![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp3i | Structured version Visualization version GIF version |
Description: Infer a conjunct from a triple conjunction. (Contributed by NM, 19-Apr-2005.) |
Ref | Expression |
---|---|
3simp1i.1 | ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) |
Ref | Expression |
---|---|
simp3i | ⊢ 𝜒 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simp1i.1 | . 2 ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) | |
2 | simp3 1137 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜒) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜒 |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: hartogslem2 9581 harwdom 9629 divalglem6 16432 structfn 17190 strleun 17191 oppchomfval 17759 sratset 21206 srads 21209 tngip 24682 dfrelog 26622 log2ub 27007 birthdaylem3 27011 birthday 27012 divsqrtsum2 27041 harmonicbnd2 27063 lgslem4 27359 lgscllem 27363 lgsdir2lem2 27385 lgsdir2lem3 27386 mulog2sumlem1 27593 siilem2 30881 h2hva 31003 h2hsm 31004 h2hnm 31005 elunop2 32042 wallispilem3 46023 wallispilem4 46024 prstchomval 48875 |
Copyright terms: Public domain | W3C validator |