MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfrelog Structured version   Visualization version   GIF version

Theorem dfrelog 25721
Description: The natural logarithm function on the positive reals in terms of the real exponential function. (Contributed by Paul Chapman, 21-Apr-2008.)
Assertion
Ref Expression
dfrelog (log ↾ ℝ+) = (exp ↾ ℝ)

Proof of Theorem dfrelog
StepHypRef Expression
1 df-ima 5602 . . . 4 ((exp ↾ ran log) “ ℝ) = ran ((exp ↾ ran log) ↾ ℝ)
2 relogrn 25717 . . . . . . 7 (𝑥 ∈ ℝ → 𝑥 ∈ ran log)
32ssriv 3925 . . . . . 6 ℝ ⊆ ran log
4 resabs1 5921 . . . . . 6 (ℝ ⊆ ran log → ((exp ↾ ran log) ↾ ℝ) = (exp ↾ ℝ))
53, 4ax-mp 5 . . . . 5 ((exp ↾ ran log) ↾ ℝ) = (exp ↾ ℝ)
65rneqi 5846 . . . 4 ran ((exp ↾ ran log) ↾ ℝ) = ran (exp ↾ ℝ)
7 reeff1o 25606 . . . . . 6 (exp ↾ ℝ):ℝ–1-1-onto→ℝ+
8 dff1o2 6721 . . . . . 6 ((exp ↾ ℝ):ℝ–1-1-onto→ℝ+ ↔ ((exp ↾ ℝ) Fn ℝ ∧ Fun (exp ↾ ℝ) ∧ ran (exp ↾ ℝ) = ℝ+))
97, 8mpbi 229 . . . . 5 ((exp ↾ ℝ) Fn ℝ ∧ Fun (exp ↾ ℝ) ∧ ran (exp ↾ ℝ) = ℝ+)
109simp3i 1140 . . . 4 ran (exp ↾ ℝ) = ℝ+
111, 6, 103eqtri 2770 . . 3 ((exp ↾ ran log) “ ℝ) = ℝ+
1211reseq2i 5888 . 2 ((exp ↾ ran log) ↾ ((exp ↾ ran log) “ ℝ)) = ((exp ↾ ran log) ↾ ℝ+)
135cnveqi 5783 . . 3 ((exp ↾ ran log) ↾ ℝ) = (exp ↾ ℝ)
14 logf1o 25720 . . . . . 6 log:(ℂ ∖ {0})–1-1-onto→ran log
15 f1ofun 6718 . . . . . 6 (log:(ℂ ∖ {0})–1-1-onto→ran log → Fun log)
1614, 15ax-mp 5 . . . . 5 Fun log
17 dflog2 25716 . . . . . 6 log = (exp ↾ ran log)
1817funeqi 6455 . . . . 5 (Fun log ↔ Fun (exp ↾ ran log))
1916, 18mpbi 229 . . . 4 Fun (exp ↾ ran log)
20 funcnvres 6512 . . . 4 (Fun (exp ↾ ran log) → ((exp ↾ ran log) ↾ ℝ) = ((exp ↾ ran log) ↾ ((exp ↾ ran log) “ ℝ)))
2119, 20ax-mp 5 . . 3 ((exp ↾ ran log) ↾ ℝ) = ((exp ↾ ran log) ↾ ((exp ↾ ran log) “ ℝ))
2213, 21eqtr3i 2768 . 2 (exp ↾ ℝ) = ((exp ↾ ran log) ↾ ((exp ↾ ran log) “ ℝ))
2317reseq1i 5887 . 2 (log ↾ ℝ+) = ((exp ↾ ran log) ↾ ℝ+)
2412, 22, 233eqtr4ri 2777 1 (log ↾ ℝ+) = (exp ↾ ℝ)
Colors of variables: wff setvar class
Syntax hints:  w3a 1086   = wceq 1539  cdif 3884  wss 3887  {csn 4561  ccnv 5588  ran crn 5590  cres 5591  cima 5592  Fun wfun 6427   Fn wfn 6428  1-1-ontowf1o 6432  cc 10869  cr 10870  0cc0 10871  +crp 12730  expce 15771  logclog 25710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-ef 15777  df-sin 15779  df-cos 15780  df-pi 15782  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-limc 25030  df-dv 25031  df-log 25712
This theorem is referenced by:  relogiso  25753  reloggim  25754  dvrelog  25792
  Copyright terms: Public domain W3C validator