![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lgscllem | Structured version Visualization version GIF version |
Description: The Legendre symbol is an element of 𝑍. (Contributed by Mario Carneiro, 4-Feb-2015.) |
Ref | Expression |
---|---|
lgsval.1 | ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1)) |
lgsfcl2.z | ⊢ 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} |
Ref | Expression |
---|---|
lgscllem | ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lgsval.1 | . . 3 ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1)) | |
2 | 1 | lgsval 27363 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) = if(𝑁 = 0, if((𝐴↑2) = 1, 1, 0), (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁))))) |
3 | lgsfcl2.z | . . . . . . 7 ⊢ 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} | |
4 | 3 | lgslem2 27360 | . . . . . 6 ⊢ (-1 ∈ 𝑍 ∧ 0 ∈ 𝑍 ∧ 1 ∈ 𝑍) |
5 | 4 | simp3i 1141 | . . . . 5 ⊢ 1 ∈ 𝑍 |
6 | 4 | simp2i 1140 | . . . . 5 ⊢ 0 ∈ 𝑍 |
7 | 5, 6 | ifcli 4595 | . . . 4 ⊢ if((𝐴↑2) = 1, 1, 0) ∈ 𝑍 |
8 | 7 | a1i 11 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → if((𝐴↑2) = 1, 1, 0) ∈ 𝑍) |
9 | 4 | simp1i 1139 | . . . . 5 ⊢ -1 ∈ 𝑍 |
10 | 9, 5 | ifcli 4595 | . . . 4 ⊢ if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ∈ 𝑍 |
11 | simplr 768 | . . . . . . 7 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → 𝑁 ∈ ℤ) | |
12 | simpr 484 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → ¬ 𝑁 = 0) | |
13 | 12 | neqned 2953 | . . . . . . 7 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → 𝑁 ≠ 0) |
14 | nnabscl 15374 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ ℕ) | |
15 | 11, 13, 14 | syl2anc 583 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → (abs‘𝑁) ∈ ℕ) |
16 | nnuz 12946 | . . . . . 6 ⊢ ℕ = (ℤ≥‘1) | |
17 | 15, 16 | eleqtrdi 2854 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → (abs‘𝑁) ∈ (ℤ≥‘1)) |
18 | df-ne 2947 | . . . . . . 7 ⊢ (𝑁 ≠ 0 ↔ ¬ 𝑁 = 0) | |
19 | 1, 3 | lgsfcl2 27365 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐹:ℕ⟶𝑍) |
20 | 19 | 3expa 1118 | . . . . . . 7 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → 𝐹:ℕ⟶𝑍) |
21 | 18, 20 | sylan2br 594 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → 𝐹:ℕ⟶𝑍) |
22 | elfznn 13613 | . . . . . 6 ⊢ (𝑦 ∈ (1...(abs‘𝑁)) → 𝑦 ∈ ℕ) | |
23 | ffvelcdm 7115 | . . . . . 6 ⊢ ((𝐹:ℕ⟶𝑍 ∧ 𝑦 ∈ ℕ) → (𝐹‘𝑦) ∈ 𝑍) | |
24 | 21, 22, 23 | syl2an 595 | . . . . 5 ⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) ∧ 𝑦 ∈ (1...(abs‘𝑁))) → (𝐹‘𝑦) ∈ 𝑍) |
25 | 3 | lgslem3 27361 | . . . . . 6 ⊢ ((𝑦 ∈ 𝑍 ∧ 𝑧 ∈ 𝑍) → (𝑦 · 𝑧) ∈ 𝑍) |
26 | 25 | adantl 481 | . . . . 5 ⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) ∧ (𝑦 ∈ 𝑍 ∧ 𝑧 ∈ 𝑍)) → (𝑦 · 𝑧) ∈ 𝑍) |
27 | 17, 24, 26 | seqcl 14073 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → (seq1( · , 𝐹)‘(abs‘𝑁)) ∈ 𝑍) |
28 | 3 | lgslem3 27361 | . . . 4 ⊢ ((if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ∈ 𝑍 ∧ (seq1( · , 𝐹)‘(abs‘𝑁)) ∈ 𝑍) → (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁))) ∈ 𝑍) |
29 | 10, 27, 28 | sylancr 586 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁))) ∈ 𝑍) |
30 | 8, 29 | ifclda 4583 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → if(𝑁 = 0, if((𝐴↑2) = 1, 1, 0), (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁)))) ∈ 𝑍) |
31 | 2, 30 | eqeltrd 2844 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 {crab 3443 ifcif 4548 {cpr 4650 class class class wbr 5166 ↦ cmpt 5249 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 0cc0 11184 1c1 11185 + caddc 11187 · cmul 11189 < clt 11324 ≤ cle 11325 − cmin 11520 -cneg 11521 / cdiv 11947 ℕcn 12293 2c2 12348 7c7 12353 8c8 12354 ℤcz 12639 ℤ≥cuz 12903 ...cfz 13567 mod cmo 13920 seqcseq 14052 ↑cexp 14112 abscabs 15283 ∥ cdvds 16302 ℙcprime 16718 pCnt cpc 16883 /L clgs 27356 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-oadd 8526 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-dju 9970 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-xnn0 12626 df-z 12640 df-uz 12904 df-q 13014 df-rp 13058 df-fz 13568 df-fzo 13712 df-fl 13843 df-mod 13921 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-dvds 16303 df-gcd 16541 df-prm 16719 df-phi 16813 df-pc 16884 df-lgs 27357 |
This theorem is referenced by: lgscl2 27371 |
Copyright terms: Public domain | W3C validator |