| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp3i | Structured version Visualization version GIF version | ||
| Description: Infer a conjunct from a triple conjunction. (Contributed by NM, 19-Apr-2005.) |
| Ref | Expression |
|---|---|
| 3simp1i.1 | ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) |
| Ref | Expression |
|---|---|
| simp3i | ⊢ 𝜒 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1i.1 | . 2 ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) | |
| 2 | simp3 1138 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜒) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜒 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: hartogslem2 9424 harwdom 9472 divalglem6 16304 structfn 17062 strleun 17063 oppchomfval 17615 sratset 21112 srads 21114 tngip 24557 dfrelog 26496 log2ub 26881 birthdaylem3 26885 birthday 26886 divsqrtsum2 26915 harmonicbnd2 26937 lgslem4 27233 lgscllem 27237 lgsdir2lem2 27259 lgsdir2lem3 27260 mulog2sumlem1 27467 siilem2 30824 h2hva 30946 h2hsm 30947 h2hnm 30948 elunop2 31985 wallispilem3 46105 wallispilem4 46106 prstchomval 49591 cnelsubclem 49635 |
| Copyright terms: Public domain | W3C validator |