Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > h2hsm | Structured version Visualization version GIF version |
Description: The scalar product operation of Hilbert space. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
h2h.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
h2h.2 | ⊢ 𝑈 ∈ NrmCVec |
Ref | Expression |
---|---|
h2hsm | ⊢ ·ℎ = ( ·𝑠OLD ‘𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . . . 4 ⊢ ( ·𝑠OLD ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) = ( ·𝑠OLD ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | |
2 | 1 | smfval 28946 | . . 3 ⊢ ( ·𝑠OLD ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) = (2nd ‘(1st ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)) |
3 | opex 5381 | . . . . 5 ⊢ 〈 +ℎ , ·ℎ 〉 ∈ V | |
4 | h2h.1 | . . . . . . . 8 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
5 | h2h.2 | . . . . . . . 8 ⊢ 𝑈 ∈ NrmCVec | |
6 | 4, 5 | eqeltrri 2837 | . . . . . . 7 ⊢ 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ∈ NrmCVec |
7 | nvex 28952 | . . . . . . 7 ⊢ (〈〈 +ℎ , ·ℎ 〉, normℎ〉 ∈ NrmCVec → ( +ℎ ∈ V ∧ ·ℎ ∈ V ∧ normℎ ∈ V)) | |
8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ ( +ℎ ∈ V ∧ ·ℎ ∈ V ∧ normℎ ∈ V) |
9 | 8 | simp3i 1139 | . . . . 5 ⊢ normℎ ∈ V |
10 | 3, 9 | op1st 7825 | . . . 4 ⊢ (1st ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) = 〈 +ℎ , ·ℎ 〉 |
11 | 10 | fveq2i 6771 | . . 3 ⊢ (2nd ‘(1st ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)) = (2nd ‘〈 +ℎ , ·ℎ 〉) |
12 | 8 | simp1i 1137 | . . . 4 ⊢ +ℎ ∈ V |
13 | 8 | simp2i 1138 | . . . 4 ⊢ ·ℎ ∈ V |
14 | 12, 13 | op2nd 7826 | . . 3 ⊢ (2nd ‘〈 +ℎ , ·ℎ 〉) = ·ℎ |
15 | 2, 11, 14 | 3eqtrri 2772 | . 2 ⊢ ·ℎ = ( ·𝑠OLD ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
16 | 4 | fveq2i 6771 | . 2 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
17 | 15, 16 | eqtr4i 2770 | 1 ⊢ ·ℎ = ( ·𝑠OLD ‘𝑈) |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 Vcvv 3430 〈cop 4572 ‘cfv 6430 1st c1st 7815 2nd c2nd 7816 NrmCVeccnv 28925 ·𝑠OLD cns 28928 +ℎ cva 29261 ·ℎ csm 29262 normℎcno 29264 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-fo 6436 df-fv 6438 df-oprab 7272 df-1st 7817 df-2nd 7818 df-vc 28900 df-nv 28933 df-sm 28938 |
This theorem is referenced by: h2hvs 29318 axhfvmul-zf 29328 axhvmulid-zf 29329 axhvmulass-zf 29330 axhvdistr1-zf 29331 axhvdistr2-zf 29332 axhvmul0-zf 29333 axhis3-zf 29337 hhsm 29510 |
Copyright terms: Public domain | W3C validator |