![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > h2hsm | Structured version Visualization version GIF version |
Description: The scalar product operation of Hilbert space. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
h2h.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
h2h.2 | ⊢ 𝑈 ∈ NrmCVec |
Ref | Expression |
---|---|
h2hsm | ⊢ ·ℎ = ( ·𝑠OLD ‘𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . . 4 ⊢ ( ·𝑠OLD ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) = ( ·𝑠OLD ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | |
2 | 1 | smfval 30634 | . . 3 ⊢ ( ·𝑠OLD ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) = (2nd ‘(1st ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)) |
3 | opex 5475 | . . . . 5 ⊢ 〈 +ℎ , ·ℎ 〉 ∈ V | |
4 | h2h.1 | . . . . . . . 8 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
5 | h2h.2 | . . . . . . . 8 ⊢ 𝑈 ∈ NrmCVec | |
6 | 4, 5 | eqeltrri 2836 | . . . . . . 7 ⊢ 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ∈ NrmCVec |
7 | nvex 30640 | . . . . . . 7 ⊢ (〈〈 +ℎ , ·ℎ 〉, normℎ〉 ∈ NrmCVec → ( +ℎ ∈ V ∧ ·ℎ ∈ V ∧ normℎ ∈ V)) | |
8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ ( +ℎ ∈ V ∧ ·ℎ ∈ V ∧ normℎ ∈ V) |
9 | 8 | simp3i 1140 | . . . . 5 ⊢ normℎ ∈ V |
10 | 3, 9 | op1st 8021 | . . . 4 ⊢ (1st ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) = 〈 +ℎ , ·ℎ 〉 |
11 | 10 | fveq2i 6910 | . . 3 ⊢ (2nd ‘(1st ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)) = (2nd ‘〈 +ℎ , ·ℎ 〉) |
12 | 8 | simp1i 1138 | . . . 4 ⊢ +ℎ ∈ V |
13 | 8 | simp2i 1139 | . . . 4 ⊢ ·ℎ ∈ V |
14 | 12, 13 | op2nd 8022 | . . 3 ⊢ (2nd ‘〈 +ℎ , ·ℎ 〉) = ·ℎ |
15 | 2, 11, 14 | 3eqtrri 2768 | . 2 ⊢ ·ℎ = ( ·𝑠OLD ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
16 | 4 | fveq2i 6910 | . 2 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
17 | 15, 16 | eqtr4i 2766 | 1 ⊢ ·ℎ = ( ·𝑠OLD ‘𝑈) |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 Vcvv 3478 〈cop 4637 ‘cfv 6563 1st c1st 8011 2nd c2nd 8012 NrmCVeccnv 30613 ·𝑠OLD cns 30616 +ℎ cva 30949 ·ℎ csm 30950 normℎcno 30952 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fo 6569 df-fv 6571 df-oprab 7435 df-1st 8013 df-2nd 8014 df-vc 30588 df-nv 30621 df-sm 30626 |
This theorem is referenced by: h2hvs 31006 axhfvmul-zf 31016 axhvmulid-zf 31017 axhvmulass-zf 31018 axhvdistr1-zf 31019 axhvdistr2-zf 31020 axhvmul0-zf 31021 axhis3-zf 31025 hhsm 31198 |
Copyright terms: Public domain | W3C validator |