| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp3i | Structured version Visualization version GIF version | ||
| Description: Infer a conjunct from a triple conjunction. (Contributed by NM, 19-Apr-2005.) |
| Ref | Expression |
|---|---|
| 3simp1i.1 | ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) |
| Ref | Expression |
|---|---|
| simp3i | ⊢ 𝜒 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1i.1 | . 2 ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) | |
| 2 | simp3 1138 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜒) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜒 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: hartogslem2 9472 harwdom 9520 divalglem6 16344 structfn 17102 strleun 17103 oppchomfval 17651 sratset 21066 srads 21068 tngip 24511 dfrelog 26450 log2ub 26835 birthdaylem3 26839 birthday 26840 divsqrtsum2 26869 harmonicbnd2 26891 lgslem4 27187 lgscllem 27191 lgsdir2lem2 27213 lgsdir2lem3 27214 mulog2sumlem1 27421 siilem2 30754 h2hva 30876 h2hsm 30877 h2hnm 30878 elunop2 31915 wallispilem3 46038 wallispilem4 46039 prstchomval 49521 cnelsubclem 49565 |
| Copyright terms: Public domain | W3C validator |