![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lgslem4 | Structured version Visualization version GIF version |
Description: Lemma for lgsfcl2 27186. (Contributed by Mario Carneiro, 4-Feb-2015.) (Proof shortened by AV, 19-Mar-2022.) |
Ref | Expression |
---|---|
lgslem2.z | ⊢ 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} |
Ref | Expression |
---|---|
lgslem4 | ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) ∈ 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifi 4121 | . . . . . . . 8 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ) | |
2 | 1 | adantl 481 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑃 ∈ ℙ) |
3 | simpl 482 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝐴 ∈ ℤ) | |
4 | oddprm 16749 | . . . . . . . 8 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ) | |
5 | 4 | adantl 481 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝑃 − 1) / 2) ∈ ℕ) |
6 | prmdvdsexp 16656 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℕ) → (𝑃 ∥ (𝐴↑((𝑃 − 1) / 2)) ↔ 𝑃 ∥ 𝐴)) | |
7 | 2, 3, 5, 6 | syl3anc 1368 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃 ∥ (𝐴↑((𝑃 − 1) / 2)) ↔ 𝑃 ∥ 𝐴)) |
8 | 7 | biimpar 477 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃 ∥ 𝐴) → 𝑃 ∥ (𝐴↑((𝑃 − 1) / 2))) |
9 | prmgt1 16638 | . . . . . . 7 ⊢ (𝑃 ∈ ℙ → 1 < 𝑃) | |
10 | 1, 9 | syl 17 | . . . . . 6 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → 1 < 𝑃) |
11 | 10 | ad2antlr 724 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃 ∥ 𝐴) → 1 < 𝑃) |
12 | p1modz1 16208 | . . . . 5 ⊢ ((𝑃 ∥ (𝐴↑((𝑃 − 1) / 2)) ∧ 1 < 𝑃) → (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 1) | |
13 | 8, 11, 12 | syl2anc 583 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃 ∥ 𝐴) → (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 1) |
14 | 13 | oveq1d 7419 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃 ∥ 𝐴) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) = (1 − 1)) |
15 | 1m1e0 12285 | . . . 4 ⊢ (1 − 1) = 0 | |
16 | lgslem2.z | . . . . . 6 ⊢ 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} | |
17 | 16 | lgslem2 27181 | . . . . 5 ⊢ (-1 ∈ 𝑍 ∧ 0 ∈ 𝑍 ∧ 1 ∈ 𝑍) |
18 | 17 | simp2i 1137 | . . . 4 ⊢ 0 ∈ 𝑍 |
19 | 15, 18 | eqeltri 2823 | . . 3 ⊢ (1 − 1) ∈ 𝑍 |
20 | 14, 19 | eqeltrdi 2835 | . 2 ⊢ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃 ∥ 𝐴) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) ∈ 𝑍) |
21 | lgslem1 27180 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃 ∥ 𝐴) → (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ∈ {0, 2}) | |
22 | elpri 4645 | . . . 4 ⊢ ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ∈ {0, 2} → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 0 ∨ (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 2)) | |
23 | oveq1 7411 | . . . . . 6 ⊢ ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 0 → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) = (0 − 1)) | |
24 | df-neg 11448 | . . . . . . 7 ⊢ -1 = (0 − 1) | |
25 | 17 | simp1i 1136 | . . . . . . 7 ⊢ -1 ∈ 𝑍 |
26 | 24, 25 | eqeltrri 2824 | . . . . . 6 ⊢ (0 − 1) ∈ 𝑍 |
27 | 23, 26 | eqeltrdi 2835 | . . . . 5 ⊢ ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 0 → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) ∈ 𝑍) |
28 | oveq1 7411 | . . . . . 6 ⊢ ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 2 → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) = (2 − 1)) | |
29 | 2m1e1 12339 | . . . . . . 7 ⊢ (2 − 1) = 1 | |
30 | 17 | simp3i 1138 | . . . . . . 7 ⊢ 1 ∈ 𝑍 |
31 | 29, 30 | eqeltri 2823 | . . . . . 6 ⊢ (2 − 1) ∈ 𝑍 |
32 | 28, 31 | eqeltrdi 2835 | . . . . 5 ⊢ ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 2 → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) ∈ 𝑍) |
33 | 27, 32 | jaoi 854 | . . . 4 ⊢ (((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 0 ∨ (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 2) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) ∈ 𝑍) |
34 | 21, 22, 33 | 3syl 18 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃 ∥ 𝐴) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) ∈ 𝑍) |
35 | 34 | 3expa 1115 | . 2 ⊢ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃 ∥ 𝐴) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) ∈ 𝑍) |
36 | 20, 35 | pm2.61dan 810 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) ∈ 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 844 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 {crab 3426 ∖ cdif 3940 {csn 4623 {cpr 4625 class class class wbr 5141 ‘cfv 6536 (class class class)co 7404 0cc0 11109 1c1 11110 + caddc 11112 < clt 11249 ≤ cle 11250 − cmin 11445 -cneg 11446 / cdiv 11872 ℕcn 12213 2c2 12268 ℤcz 12559 mod cmo 13837 ↑cexp 14029 abscabs 15184 ∥ cdvds 16201 ℙcprime 16612 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-2o 8465 df-oadd 8468 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-sup 9436 df-inf 9437 df-dju 9895 df-card 9933 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-div 11873 df-nn 12214 df-2 12276 df-3 12277 df-n0 12474 df-xnn0 12546 df-z 12560 df-uz 12824 df-rp 12978 df-fz 13488 df-fzo 13631 df-fl 13760 df-mod 13838 df-seq 13970 df-exp 14030 df-hash 14293 df-cj 15049 df-re 15050 df-im 15051 df-sqrt 15185 df-abs 15186 df-dvds 16202 df-gcd 16440 df-prm 16613 df-phi 16705 |
This theorem is referenced by: lgsfcl2 27186 |
Copyright terms: Public domain | W3C validator |