HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  h2hsm Structured version   Visualization version   GIF version

Theorem h2hsm 29316
Description: The scalar product operation of Hilbert space. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
h2h.1 𝑈 = ⟨⟨ + , · ⟩, norm
h2h.2 𝑈 ∈ NrmCVec
Assertion
Ref Expression
h2hsm · = ( ·𝑠OLD𝑈)

Proof of Theorem h2hsm
StepHypRef Expression
1 eqid 2739 . . . 4 ( ·𝑠OLD ‘⟨⟨ + , · ⟩, norm⟩) = ( ·𝑠OLD ‘⟨⟨ + , · ⟩, norm⟩)
21smfval 28946 . . 3 ( ·𝑠OLD ‘⟨⟨ + , · ⟩, norm⟩) = (2nd ‘(1st ‘⟨⟨ + , · ⟩, norm⟩))
3 opex 5381 . . . . 5 ⟨ + , · ⟩ ∈ V
4 h2h.1 . . . . . . . 8 𝑈 = ⟨⟨ + , · ⟩, norm
5 h2h.2 . . . . . . . 8 𝑈 ∈ NrmCVec
64, 5eqeltrri 2837 . . . . . . 7 ⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec
7 nvex 28952 . . . . . . 7 (⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec → ( + ∈ V ∧ · ∈ V ∧ norm ∈ V))
86, 7ax-mp 5 . . . . . 6 ( + ∈ V ∧ · ∈ V ∧ norm ∈ V)
98simp3i 1139 . . . . 5 norm ∈ V
103, 9op1st 7825 . . . 4 (1st ‘⟨⟨ + , · ⟩, norm⟩) = ⟨ + , ·
1110fveq2i 6771 . . 3 (2nd ‘(1st ‘⟨⟨ + , · ⟩, norm⟩)) = (2nd ‘⟨ + , · ⟩)
128simp1i 1137 . . . 4 + ∈ V
138simp2i 1138 . . . 4 · ∈ V
1412, 13op2nd 7826 . . 3 (2nd ‘⟨ + , · ⟩) = ·
152, 11, 143eqtrri 2772 . 2 · = ( ·𝑠OLD ‘⟨⟨ + , · ⟩, norm⟩)
164fveq2i 6771 . 2 ( ·𝑠OLD𝑈) = ( ·𝑠OLD ‘⟨⟨ + , · ⟩, norm⟩)
1715, 16eqtr4i 2770 1 · = ( ·𝑠OLD𝑈)
Colors of variables: wff setvar class
Syntax hints:  w3a 1085   = wceq 1541  wcel 2109  Vcvv 3430  cop 4572  cfv 6430  1st c1st 7815  2nd c2nd 7816  NrmCVeccnv 28925   ·𝑠OLD cns 28928   + cva 29261   · csm 29262  normcno 29264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-fo 6436  df-fv 6438  df-oprab 7272  df-1st 7817  df-2nd 7818  df-vc 28900  df-nv 28933  df-sm 28938
This theorem is referenced by:  h2hvs  29318  axhfvmul-zf  29328  axhvmulid-zf  29329  axhvmulass-zf  29330  axhvdistr1-zf  29331  axhvdistr2-zf  29332  axhvmul0-zf  29333  axhis3-zf  29337  hhsm  29510
  Copyright terms: Public domain W3C validator