| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lgslem4 | Structured version Visualization version GIF version | ||
| Description: Lemma for lgsfcl2 27214. (Contributed by Mario Carneiro, 4-Feb-2015.) (Proof shortened by AV, 19-Mar-2022.) |
| Ref | Expression |
|---|---|
| lgslem2.z | ⊢ 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} |
| Ref | Expression |
|---|---|
| lgslem4 | ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) ∈ 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifi 4094 | . . . . . . . 8 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ) | |
| 2 | 1 | adantl 481 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑃 ∈ ℙ) |
| 3 | simpl 482 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝐴 ∈ ℤ) | |
| 4 | oddprm 16781 | . . . . . . . 8 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ) | |
| 5 | 4 | adantl 481 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝑃 − 1) / 2) ∈ ℕ) |
| 6 | prmdvdsexp 16685 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℕ) → (𝑃 ∥ (𝐴↑((𝑃 − 1) / 2)) ↔ 𝑃 ∥ 𝐴)) | |
| 7 | 2, 3, 5, 6 | syl3anc 1373 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃 ∥ (𝐴↑((𝑃 − 1) / 2)) ↔ 𝑃 ∥ 𝐴)) |
| 8 | 7 | biimpar 477 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃 ∥ 𝐴) → 𝑃 ∥ (𝐴↑((𝑃 − 1) / 2))) |
| 9 | prmgt1 16667 | . . . . . . 7 ⊢ (𝑃 ∈ ℙ → 1 < 𝑃) | |
| 10 | 1, 9 | syl 17 | . . . . . 6 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → 1 < 𝑃) |
| 11 | 10 | ad2antlr 727 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃 ∥ 𝐴) → 1 < 𝑃) |
| 12 | p1modz1 16229 | . . . . 5 ⊢ ((𝑃 ∥ (𝐴↑((𝑃 − 1) / 2)) ∧ 1 < 𝑃) → (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 1) | |
| 13 | 8, 11, 12 | syl2anc 584 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃 ∥ 𝐴) → (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 1) |
| 14 | 13 | oveq1d 7402 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃 ∥ 𝐴) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) = (1 − 1)) |
| 15 | 1m1e0 12258 | . . . 4 ⊢ (1 − 1) = 0 | |
| 16 | lgslem2.z | . . . . . 6 ⊢ 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} | |
| 17 | 16 | lgslem2 27209 | . . . . 5 ⊢ (-1 ∈ 𝑍 ∧ 0 ∈ 𝑍 ∧ 1 ∈ 𝑍) |
| 18 | 17 | simp2i 1140 | . . . 4 ⊢ 0 ∈ 𝑍 |
| 19 | 15, 18 | eqeltri 2824 | . . 3 ⊢ (1 − 1) ∈ 𝑍 |
| 20 | 14, 19 | eqeltrdi 2836 | . 2 ⊢ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃 ∥ 𝐴) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) ∈ 𝑍) |
| 21 | lgslem1 27208 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃 ∥ 𝐴) → (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ∈ {0, 2}) | |
| 22 | elpri 4613 | . . . 4 ⊢ ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ∈ {0, 2} → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 0 ∨ (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 2)) | |
| 23 | oveq1 7394 | . . . . . 6 ⊢ ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 0 → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) = (0 − 1)) | |
| 24 | df-neg 11408 | . . . . . . 7 ⊢ -1 = (0 − 1) | |
| 25 | 17 | simp1i 1139 | . . . . . . 7 ⊢ -1 ∈ 𝑍 |
| 26 | 24, 25 | eqeltrri 2825 | . . . . . 6 ⊢ (0 − 1) ∈ 𝑍 |
| 27 | 23, 26 | eqeltrdi 2836 | . . . . 5 ⊢ ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 0 → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) ∈ 𝑍) |
| 28 | oveq1 7394 | . . . . . 6 ⊢ ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 2 → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) = (2 − 1)) | |
| 29 | 2m1e1 12307 | . . . . . . 7 ⊢ (2 − 1) = 1 | |
| 30 | 17 | simp3i 1141 | . . . . . . 7 ⊢ 1 ∈ 𝑍 |
| 31 | 29, 30 | eqeltri 2824 | . . . . . 6 ⊢ (2 − 1) ∈ 𝑍 |
| 32 | 28, 31 | eqeltrdi 2836 | . . . . 5 ⊢ ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 2 → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) ∈ 𝑍) |
| 33 | 27, 32 | jaoi 857 | . . . 4 ⊢ (((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 0 ∨ (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 2) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) ∈ 𝑍) |
| 34 | 21, 22, 33 | 3syl 18 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃 ∥ 𝐴) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) ∈ 𝑍) |
| 35 | 34 | 3expa 1118 | . 2 ⊢ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃 ∥ 𝐴) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) ∈ 𝑍) |
| 36 | 20, 35 | pm2.61dan 812 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) ∈ 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {crab 3405 ∖ cdif 3911 {csn 4589 {cpr 4591 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 0cc0 11068 1c1 11069 + caddc 11071 < clt 11208 ≤ cle 11209 − cmin 11405 -cneg 11406 / cdiv 11835 ℕcn 12186 2c2 12241 ℤcz 12529 mod cmo 13831 ↑cexp 14026 abscabs 15200 ∥ cdvds 16222 ℙcprime 16641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-dju 9854 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-xnn0 12516 df-z 12530 df-uz 12794 df-rp 12952 df-fz 13469 df-fzo 13616 df-fl 13754 df-mod 13832 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-dvds 16223 df-gcd 16465 df-prm 16642 df-phi 16736 |
| This theorem is referenced by: lgsfcl2 27214 |
| Copyright terms: Public domain | W3C validator |