| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp3i | Structured version Visualization version GIF version | ||
| Description: Infer a conjunct from a triple conjunction. (Contributed by NM, 19-Apr-2005.) |
| Ref | Expression |
|---|---|
| 3simp1i.1 | ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) |
| Ref | Expression |
|---|---|
| simp3i | ⊢ 𝜒 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1i.1 | . 2 ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) | |
| 2 | simp3 1138 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜒) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜒 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: hartogslem2 9496 harwdom 9544 divalglem6 16368 structfn 17126 strleun 17127 oppchomfval 17675 sratset 21090 srads 21092 tngip 24535 dfrelog 26474 log2ub 26859 birthdaylem3 26863 birthday 26864 divsqrtsum2 26893 harmonicbnd2 26915 lgslem4 27211 lgscllem 27215 lgsdir2lem2 27237 lgsdir2lem3 27238 mulog2sumlem1 27445 siilem2 30781 h2hva 30903 h2hsm 30904 h2hnm 30905 elunop2 31942 wallispilem3 46065 wallispilem4 46066 prstchomval 49548 cnelsubclem 49592 |
| Copyright terms: Public domain | W3C validator |