MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sratset Structured version   Visualization version   GIF version

Theorem sratset 21139
Description: Topology component of a subring algebra. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.)
Hypotheses
Ref Expression
srapart.a (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
srapart.s (𝜑𝑆 ⊆ (Base‘𝑊))
Assertion
Ref Expression
sratset (𝜑 → (TopSet‘𝑊) = (TopSet‘𝐴))

Proof of Theorem sratset
StepHypRef Expression
1 srapart.a . 2 (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
2 srapart.s . 2 (𝜑𝑆 ⊆ (Base‘𝑊))
3 tsetid 17365 . 2 TopSet = Slot (TopSet‘ndx)
4 slotstnscsi 17372 . . . 4 ((TopSet‘ndx) ≠ (Scalar‘ndx) ∧ (TopSet‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (TopSet‘ndx) ≠ (·𝑖‘ndx))
54simp1i 1139 . . 3 (TopSet‘ndx) ≠ (Scalar‘ndx)
65necomi 2986 . 2 (Scalar‘ndx) ≠ (TopSet‘ndx)
74simp2i 1140 . . 3 (TopSet‘ndx) ≠ ( ·𝑠 ‘ndx)
87necomi 2986 . 2 ( ·𝑠 ‘ndx) ≠ (TopSet‘ndx)
94simp3i 1141 . . 3 (TopSet‘ndx) ≠ (·𝑖‘ndx)
109necomi 2986 . 2 (·𝑖‘ndx) ≠ (TopSet‘ndx)
111, 2, 3, 6, 8, 10sralem 21132 1 (𝜑 → (TopSet‘𝑊) = (TopSet‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wne 2932  wss 3926  cfv 6530  ndxcnx 17210  Basecbs 17226  Scalarcsca 17272   ·𝑠 cvsca 17273  ·𝑖cip 17274  TopSetcts 17275  subringAlg csra 21127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-sets 17181  df-slot 17199  df-ndx 17211  df-sca 17285  df-vsca 17286  df-ip 17287  df-tset 17288  df-sra 21129
This theorem is referenced by:  sratopn  21140
  Copyright terms: Public domain W3C validator