Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp3i | Structured version Visualization version GIF version |
Description: Infer a conjunct from a triple conjunction. (Contributed by NM, 19-Apr-2005.) |
Ref | Expression |
---|---|
3simp1i.1 | ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) |
Ref | Expression |
---|---|
simp3i | ⊢ 𝜒 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simp1i.1 | . 2 ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) | |
2 | simp3 1137 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜒) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜒 |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: hartogslem2 9302 harwdom 9350 divalglem6 16107 structfn 16857 strleun 16858 oppchomfval 17423 sratset 20452 srads 20455 tngip 23809 dfrelog 25721 log2ub 26099 birthdaylem3 26103 birthday 26104 divsqrtsum2 26132 harmonicbnd2 26154 lgslem4 26448 lgscllem 26452 lgsdir2lem2 26474 lgsdir2lem3 26475 mulog2sumlem1 26682 siilem2 29214 h2hva 29336 h2hsm 29337 h2hnm 29338 elunop2 30375 wallispilem3 43608 wallispilem4 43609 prstchomval 46355 |
Copyright terms: Public domain | W3C validator |