MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp3i Structured version   Visualization version   GIF version

Theorem simp3i 1140
Description: Infer a conjunct from a triple conjunction. (Contributed by NM, 19-Apr-2005.)
Hypothesis
Ref Expression
3simp1i.1 (𝜑𝜓𝜒)
Assertion
Ref Expression
simp3i 𝜒

Proof of Theorem simp3i
StepHypRef Expression
1 3simp1i.1 . 2 (𝜑𝜓𝜒)
2 simp3 1137 . 2 ((𝜑𝜓𝜒) → 𝜒)
31, 2ax-mp 5 1 𝜒
Colors of variables: wff setvar class
Syntax hints:  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  hartogslem2  9581  harwdom  9629  divalglem6  16432  structfn  17190  strleun  17191  oppchomfval  17759  sratset  21206  srads  21209  tngip  24682  dfrelog  26622  log2ub  27007  birthdaylem3  27011  birthday  27012  divsqrtsum2  27041  harmonicbnd2  27063  lgslem4  27359  lgscllem  27363  lgsdir2lem2  27385  lgsdir2lem3  27386  mulog2sumlem1  27593  siilem2  30881  h2hva  31003  h2hsm  31004  h2hnm  31005  elunop2  32042  wallispilem3  46023  wallispilem4  46024  prstchomval  48875
  Copyright terms: Public domain W3C validator