MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgslem4 Structured version   Visualization version   GIF version

Theorem lgslem4 26554
Description: Lemma for lgsfcl2 26557. (Contributed by Mario Carneiro, 4-Feb-2015.) (Proof shortened by AV, 19-Mar-2022.)
Hypothesis
Ref Expression
lgslem2.z 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1}
Assertion
Ref Expression
lgslem4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) ∈ 𝑍)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝑃(𝑥)   𝑍(𝑥)

Proof of Theorem lgslem4
StepHypRef Expression
1 eldifi 4078 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
21adantl 483 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑃 ∈ ℙ)
3 simpl 484 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝐴 ∈ ℤ)
4 oddprm 16609 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
54adantl 483 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝑃 − 1) / 2) ∈ ℕ)
6 prmdvdsexp 16518 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℕ) → (𝑃 ∥ (𝐴↑((𝑃 − 1) / 2)) ↔ 𝑃𝐴))
72, 3, 5, 6syl3anc 1371 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃 ∥ (𝐴↑((𝑃 − 1) / 2)) ↔ 𝑃𝐴))
87biimpar 479 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → 𝑃 ∥ (𝐴↑((𝑃 − 1) / 2)))
9 prmgt1 16500 . . . . . . 7 (𝑃 ∈ ℙ → 1 < 𝑃)
101, 9syl 17 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → 1 < 𝑃)
1110ad2antlr 725 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → 1 < 𝑃)
12 p1modz1 16070 . . . . 5 ((𝑃 ∥ (𝐴↑((𝑃 − 1) / 2)) ∧ 1 < 𝑃) → (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 1)
138, 11, 12syl2anc 585 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 1)
1413oveq1d 7357 . . 3 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) = (1 − 1))
15 1m1e0 12151 . . . 4 (1 − 1) = 0
16 lgslem2.z . . . . . 6 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1}
1716lgslem2 26552 . . . . 5 (-1 ∈ 𝑍 ∧ 0 ∈ 𝑍 ∧ 1 ∈ 𝑍)
1817simp2i 1140 . . . 4 0 ∈ 𝑍
1915, 18eqeltri 2834 . . 3 (1 − 1) ∈ 𝑍
2014, 19eqeltrdi 2846 . 2 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) ∈ 𝑍)
21 lgslem1 26551 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ∈ {0, 2})
22 elpri 4600 . . . 4 ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ∈ {0, 2} → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 0 ∨ (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 2))
23 oveq1 7349 . . . . . 6 ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 0 → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) = (0 − 1))
24 df-neg 11314 . . . . . . 7 -1 = (0 − 1)
2517simp1i 1139 . . . . . . 7 -1 ∈ 𝑍
2624, 25eqeltrri 2835 . . . . . 6 (0 − 1) ∈ 𝑍
2723, 26eqeltrdi 2846 . . . . 5 ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 0 → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) ∈ 𝑍)
28 oveq1 7349 . . . . . 6 ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 2 → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) = (2 − 1))
29 2m1e1 12205 . . . . . . 7 (2 − 1) = 1
3017simp3i 1141 . . . . . . 7 1 ∈ 𝑍
3129, 30eqeltri 2834 . . . . . 6 (2 − 1) ∈ 𝑍
3228, 31eqeltrdi 2846 . . . . 5 ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 2 → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) ∈ 𝑍)
3327, 32jaoi 855 . . . 4 (((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 0 ∨ (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 2) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) ∈ 𝑍)
3421, 22, 333syl 18 . . 3 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) ∈ 𝑍)
35343expa 1118 . 2 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) ∈ 𝑍)
3620, 35pm2.61dan 811 1 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) ∈ 𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 845  w3a 1087   = wceq 1541  wcel 2106  {crab 3404  cdif 3899  {csn 4578  {cpr 4580   class class class wbr 5097  cfv 6484  (class class class)co 7342  0cc0 10977  1c1 10978   + caddc 10980   < clt 11115  cle 11116  cmin 11311  -cneg 11312   / cdiv 11738  cn 12079  2c2 12134  cz 12425   mod cmo 13695  cexp 13888  abscabs 15045  cdvds 16063  cprime 16474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5234  ax-sep 5248  ax-nul 5255  ax-pow 5313  ax-pr 5377  ax-un 7655  ax-cnex 11033  ax-resscn 11034  ax-1cn 11035  ax-icn 11036  ax-addcl 11037  ax-addrcl 11038  ax-mulcl 11039  ax-mulrcl 11040  ax-mulcom 11041  ax-addass 11042  ax-mulass 11043  ax-distr 11044  ax-i2m1 11045  ax-1ne0 11046  ax-1rid 11047  ax-rnegex 11048  ax-rrecex 11049  ax-cnre 11050  ax-pre-lttri 11051  ax-pre-lttrn 11052  ax-pre-ltadd 11053  ax-pre-mulgt0 11054  ax-pre-sup 11055
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3921  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-int 4900  df-iun 4948  df-br 5098  df-opab 5160  df-mpt 5181  df-tr 5215  df-id 5523  df-eprel 5529  df-po 5537  df-so 5538  df-fr 5580  df-we 5582  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-pred 6243  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-f1 6489  df-fo 6490  df-f1o 6491  df-fv 6492  df-riota 7298  df-ov 7345  df-oprab 7346  df-mpo 7347  df-om 7786  df-1st 7904  df-2nd 7905  df-frecs 8172  df-wrecs 8203  df-recs 8277  df-rdg 8316  df-1o 8372  df-2o 8373  df-oadd 8376  df-er 8574  df-en 8810  df-dom 8811  df-sdom 8812  df-fin 8813  df-sup 9304  df-inf 9305  df-dju 9763  df-card 9801  df-pnf 11117  df-mnf 11118  df-xr 11119  df-ltxr 11120  df-le 11121  df-sub 11313  df-neg 11314  df-div 11739  df-nn 12080  df-2 12142  df-3 12143  df-n0 12340  df-xnn0 12412  df-z 12426  df-uz 12689  df-rp 12837  df-fz 13346  df-fzo 13489  df-fl 13618  df-mod 13696  df-seq 13828  df-exp 13889  df-hash 14151  df-cj 14910  df-re 14911  df-im 14912  df-sqrt 15046  df-abs 15047  df-dvds 16064  df-gcd 16302  df-prm 16475  df-phi 16565
This theorem is referenced by:  lgsfcl2  26557
  Copyright terms: Public domain W3C validator