| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lgscllem | Structured version Visualization version GIF version | ||
| Description: The Legendre symbol is an element of 𝑍. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| Ref | Expression |
|---|---|
| lgsval.1 | ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1)) |
| lgsfcl2.z | ⊢ 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} |
| Ref | Expression |
|---|---|
| lgscllem | ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lgsval.1 | . . 3 ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1)) | |
| 2 | 1 | lgsval 27259 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) = if(𝑁 = 0, if((𝐴↑2) = 1, 1, 0), (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁))))) |
| 3 | lgsfcl2.z | . . . . . . 7 ⊢ 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} | |
| 4 | 3 | lgslem2 27256 | . . . . . 6 ⊢ (-1 ∈ 𝑍 ∧ 0 ∈ 𝑍 ∧ 1 ∈ 𝑍) |
| 5 | 4 | simp3i 1141 | . . . . 5 ⊢ 1 ∈ 𝑍 |
| 6 | 4 | simp2i 1140 | . . . . 5 ⊢ 0 ∈ 𝑍 |
| 7 | 5, 6 | ifcli 4524 | . . . 4 ⊢ if((𝐴↑2) = 1, 1, 0) ∈ 𝑍 |
| 8 | 7 | a1i 11 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → if((𝐴↑2) = 1, 1, 0) ∈ 𝑍) |
| 9 | 4 | simp1i 1139 | . . . . 5 ⊢ -1 ∈ 𝑍 |
| 10 | 9, 5 | ifcli 4524 | . . . 4 ⊢ if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ∈ 𝑍 |
| 11 | simplr 768 | . . . . . . 7 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → 𝑁 ∈ ℤ) | |
| 12 | simpr 484 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → ¬ 𝑁 = 0) | |
| 13 | 12 | neqned 2936 | . . . . . . 7 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → 𝑁 ≠ 0) |
| 14 | nnabscl 15240 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ ℕ) | |
| 15 | 11, 13, 14 | syl2anc 584 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → (abs‘𝑁) ∈ ℕ) |
| 16 | nnuz 12781 | . . . . . 6 ⊢ ℕ = (ℤ≥‘1) | |
| 17 | 15, 16 | eleqtrdi 2843 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → (abs‘𝑁) ∈ (ℤ≥‘1)) |
| 18 | df-ne 2930 | . . . . . . 7 ⊢ (𝑁 ≠ 0 ↔ ¬ 𝑁 = 0) | |
| 19 | 1, 3 | lgsfcl2 27261 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐹:ℕ⟶𝑍) |
| 20 | 19 | 3expa 1118 | . . . . . . 7 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → 𝐹:ℕ⟶𝑍) |
| 21 | 18, 20 | sylan2br 595 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → 𝐹:ℕ⟶𝑍) |
| 22 | elfznn 13460 | . . . . . 6 ⊢ (𝑦 ∈ (1...(abs‘𝑁)) → 𝑦 ∈ ℕ) | |
| 23 | ffvelcdm 7023 | . . . . . 6 ⊢ ((𝐹:ℕ⟶𝑍 ∧ 𝑦 ∈ ℕ) → (𝐹‘𝑦) ∈ 𝑍) | |
| 24 | 21, 22, 23 | syl2an 596 | . . . . 5 ⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) ∧ 𝑦 ∈ (1...(abs‘𝑁))) → (𝐹‘𝑦) ∈ 𝑍) |
| 25 | 3 | lgslem3 27257 | . . . . . 6 ⊢ ((𝑦 ∈ 𝑍 ∧ 𝑧 ∈ 𝑍) → (𝑦 · 𝑧) ∈ 𝑍) |
| 26 | 25 | adantl 481 | . . . . 5 ⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) ∧ (𝑦 ∈ 𝑍 ∧ 𝑧 ∈ 𝑍)) → (𝑦 · 𝑧) ∈ 𝑍) |
| 27 | 17, 24, 26 | seqcl 13936 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → (seq1( · , 𝐹)‘(abs‘𝑁)) ∈ 𝑍) |
| 28 | 3 | lgslem3 27257 | . . . 4 ⊢ ((if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ∈ 𝑍 ∧ (seq1( · , 𝐹)‘(abs‘𝑁)) ∈ 𝑍) → (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁))) ∈ 𝑍) |
| 29 | 10, 27, 28 | sylancr 587 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁))) ∈ 𝑍) |
| 30 | 8, 29 | ifclda 4512 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → if(𝑁 = 0, if((𝐴↑2) = 1, 1, 0), (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁)))) ∈ 𝑍) |
| 31 | 2, 30 | eqeltrd 2833 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 {crab 3396 ifcif 4476 {cpr 4579 class class class wbr 5095 ↦ cmpt 5176 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 0cc0 11017 1c1 11018 + caddc 11020 · cmul 11022 < clt 11157 ≤ cle 11158 − cmin 11355 -cneg 11356 / cdiv 11785 ℕcn 12136 2c2 12191 7c7 12196 8c8 12197 ℤcz 12479 ℤ≥cuz 12742 ...cfz 13414 mod cmo 13780 seqcseq 13915 ↑cexp 13975 abscabs 15148 ∥ cdvds 16170 ℙcprime 16589 pCnt cpc 16755 /L clgs 27252 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-oadd 8398 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9337 df-inf 9338 df-dju 9805 df-card 9843 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-3 12200 df-n0 12393 df-xnn0 12466 df-z 12480 df-uz 12743 df-q 12853 df-rp 12897 df-fz 13415 df-fzo 13562 df-fl 13703 df-mod 13781 df-seq 13916 df-exp 13976 df-hash 14245 df-cj 15013 df-re 15014 df-im 15015 df-sqrt 15149 df-abs 15150 df-dvds 16171 df-gcd 16413 df-prm 16590 df-phi 16684 df-pc 16756 df-lgs 27253 |
| This theorem is referenced by: lgscl2 27267 |
| Copyright terms: Public domain | W3C validator |