MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp3i Structured version   Visualization version   GIF version

Theorem simp3i 1141
Description: Infer a conjunct from a triple conjunction. (Contributed by NM, 19-Apr-2005.)
Hypothesis
Ref Expression
3simp1i.1 (𝜑𝜓𝜒)
Assertion
Ref Expression
simp3i 𝜒

Proof of Theorem simp3i
StepHypRef Expression
1 3simp1i.1 . 2 (𝜑𝜓𝜒)
2 simp3 1138 . 2 ((𝜑𝜓𝜒) → 𝜒)
31, 2ax-mp 5 1 𝜒
Colors of variables: wff setvar class
Syntax hints:  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  hartogslem2  9557  harwdom  9605  divalglem6  16417  structfn  17175  strleun  17176  oppchomfval  17726  sratset  21141  srads  21143  tngip  24586  dfrelog  26526  log2ub  26911  birthdaylem3  26915  birthday  26916  divsqrtsum2  26945  harmonicbnd2  26967  lgslem4  27263  lgscllem  27267  lgsdir2lem2  27289  lgsdir2lem3  27290  mulog2sumlem1  27497  siilem2  30833  h2hva  30955  h2hsm  30956  h2hnm  30957  elunop2  31994  wallispilem3  46096  wallispilem4  46097  prstchomval  49436  cnelsubclem  49480
  Copyright terms: Public domain W3C validator