| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp3i | Structured version Visualization version GIF version | ||
| Description: Infer a conjunct from a triple conjunction. (Contributed by NM, 19-Apr-2005.) |
| Ref | Expression |
|---|---|
| 3simp1i.1 | ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) |
| Ref | Expression |
|---|---|
| simp3i | ⊢ 𝜒 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1i.1 | . 2 ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) | |
| 2 | simp3 1138 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜒) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜒 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: hartogslem2 9503 harwdom 9551 divalglem6 16375 structfn 17133 strleun 17134 oppchomfval 17682 sratset 21097 srads 21099 tngip 24542 dfrelog 26481 log2ub 26866 birthdaylem3 26870 birthday 26871 divsqrtsum2 26900 harmonicbnd2 26922 lgslem4 27218 lgscllem 27222 lgsdir2lem2 27244 lgsdir2lem3 27245 mulog2sumlem1 27452 siilem2 30788 h2hva 30910 h2hsm 30911 h2hnm 30912 elunop2 31949 wallispilem3 46072 wallispilem4 46073 prstchomval 49552 cnelsubclem 49596 |
| Copyright terms: Public domain | W3C validator |