MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srads Structured version   Visualization version   GIF version

Theorem srads 20453
Description: Distance function of a subring algebra. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.)
Hypotheses
Ref Expression
srapart.a (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
srapart.s (𝜑𝑆 ⊆ (Base‘𝑊))
Assertion
Ref Expression
srads (𝜑 → (dist‘𝑊) = (dist‘𝐴))

Proof of Theorem srads
StepHypRef Expression
1 srapart.a . 2 (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
2 srapart.s . 2 (𝜑𝑆 ⊆ (Base‘𝑊))
3 dsid 17094 . 2 dist = Slot (dist‘ndx)
4 slotsdnscsi 17100 . . . 4 ((dist‘ndx) ≠ (Scalar‘ndx) ∧ (dist‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (dist‘ndx) ≠ (·𝑖‘ndx))
54simp1i 1138 . . 3 (dist‘ndx) ≠ (Scalar‘ndx)
65necomi 2998 . 2 (Scalar‘ndx) ≠ (dist‘ndx)
74simp2i 1139 . . 3 (dist‘ndx) ≠ ( ·𝑠 ‘ndx)
87necomi 2998 . 2 ( ·𝑠 ‘ndx) ≠ (dist‘ndx)
94simp3i 1140 . . 3 (dist‘ndx) ≠ (·𝑖‘ndx)
109necomi 2998 . 2 (·𝑖‘ndx) ≠ (dist‘ndx)
111, 2, 3, 6, 8, 10sralem 20437 1 (𝜑 → (dist‘𝑊) = (dist‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wne 2943  wss 3888  cfv 6435  ndxcnx 16892  Basecbs 16910  Scalarcsca 16963   ·𝑠 cvsca 16964  ·𝑖cip 16965  distcds 16969  subringAlg csra 20428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5211  ax-sep 5225  ax-nul 5232  ax-pow 5290  ax-pr 5354  ax-un 7588  ax-cnex 10925  ax-resscn 10926  ax-1cn 10927  ax-icn 10928  ax-addcl 10929  ax-addrcl 10930  ax-mulcl 10931  ax-mulrcl 10932  ax-mulcom 10933  ax-addass 10934  ax-mulass 10935  ax-distr 10936  ax-i2m1 10937  ax-1ne0 10938  ax-1rid 10939  ax-rnegex 10940  ax-rrecex 10941  ax-cnre 10942  ax-pre-lttri 10943  ax-pre-lttrn 10944  ax-pre-ltadd 10945  ax-pre-mulgt0 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-iun 4928  df-br 5077  df-opab 5139  df-mpt 5160  df-tr 5194  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6204  df-ord 6271  df-on 6272  df-lim 6273  df-suc 6274  df-iota 6393  df-fun 6437  df-fn 6438  df-f 6439  df-f1 6440  df-fo 6441  df-f1o 6442  df-fv 6443  df-riota 7234  df-ov 7280  df-oprab 7281  df-mpo 7282  df-om 7713  df-2nd 7832  df-frecs 8095  df-wrecs 8126  df-recs 8200  df-rdg 8239  df-er 8496  df-en 8732  df-dom 8733  df-sdom 8734  df-pnf 11009  df-mnf 11010  df-xr 11011  df-ltxr 11012  df-le 11013  df-sub 11205  df-neg 11206  df-nn 11972  df-2 12034  df-3 12035  df-4 12036  df-5 12037  df-6 12038  df-7 12039  df-8 12040  df-9 12041  df-n0 12232  df-z 12318  df-dec 12436  df-sets 16863  df-slot 16881  df-ndx 16893  df-sca 16976  df-vsca 16977  df-ip 16978  df-ds 16982  df-sra 20432
This theorem is referenced by:  rlmds  20472  sranlm  23846  srabn  24522
  Copyright terms: Public domain W3C validator