𝑞) ∈ 𝐵𝑝𝐴) ∧ 𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞)) → (𝑝(join‘𝐾)𝑞) ∈ 𝑁)
3527, 31, 28, 32, 34syl31anc 1375 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ (𝑝𝐴𝑝 𝑋𝑞𝐴) ∧ (𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞) 𝑋)) → (𝑝(join‘𝐾)𝑞) ∈ 𝑁)
36 simp3r 1203 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ (𝑝𝐴𝑝 𝑋𝑞𝐴) ∧ (𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞) 𝑋)) → (𝑝(join‘𝐾)𝑞) 𝑋)
37 breq1 5095 . . . . . . . . . . 11 (𝑦 = (𝑝(join‘𝐾)𝑞) → (𝑦 𝑋 ↔ (𝑝(join‘𝐾)𝑞) 𝑋))
3837rspcev 3577 . . . . . . . . . 10 (((𝑝(join‘𝐾)𝑞) ∈ 𝑁 ∧ (𝑝(join‘𝐾)𝑞) 𝑋) → ∃𝑦𝑁 𝑦 𝑋)
3935, 36, 38syl2anc 584 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ (𝑝𝐴𝑝 𝑋𝑞𝐴) ∧ (𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞) 𝑋)) → ∃𝑦𝑁 𝑦 𝑋)
40393exp 1119 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) → ((𝑝𝐴𝑝 𝑋𝑞𝐴) → ((𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞) 𝑋) → ∃𝑦𝑁 𝑦 𝑋)))
41403expd 1354 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) → (𝑝𝐴 → (𝑝 𝑋 → (𝑞𝐴 → ((𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞) 𝑋) → ∃𝑦𝑁 𝑦 𝑋)))))
42413imp 1110 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ 𝑝𝐴𝑝 𝑋) → (𝑞𝐴 → ((𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞) 𝑋) → ∃𝑦𝑁 𝑦 𝑋)))
4342rexlimdv 3128 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ 𝑝𝐴𝑝 𝑋) → (∃𝑞𝐴 (𝑝( ⋖ ‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞) 𝑋) → ∃𝑦𝑁 𝑦 𝑋))
4426, 43mpd 15 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) ∧ 𝑝𝐴𝑝 𝑋) → ∃𝑦𝑁 𝑦 𝑋)
45443exp 1119 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) → (𝑝𝐴 → (𝑝 𝑋 → ∃𝑦𝑁 𝑦 𝑋)))
4645rexlimdv 3128 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) → (∃𝑝𝐴 𝑝 𝑋 → ∃𝑦𝑁 𝑦 𝑋))
479, 46mpd 15 1 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) → ∃𝑦𝑁 𝑦 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053   class class class wbr 5092  cfv 6482  (class class class)co 7349  Basecbs 17120  lecple 17168  ltcplt 18214  joincjn 18217  0.cp0 18327  ccvr 39251  Atomscatm 39252  HLchlt 39339  LLinesclln 39480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-lat 18338  df-clat 18405  df-oposet 39165  df-ol 39167  df-oml 39168  df-covers 39255  df-ats 39256  df-atl 39287  df-cvlat 39311  df-hlat 39340  df-llines 39487
This theorem is referenced by:  llnmlplnN  39528  lplnle  39529  llncvrlpln  39547
  Copyright terms: Public domain W3C validator