MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hartogslem2 Structured version   Visualization version   GIF version

Theorem hartogslem2 9503
Description: Lemma for hartogs 9504. (Contributed by Mario Carneiro, 14-Jan-2013.)
Hypotheses
Ref Expression
hartogslem.2 𝐹 = {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))}
hartogslem.3 𝑅 = {⟨𝑠, 𝑡⟩ ∣ ∃𝑤𝑦𝑧𝑦 ((𝑠 = (𝑓𝑤) ∧ 𝑡 = (𝑓𝑧)) ∧ 𝑤 E 𝑧)}
Assertion
Ref Expression
hartogslem2 (𝐴𝑉 → {𝑥 ∈ On ∣ 𝑥𝐴} ∈ V)
Distinct variable groups:   𝑓,𝑠,𝑡,𝑤,𝑦,𝑧   𝑓,𝑟,𝑥,𝐴,𝑦   𝑅,𝑟,𝑥   𝑉,𝑟,𝑦
Allowed substitution hints:   𝐴(𝑧,𝑤,𝑡,𝑠)   𝑅(𝑦,𝑧,𝑤,𝑡,𝑓,𝑠)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑡,𝑓,𝑠,𝑟)   𝑉(𝑥,𝑧,𝑤,𝑡,𝑓,𝑠)

Proof of Theorem hartogslem2
StepHypRef Expression
1 hartogslem.2 . . . 4 𝐹 = {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))}
2 hartogslem.3 . . . 4 𝑅 = {⟨𝑠, 𝑡⟩ ∣ ∃𝑤𝑦𝑧𝑦 ((𝑠 = (𝑓𝑤) ∧ 𝑡 = (𝑓𝑧)) ∧ 𝑤 E 𝑧)}
31, 2hartogslem1 9502 . . 3 (dom 𝐹 ⊆ 𝒫 (𝐴 × 𝐴) ∧ Fun 𝐹 ∧ (𝐴𝑉 → ran 𝐹 = {𝑥 ∈ On ∣ 𝑥𝐴}))
43simp3i 1141 . 2 (𝐴𝑉 → ran 𝐹 = {𝑥 ∈ On ∣ 𝑥𝐴})
53simp2i 1140 . . . 4 Fun 𝐹
63simp1i 1139 . . . . 5 dom 𝐹 ⊆ 𝒫 (𝐴 × 𝐴)
7 sqxpexg 7734 . . . . . 6 (𝐴𝑉 → (𝐴 × 𝐴) ∈ V)
87pwexd 5337 . . . . 5 (𝐴𝑉 → 𝒫 (𝐴 × 𝐴) ∈ V)
9 ssexg 5281 . . . . 5 ((dom 𝐹 ⊆ 𝒫 (𝐴 × 𝐴) ∧ 𝒫 (𝐴 × 𝐴) ∈ V) → dom 𝐹 ∈ V)
106, 8, 9sylancr 587 . . . 4 (𝐴𝑉 → dom 𝐹 ∈ V)
11 funex 7196 . . . 4 ((Fun 𝐹 ∧ dom 𝐹 ∈ V) → 𝐹 ∈ V)
125, 10, 11sylancr 587 . . 3 (𝐴𝑉𝐹 ∈ V)
13 rnexg 7881 . . 3 (𝐹 ∈ V → ran 𝐹 ∈ V)
1412, 13syl 17 . 2 (𝐴𝑉 → ran 𝐹 ∈ V)
154, 14eqeltrrd 2830 1 (𝐴𝑉 → {𝑥 ∈ On ∣ 𝑥𝐴} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3054  {crab 3408  Vcvv 3450  cdif 3914  wss 3917  𝒫 cpw 4566   class class class wbr 5110  {copab 5172   I cid 5535   E cep 5540   We wwe 5593   × cxp 5639  dom cdm 5641  ran crn 5642  cres 5643  Oncon0 6335  Fun wfun 6508  cfv 6514  cdom 8919  OrdIsocoi 9469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-en 8922  df-dom 8923  df-oi 9470
This theorem is referenced by:  hartogs  9504
  Copyright terms: Public domain W3C validator