| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp3i | Structured version Visualization version GIF version | ||
| Description: Infer a conjunct from a triple conjunction. (Contributed by NM, 19-Apr-2005.) |
| Ref | Expression |
|---|---|
| 3simp1i.1 | ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) |
| Ref | Expression |
|---|---|
| simp3i | ⊢ 𝜒 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1i.1 | . 2 ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) | |
| 2 | simp3 1138 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜒) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜒 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: hartogslem2 9435 harwdom 9483 divalglem6 16309 structfn 17067 strleun 17068 oppchomfval 17620 sratset 21087 srads 21089 tngip 24533 dfrelog 26472 log2ub 26857 birthdaylem3 26861 birthday 26862 divsqrtsum2 26891 harmonicbnd2 26913 lgslem4 27209 lgscllem 27213 lgsdir2lem2 27235 lgsdir2lem3 27236 mulog2sumlem1 27443 siilem2 30796 h2hva 30918 h2hsm 30919 h2hnm 30920 elunop2 31957 wallispilem3 46048 wallispilem4 46049 prstchomval 49544 cnelsubclem 49588 |
| Copyright terms: Public domain | W3C validator |