| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp3i | Structured version Visualization version GIF version | ||
| Description: Infer a conjunct from a triple conjunction. (Contributed by NM, 19-Apr-2005.) |
| Ref | Expression |
|---|---|
| 3simp1i.1 | ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) |
| Ref | Expression |
|---|---|
| simp3i | ⊢ 𝜒 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1i.1 | . 2 ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) | |
| 2 | simp3 1138 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜒) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜒 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: hartogslem2 9557 harwdom 9605 divalglem6 16417 structfn 17175 strleun 17176 oppchomfval 17726 sratset 21141 srads 21143 tngip 24586 dfrelog 26526 log2ub 26911 birthdaylem3 26915 birthday 26916 divsqrtsum2 26945 harmonicbnd2 26967 lgslem4 27263 lgscllem 27267 lgsdir2lem2 27289 lgsdir2lem3 27290 mulog2sumlem1 27497 siilem2 30833 h2hva 30955 h2hsm 30956 h2hnm 30957 elunop2 31994 wallispilem3 46096 wallispilem4 46097 prstchomval 49436 cnelsubclem 49480 |
| Copyright terms: Public domain | W3C validator |