HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  h2hsm Structured version   Visualization version   GIF version

Theorem h2hsm 30803
Description: The scalar product operation of Hilbert space. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
h2h.1 𝑈 = ⟨⟨ + , · ⟩, norm
h2h.2 𝑈 ∈ NrmCVec
Assertion
Ref Expression
h2hsm · = ( ·𝑠OLD𝑈)

Proof of Theorem h2hsm
StepHypRef Expression
1 eqid 2727 . . . 4 ( ·𝑠OLD ‘⟨⟨ + , · ⟩, norm⟩) = ( ·𝑠OLD ‘⟨⟨ + , · ⟩, norm⟩)
21smfval 30433 . . 3 ( ·𝑠OLD ‘⟨⟨ + , · ⟩, norm⟩) = (2nd ‘(1st ‘⟨⟨ + , · ⟩, norm⟩))
3 opex 5468 . . . . 5 ⟨ + , · ⟩ ∈ V
4 h2h.1 . . . . . . . 8 𝑈 = ⟨⟨ + , · ⟩, norm
5 h2h.2 . . . . . . . 8 𝑈 ∈ NrmCVec
64, 5eqeltrri 2825 . . . . . . 7 ⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec
7 nvex 30439 . . . . . . 7 (⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec → ( + ∈ V ∧ · ∈ V ∧ norm ∈ V))
86, 7ax-mp 5 . . . . . 6 ( + ∈ V ∧ · ∈ V ∧ norm ∈ V)
98simp3i 1138 . . . . 5 norm ∈ V
103, 9op1st 8005 . . . 4 (1st ‘⟨⟨ + , · ⟩, norm⟩) = ⟨ + , ·
1110fveq2i 6903 . . 3 (2nd ‘(1st ‘⟨⟨ + , · ⟩, norm⟩)) = (2nd ‘⟨ + , · ⟩)
128simp1i 1136 . . . 4 + ∈ V
138simp2i 1137 . . . 4 · ∈ V
1412, 13op2nd 8006 . . 3 (2nd ‘⟨ + , · ⟩) = ·
152, 11, 143eqtrri 2760 . 2 · = ( ·𝑠OLD ‘⟨⟨ + , · ⟩, norm⟩)
164fveq2i 6903 . 2 ( ·𝑠OLD𝑈) = ( ·𝑠OLD ‘⟨⟨ + , · ⟩, norm⟩)
1715, 16eqtr4i 2758 1 · = ( ·𝑠OLD𝑈)
Colors of variables: wff setvar class
Syntax hints:  w3a 1084   = wceq 1533  wcel 2098  Vcvv 3471  cop 4636  cfv 6551  1st c1st 7995  2nd c2nd 7996  NrmCVeccnv 30412   ·𝑠OLD cns 30415   + cva 30748   · csm 30749  normcno 30751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pr 5431  ax-un 7744
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-br 5151  df-opab 5213  df-mpt 5234  df-id 5578  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-fo 6557  df-fv 6559  df-oprab 7428  df-1st 7997  df-2nd 7998  df-vc 30387  df-nv 30420  df-sm 30425
This theorem is referenced by:  h2hvs  30805  axhfvmul-zf  30815  axhvmulid-zf  30816  axhvmulass-zf  30817  axhvdistr1-zf  30818  axhvdistr2-zf  30819  axhvmul0-zf  30820  axhis3-zf  30824  hhsm  30997
  Copyright terms: Public domain W3C validator