Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > h2hsm | Structured version Visualization version GIF version |
Description: The scalar product operation of Hilbert space. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
h2h.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
h2h.2 | ⊢ 𝑈 ∈ NrmCVec |
Ref | Expression |
---|---|
h2hsm | ⊢ ·ℎ = ( ·𝑠OLD ‘𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . . 4 ⊢ ( ·𝑠OLD ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) = ( ·𝑠OLD ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | |
2 | 1 | smfval 29016 | . . 3 ⊢ ( ·𝑠OLD ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) = (2nd ‘(1st ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)) |
3 | opex 5392 | . . . . 5 ⊢ 〈 +ℎ , ·ℎ 〉 ∈ V | |
4 | h2h.1 | . . . . . . . 8 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
5 | h2h.2 | . . . . . . . 8 ⊢ 𝑈 ∈ NrmCVec | |
6 | 4, 5 | eqeltrri 2834 | . . . . . . 7 ⊢ 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ∈ NrmCVec |
7 | nvex 29022 | . . . . . . 7 ⊢ (〈〈 +ℎ , ·ℎ 〉, normℎ〉 ∈ NrmCVec → ( +ℎ ∈ V ∧ ·ℎ ∈ V ∧ normℎ ∈ V)) | |
8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ ( +ℎ ∈ V ∧ ·ℎ ∈ V ∧ normℎ ∈ V) |
9 | 8 | simp3i 1141 | . . . . 5 ⊢ normℎ ∈ V |
10 | 3, 9 | op1st 7871 | . . . 4 ⊢ (1st ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) = 〈 +ℎ , ·ℎ 〉 |
11 | 10 | fveq2i 6807 | . . 3 ⊢ (2nd ‘(1st ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)) = (2nd ‘〈 +ℎ , ·ℎ 〉) |
12 | 8 | simp1i 1139 | . . . 4 ⊢ +ℎ ∈ V |
13 | 8 | simp2i 1140 | . . . 4 ⊢ ·ℎ ∈ V |
14 | 12, 13 | op2nd 7872 | . . 3 ⊢ (2nd ‘〈 +ℎ , ·ℎ 〉) = ·ℎ |
15 | 2, 11, 14 | 3eqtrri 2769 | . 2 ⊢ ·ℎ = ( ·𝑠OLD ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
16 | 4 | fveq2i 6807 | . 2 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
17 | 15, 16 | eqtr4i 2767 | 1 ⊢ ·ℎ = ( ·𝑠OLD ‘𝑈) |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 Vcvv 3437 〈cop 4571 ‘cfv 6458 1st c1st 7861 2nd c2nd 7862 NrmCVeccnv 28995 ·𝑠OLD cns 28998 +ℎ cva 29331 ·ℎ csm 29332 normℎcno 29334 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-fo 6464 df-fv 6466 df-oprab 7311 df-1st 7863 df-2nd 7864 df-vc 28970 df-nv 29003 df-sm 29008 |
This theorem is referenced by: h2hvs 29388 axhfvmul-zf 29398 axhvmulid-zf 29399 axhvmulass-zf 29400 axhvdistr1-zf 29401 axhvdistr2-zf 29402 axhvmul0-zf 29403 axhis3-zf 29407 hhsm 29580 |
Copyright terms: Public domain | W3C validator |