![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp3i | Structured version Visualization version GIF version |
Description: Infer a conjunct from a triple conjunction. (Contributed by NM, 19-Apr-2005.) |
Ref | Expression |
---|---|
3simp1i.1 | ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) |
Ref | Expression |
---|---|
simp3i | ⊢ 𝜒 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simp1i.1 | . 2 ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) | |
2 | simp3 1138 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜒) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜒 |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: hartogslem2 9612 harwdom 9660 divalglem6 16446 structfn 17203 strleun 17204 oppchomfval 17772 sratset 21211 srads 21214 tngip 24687 dfrelog 26625 log2ub 27010 birthdaylem3 27014 birthday 27015 divsqrtsum2 27044 harmonicbnd2 27066 lgslem4 27362 lgscllem 27366 lgsdir2lem2 27388 lgsdir2lem3 27389 mulog2sumlem1 27596 siilem2 30884 h2hva 31006 h2hsm 31007 h2hnm 31008 elunop2 32045 wallispilem3 45988 wallispilem4 45989 prstchomval 48741 |
Copyright terms: Public domain | W3C validator |