Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfrelog | Structured version Visualization version GIF version |
Description: The natural logarithm function on the positive reals in terms of the real exponential function. (Contributed by Paul Chapman, 21-Apr-2008.) |
Ref | Expression |
---|---|
dfrelog | ⊢ (log ↾ ℝ+) = ◡(exp ↾ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 5537 | . . . 4 ⊢ ((exp ↾ ran log) “ ℝ) = ran ((exp ↾ ran log) ↾ ℝ) | |
2 | relogrn 25252 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ran log) | |
3 | 2 | ssriv 3896 | . . . . . 6 ⊢ ℝ ⊆ ran log |
4 | resabs1 5853 | . . . . . 6 ⊢ (ℝ ⊆ ran log → ((exp ↾ ran log) ↾ ℝ) = (exp ↾ ℝ)) | |
5 | 3, 4 | ax-mp 5 | . . . . 5 ⊢ ((exp ↾ ran log) ↾ ℝ) = (exp ↾ ℝ) |
6 | 5 | rneqi 5778 | . . . 4 ⊢ ran ((exp ↾ ran log) ↾ ℝ) = ran (exp ↾ ℝ) |
7 | reeff1o 25141 | . . . . . 6 ⊢ (exp ↾ ℝ):ℝ–1-1-onto→ℝ+ | |
8 | dff1o2 6607 | . . . . . 6 ⊢ ((exp ↾ ℝ):ℝ–1-1-onto→ℝ+ ↔ ((exp ↾ ℝ) Fn ℝ ∧ Fun ◡(exp ↾ ℝ) ∧ ran (exp ↾ ℝ) = ℝ+)) | |
9 | 7, 8 | mpbi 233 | . . . . 5 ⊢ ((exp ↾ ℝ) Fn ℝ ∧ Fun ◡(exp ↾ ℝ) ∧ ran (exp ↾ ℝ) = ℝ+) |
10 | 9 | simp3i 1138 | . . . 4 ⊢ ran (exp ↾ ℝ) = ℝ+ |
11 | 1, 6, 10 | 3eqtri 2785 | . . 3 ⊢ ((exp ↾ ran log) “ ℝ) = ℝ+ |
12 | 11 | reseq2i 5820 | . 2 ⊢ (◡(exp ↾ ran log) ↾ ((exp ↾ ran log) “ ℝ)) = (◡(exp ↾ ran log) ↾ ℝ+) |
13 | 5 | cnveqi 5714 | . . 3 ⊢ ◡((exp ↾ ran log) ↾ ℝ) = ◡(exp ↾ ℝ) |
14 | logf1o 25255 | . . . . . 6 ⊢ log:(ℂ ∖ {0})–1-1-onto→ran log | |
15 | f1ofun 6604 | . . . . . 6 ⊢ (log:(ℂ ∖ {0})–1-1-onto→ran log → Fun log) | |
16 | 14, 15 | ax-mp 5 | . . . . 5 ⊢ Fun log |
17 | dflog2 25251 | . . . . . 6 ⊢ log = ◡(exp ↾ ran log) | |
18 | 17 | funeqi 6356 | . . . . 5 ⊢ (Fun log ↔ Fun ◡(exp ↾ ran log)) |
19 | 16, 18 | mpbi 233 | . . . 4 ⊢ Fun ◡(exp ↾ ran log) |
20 | funcnvres 6413 | . . . 4 ⊢ (Fun ◡(exp ↾ ran log) → ◡((exp ↾ ran log) ↾ ℝ) = (◡(exp ↾ ran log) ↾ ((exp ↾ ran log) “ ℝ))) | |
21 | 19, 20 | ax-mp 5 | . . 3 ⊢ ◡((exp ↾ ran log) ↾ ℝ) = (◡(exp ↾ ran log) ↾ ((exp ↾ ran log) “ ℝ)) |
22 | 13, 21 | eqtr3i 2783 | . 2 ⊢ ◡(exp ↾ ℝ) = (◡(exp ↾ ran log) ↾ ((exp ↾ ran log) “ ℝ)) |
23 | 17 | reseq1i 5819 | . 2 ⊢ (log ↾ ℝ+) = (◡(exp ↾ ran log) ↾ ℝ+) |
24 | 12, 22, 23 | 3eqtr4ri 2792 | 1 ⊢ (log ↾ ℝ+) = ◡(exp ↾ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1084 = wceq 1538 ∖ cdif 3855 ⊆ wss 3858 {csn 4522 ◡ccnv 5523 ran crn 5525 ↾ cres 5526 “ cima 5527 Fun wfun 6329 Fn wfn 6330 –1-1-onto→wf1o 6334 ℂcc 10573 ℝcr 10574 0cc0 10575 ℝ+crp 12430 expce 15463 logclog 25245 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-inf2 9137 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 ax-pre-sup 10653 ax-addf 10654 ax-mulf 10655 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-iin 4886 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-se 5484 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-isom 6344 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-of 7405 df-om 7580 df-1st 7693 df-2nd 7694 df-supp 7836 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-2o 8113 df-er 8299 df-map 8418 df-pm 8419 df-ixp 8480 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-fsupp 8867 df-fi 8908 df-sup 8939 df-inf 8940 df-oi 9007 df-card 9401 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-div 11336 df-nn 11675 df-2 11737 df-3 11738 df-4 11739 df-5 11740 df-6 11741 df-7 11742 df-8 11743 df-9 11744 df-n0 11935 df-z 12021 df-dec 12138 df-uz 12283 df-q 12389 df-rp 12431 df-xneg 12548 df-xadd 12549 df-xmul 12550 df-ioo 12783 df-ioc 12784 df-ico 12785 df-icc 12786 df-fz 12940 df-fzo 13083 df-fl 13211 df-mod 13287 df-seq 13419 df-exp 13480 df-fac 13684 df-bc 13713 df-hash 13741 df-shft 14474 df-cj 14506 df-re 14507 df-im 14508 df-sqrt 14642 df-abs 14643 df-limsup 14876 df-clim 14893 df-rlim 14894 df-sum 15091 df-ef 15469 df-sin 15471 df-cos 15472 df-pi 15474 df-struct 16543 df-ndx 16544 df-slot 16545 df-base 16547 df-sets 16548 df-ress 16549 df-plusg 16636 df-mulr 16637 df-starv 16638 df-sca 16639 df-vsca 16640 df-ip 16641 df-tset 16642 df-ple 16643 df-ds 16645 df-unif 16646 df-hom 16647 df-cco 16648 df-rest 16754 df-topn 16755 df-0g 16773 df-gsum 16774 df-topgen 16775 df-pt 16776 df-prds 16779 df-xrs 16833 df-qtop 16838 df-imas 16839 df-xps 16841 df-mre 16915 df-mrc 16916 df-acs 16918 df-mgm 17918 df-sgrp 17967 df-mnd 17978 df-submnd 18023 df-mulg 18292 df-cntz 18514 df-cmn 18975 df-psmet 20158 df-xmet 20159 df-met 20160 df-bl 20161 df-mopn 20162 df-fbas 20163 df-fg 20164 df-cnfld 20167 df-top 21594 df-topon 21611 df-topsp 21633 df-bases 21646 df-cld 21719 df-ntr 21720 df-cls 21721 df-nei 21798 df-lp 21836 df-perf 21837 df-cn 21927 df-cnp 21928 df-haus 22015 df-tx 22262 df-hmeo 22455 df-fil 22546 df-fm 22638 df-flim 22639 df-flf 22640 df-xms 23022 df-ms 23023 df-tms 23024 df-cncf 23579 df-limc 24565 df-dv 24566 df-log 25247 |
This theorem is referenced by: relogiso 25288 reloggim 25289 dvrelog 25327 |
Copyright terms: Public domain | W3C validator |