MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp3i Structured version   Visualization version   GIF version

Theorem simp3i 1141
Description: Infer a conjunct from a triple conjunction. (Contributed by NM, 19-Apr-2005.)
Hypothesis
Ref Expression
3simp1i.1 (𝜑𝜓𝜒)
Assertion
Ref Expression
simp3i 𝜒

Proof of Theorem simp3i
StepHypRef Expression
1 3simp1i.1 . 2 (𝜑𝜓𝜒)
2 simp3 1138 . 2 ((𝜑𝜓𝜒) → 𝜒)
31, 2ax-mp 5 1 𝜒
Colors of variables: wff setvar class
Syntax hints:  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  hartogslem2  9435  harwdom  9483  divalglem6  16309  structfn  17067  strleun  17068  oppchomfval  17620  sratset  21087  srads  21089  tngip  24533  dfrelog  26472  log2ub  26857  birthdaylem3  26861  birthday  26862  divsqrtsum2  26891  harmonicbnd2  26913  lgslem4  27209  lgscllem  27213  lgsdir2lem2  27235  lgsdir2lem3  27236  mulog2sumlem1  27443  siilem2  30796  h2hva  30918  h2hsm  30919  h2hnm  30920  elunop2  31957  wallispilem3  46048  wallispilem4  46049  prstchomval  49544  cnelsubclem  49588
  Copyright terms: Public domain W3C validator