Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp3i | Structured version Visualization version GIF version |
Description: Infer a conjunct from a triple conjunction. (Contributed by NM, 19-Apr-2005.) |
Ref | Expression |
---|---|
3simp1i.1 | ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) |
Ref | Expression |
---|---|
simp3i | ⊢ 𝜒 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simp1i.1 | . 2 ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) | |
2 | simp3 1136 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜒) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜒 |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: hartogslem2 9232 harwdom 9280 divalglem6 16035 structfn 16785 strleun 16786 oppchomfval 17340 sratset 20365 srads 20368 tngip 23715 dfrelog 25626 log2ub 26004 birthdaylem3 26008 birthday 26009 divsqrtsum2 26037 harmonicbnd2 26059 lgslem4 26353 lgscllem 26357 lgsdir2lem2 26379 lgsdir2lem3 26380 mulog2sumlem1 26587 siilem2 29115 h2hva 29237 h2hsm 29238 h2hnm 29239 elunop2 30276 wallispilem3 43498 wallispilem4 43499 prstchomval 46241 |
Copyright terms: Public domain | W3C validator |