MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgscllem Structured version   Visualization version   GIF version

Theorem lgscllem 25249
Description: The Legendre symbol is an element of 𝑍. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypotheses
Ref Expression
lgsval.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1))
lgsfcl2.z 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1}
Assertion
Ref Expression
lgscllem ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ 𝑍)
Distinct variable groups:   𝑥,𝑛,𝐴   𝑥,𝐹   𝑛,𝑁,𝑥   𝑛,𝑍
Allowed substitution hints:   𝐹(𝑛)   𝑍(𝑥)

Proof of Theorem lgscllem
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lgsval.1 . . 3 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1))
21lgsval 25246 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) = if(𝑁 = 0, if((𝐴↑2) = 1, 1, 0), (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁)))))
3 lgsfcl2.z . . . . . . 7 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1}
43lgslem2 25243 . . . . . 6 (-1 ∈ 𝑍 ∧ 0 ∈ 𝑍 ∧ 1 ∈ 𝑍)
54simp3i 1135 . . . . 5 1 ∈ 𝑍
64simp2i 1134 . . . . 5 0 ∈ 𝑍
75, 6keepel 4295 . . . 4 if((𝐴↑2) = 1, 1, 0) ∈ 𝑍
87a1i 11 . . 3 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → if((𝐴↑2) = 1, 1, 0) ∈ 𝑍)
94simp1i 1133 . . . . 5 -1 ∈ 𝑍
109, 5keepel 4295 . . . 4 if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ∈ 𝑍
11 simplr 752 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → 𝑁 ∈ ℤ)
12 simpr 471 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → ¬ 𝑁 = 0)
1312neqned 2950 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → 𝑁 ≠ 0)
14 nnabscl 14272 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ ℕ)
1511, 13, 14syl2anc 573 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → (abs‘𝑁) ∈ ℕ)
16 nnuz 11929 . . . . . 6 ℕ = (ℤ‘1)
1715, 16syl6eleq 2860 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → (abs‘𝑁) ∈ (ℤ‘1))
18 df-ne 2944 . . . . . . 7 (𝑁 ≠ 0 ↔ ¬ 𝑁 = 0)
191, 3lgsfcl2 25248 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐹:ℕ⟶𝑍)
20193expa 1111 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → 𝐹:ℕ⟶𝑍)
2118, 20sylan2br 582 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → 𝐹:ℕ⟶𝑍)
22 elfznn 12576 . . . . . 6 (𝑦 ∈ (1...(abs‘𝑁)) → 𝑦 ∈ ℕ)
23 ffvelrn 6502 . . . . . 6 ((𝐹:ℕ⟶𝑍𝑦 ∈ ℕ) → (𝐹𝑦) ∈ 𝑍)
2421, 22, 23syl2an 583 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) ∧ 𝑦 ∈ (1...(abs‘𝑁))) → (𝐹𝑦) ∈ 𝑍)
253lgslem3 25244 . . . . . 6 ((𝑦𝑍𝑧𝑍) → (𝑦 · 𝑧) ∈ 𝑍)
2625adantl 467 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) ∧ (𝑦𝑍𝑧𝑍)) → (𝑦 · 𝑧) ∈ 𝑍)
2717, 24, 26seqcl 13027 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → (seq1( · , 𝐹)‘(abs‘𝑁)) ∈ 𝑍)
283lgslem3 25244 . . . 4 ((if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ∈ 𝑍 ∧ (seq1( · , 𝐹)‘(abs‘𝑁)) ∈ 𝑍) → (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁))) ∈ 𝑍)
2910, 27, 28sylancr 575 . . 3 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁))) ∈ 𝑍)
308, 29ifclda 4260 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → if(𝑁 = 0, if((𝐴↑2) = 1, 1, 0), (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁)))) ∈ 𝑍)
312, 30eqeltrd 2850 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ 𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382   = wceq 1631  wcel 2145  wne 2943  {crab 3065  ifcif 4226  {cpr 4319   class class class wbr 4787  cmpt 4864  wf 6026  cfv 6030  (class class class)co 6795  0cc0 10141  1c1 10142   + caddc 10144   · cmul 10146   < clt 10279  cle 10280  cmin 10471  -cneg 10472   / cdiv 10889  cn 11225  2c2 11275  7c7 11280  8c8 11281  cz 11583  cuz 11892  ...cfz 12532   mod cmo 12875  seqcseq 13007  cexp 13066  abscabs 14181  cdvds 15188  cprime 15591   pCnt cpc 15747   /L clgs 25239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7099  ax-cnex 10197  ax-resscn 10198  ax-1cn 10199  ax-icn 10200  ax-addcl 10201  ax-addrcl 10202  ax-mulcl 10203  ax-mulrcl 10204  ax-mulcom 10205  ax-addass 10206  ax-mulass 10207  ax-distr 10208  ax-i2m1 10209  ax-1ne0 10210  ax-1rid 10211  ax-rnegex 10212  ax-rrecex 10213  ax-cnre 10214  ax-pre-lttri 10215  ax-pre-lttrn 10216  ax-pre-ltadd 10217  ax-pre-mulgt0 10218  ax-pre-sup 10219
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6756  df-ov 6798  df-oprab 6799  df-mpt2 6800  df-om 7216  df-1st 7318  df-2nd 7319  df-wrecs 7562  df-recs 7624  df-rdg 7662  df-1o 7716  df-2o 7717  df-oadd 7720  df-er 7899  df-map 8014  df-en 8113  df-dom 8114  df-sdom 8115  df-fin 8116  df-sup 8507  df-inf 8508  df-card 8968  df-cda 9195  df-pnf 10281  df-mnf 10282  df-xr 10283  df-ltxr 10284  df-le 10285  df-sub 10473  df-neg 10474  df-div 10890  df-nn 11226  df-2 11284  df-3 11285  df-n0 11499  df-xnn0 11570  df-z 11584  df-uz 11893  df-q 11996  df-rp 12035  df-fz 12533  df-fzo 12673  df-fl 12800  df-mod 12876  df-seq 13008  df-exp 13067  df-hash 13321  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-dvds 15189  df-gcd 15424  df-prm 15592  df-phi 15677  df-pc 15748  df-lgs 25240
This theorem is referenced by:  lgscl2  25254
  Copyright terms: Public domain W3C validator