MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp3i Structured version   Visualization version   GIF version

Theorem simp3i 1141
Description: Infer a conjunct from a triple conjunction. (Contributed by NM, 19-Apr-2005.)
Hypothesis
Ref Expression
3simp1i.1 (𝜑𝜓𝜒)
Assertion
Ref Expression
simp3i 𝜒

Proof of Theorem simp3i
StepHypRef Expression
1 3simp1i.1 . 2 (𝜑𝜓𝜒)
2 simp3 1138 . 2 ((𝜑𝜓𝜒) → 𝜒)
31, 2ax-mp 5 1 𝜒
Colors of variables: wff setvar class
Syntax hints:  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  hartogslem2  9503  harwdom  9551  divalglem6  16375  structfn  17133  strleun  17134  oppchomfval  17682  sratset  21097  srads  21099  tngip  24542  dfrelog  26481  log2ub  26866  birthdaylem3  26870  birthday  26871  divsqrtsum2  26900  harmonicbnd2  26922  lgslem4  27218  lgscllem  27222  lgsdir2lem2  27244  lgsdir2lem3  27245  mulog2sumlem1  27452  siilem2  30788  h2hva  30910  h2hsm  30911  h2hnm  30912  elunop2  31949  wallispilem3  46072  wallispilem4  46073  prstchomval  49552  cnelsubclem  49596
  Copyright terms: Public domain W3C validator