| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > h2hsm | Structured version Visualization version GIF version | ||
| Description: The scalar product operation of Hilbert space. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| h2h.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
| h2h.2 | ⊢ 𝑈 ∈ NrmCVec |
| Ref | Expression |
|---|---|
| h2hsm | ⊢ ·ℎ = ( ·𝑠OLD ‘𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . 4 ⊢ ( ·𝑠OLD ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) = ( ·𝑠OLD ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | |
| 2 | 1 | smfval 30583 | . . 3 ⊢ ( ·𝑠OLD ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) = (2nd ‘(1st ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)) |
| 3 | opex 5404 | . . . . 5 ⊢ 〈 +ℎ , ·ℎ 〉 ∈ V | |
| 4 | h2h.1 | . . . . . . . 8 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
| 5 | h2h.2 | . . . . . . . 8 ⊢ 𝑈 ∈ NrmCVec | |
| 6 | 4, 5 | eqeltrri 2828 | . . . . . . 7 ⊢ 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ∈ NrmCVec |
| 7 | nvex 30589 | . . . . . . 7 ⊢ (〈〈 +ℎ , ·ℎ 〉, normℎ〉 ∈ NrmCVec → ( +ℎ ∈ V ∧ ·ℎ ∈ V ∧ normℎ ∈ V)) | |
| 8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ ( +ℎ ∈ V ∧ ·ℎ ∈ V ∧ normℎ ∈ V) |
| 9 | 8 | simp3i 1141 | . . . . 5 ⊢ normℎ ∈ V |
| 10 | 3, 9 | op1st 7929 | . . . 4 ⊢ (1st ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) = 〈 +ℎ , ·ℎ 〉 |
| 11 | 10 | fveq2i 6825 | . . 3 ⊢ (2nd ‘(1st ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)) = (2nd ‘〈 +ℎ , ·ℎ 〉) |
| 12 | 8 | simp1i 1139 | . . . 4 ⊢ +ℎ ∈ V |
| 13 | 8 | simp2i 1140 | . . . 4 ⊢ ·ℎ ∈ V |
| 14 | 12, 13 | op2nd 7930 | . . 3 ⊢ (2nd ‘〈 +ℎ , ·ℎ 〉) = ·ℎ |
| 15 | 2, 11, 14 | 3eqtrri 2759 | . 2 ⊢ ·ℎ = ( ·𝑠OLD ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| 16 | 4 | fveq2i 6825 | . 2 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| 17 | 15, 16 | eqtr4i 2757 | 1 ⊢ ·ℎ = ( ·𝑠OLD ‘𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 Vcvv 3436 〈cop 4582 ‘cfv 6481 1st c1st 7919 2nd c2nd 7920 NrmCVeccnv 30562 ·𝑠OLD cns 30565 +ℎ cva 30898 ·ℎ csm 30899 normℎcno 30901 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fo 6487 df-fv 6489 df-oprab 7350 df-1st 7921 df-2nd 7922 df-vc 30537 df-nv 30570 df-sm 30575 |
| This theorem is referenced by: h2hvs 30955 axhfvmul-zf 30965 axhvmulid-zf 30966 axhvmulass-zf 30967 axhvdistr1-zf 30968 axhvdistr2-zf 30969 axhvmul0-zf 30970 axhis3-zf 30974 hhsm 31147 |
| Copyright terms: Public domain | W3C validator |