HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  h2hsm Structured version   Visualization version   GIF version

Theorem h2hsm 30953
Description: The scalar product operation of Hilbert space. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
h2h.1 𝑈 = ⟨⟨ + , · ⟩, norm
h2h.2 𝑈 ∈ NrmCVec
Assertion
Ref Expression
h2hsm · = ( ·𝑠OLD𝑈)

Proof of Theorem h2hsm
StepHypRef Expression
1 eqid 2731 . . . 4 ( ·𝑠OLD ‘⟨⟨ + , · ⟩, norm⟩) = ( ·𝑠OLD ‘⟨⟨ + , · ⟩, norm⟩)
21smfval 30583 . . 3 ( ·𝑠OLD ‘⟨⟨ + , · ⟩, norm⟩) = (2nd ‘(1st ‘⟨⟨ + , · ⟩, norm⟩))
3 opex 5404 . . . . 5 ⟨ + , · ⟩ ∈ V
4 h2h.1 . . . . . . . 8 𝑈 = ⟨⟨ + , · ⟩, norm
5 h2h.2 . . . . . . . 8 𝑈 ∈ NrmCVec
64, 5eqeltrri 2828 . . . . . . 7 ⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec
7 nvex 30589 . . . . . . 7 (⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec → ( + ∈ V ∧ · ∈ V ∧ norm ∈ V))
86, 7ax-mp 5 . . . . . 6 ( + ∈ V ∧ · ∈ V ∧ norm ∈ V)
98simp3i 1141 . . . . 5 norm ∈ V
103, 9op1st 7929 . . . 4 (1st ‘⟨⟨ + , · ⟩, norm⟩) = ⟨ + , ·
1110fveq2i 6825 . . 3 (2nd ‘(1st ‘⟨⟨ + , · ⟩, norm⟩)) = (2nd ‘⟨ + , · ⟩)
128simp1i 1139 . . . 4 + ∈ V
138simp2i 1140 . . . 4 · ∈ V
1412, 13op2nd 7930 . . 3 (2nd ‘⟨ + , · ⟩) = ·
152, 11, 143eqtrri 2759 . 2 · = ( ·𝑠OLD ‘⟨⟨ + , · ⟩, norm⟩)
164fveq2i 6825 . 2 ( ·𝑠OLD𝑈) = ( ·𝑠OLD ‘⟨⟨ + , · ⟩, norm⟩)
1715, 16eqtr4i 2757 1 · = ( ·𝑠OLD𝑈)
Colors of variables: wff setvar class
Syntax hints:  w3a 1086   = wceq 1541  wcel 2111  Vcvv 3436  cop 4582  cfv 6481  1st c1st 7919  2nd c2nd 7920  NrmCVeccnv 30562   ·𝑠OLD cns 30565   + cva 30898   · csm 30899  normcno 30901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fo 6487  df-fv 6489  df-oprab 7350  df-1st 7921  df-2nd 7922  df-vc 30537  df-nv 30570  df-sm 30575
This theorem is referenced by:  h2hvs  30955  axhfvmul-zf  30965  axhvmulid-zf  30966  axhvmulass-zf  30967  axhvdistr1-zf  30968  axhvdistr2-zf  30969  axhvmul0-zf  30970  axhis3-zf  30974  hhsm  31147
  Copyright terms: Public domain W3C validator