| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hartogslem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for hartogs 9566. (Contributed by Mario Carneiro, 14-Jan-2013.) |
| Ref | Expression |
|---|---|
| hartogslem.2 | ⊢ 𝐹 = {〈𝑟, 𝑦〉 ∣ (((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} |
| hartogslem.3 | ⊢ 𝑅 = {〈𝑠, 𝑡〉 ∣ ∃𝑤 ∈ 𝑦 ∃𝑧 ∈ 𝑦 ((𝑠 = (𝑓‘𝑤) ∧ 𝑡 = (𝑓‘𝑧)) ∧ 𝑤 E 𝑧)} |
| Ref | Expression |
|---|---|
| hartogslem2 | ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hartogslem.2 | . . . 4 ⊢ 𝐹 = {〈𝑟, 𝑦〉 ∣ (((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} | |
| 2 | hartogslem.3 | . . . 4 ⊢ 𝑅 = {〈𝑠, 𝑡〉 ∣ ∃𝑤 ∈ 𝑦 ∃𝑧 ∈ 𝑦 ((𝑠 = (𝑓‘𝑤) ∧ 𝑡 = (𝑓‘𝑧)) ∧ 𝑤 E 𝑧)} | |
| 3 | 1, 2 | hartogslem1 9564 | . . 3 ⊢ (dom 𝐹 ⊆ 𝒫 (𝐴 × 𝐴) ∧ Fun 𝐹 ∧ (𝐴 ∈ 𝑉 → ran 𝐹 = {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴})) |
| 4 | 3 | simp3i 1141 | . 2 ⊢ (𝐴 ∈ 𝑉 → ran 𝐹 = {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴}) |
| 5 | 3 | simp2i 1140 | . . . 4 ⊢ Fun 𝐹 |
| 6 | 3 | simp1i 1139 | . . . . 5 ⊢ dom 𝐹 ⊆ 𝒫 (𝐴 × 𝐴) |
| 7 | sqxpexg 7757 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (𝐴 × 𝐴) ∈ V) | |
| 8 | 7 | pwexd 5359 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝒫 (𝐴 × 𝐴) ∈ V) |
| 9 | ssexg 5303 | . . . . 5 ⊢ ((dom 𝐹 ⊆ 𝒫 (𝐴 × 𝐴) ∧ 𝒫 (𝐴 × 𝐴) ∈ V) → dom 𝐹 ∈ V) | |
| 10 | 6, 8, 9 | sylancr 587 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → dom 𝐹 ∈ V) |
| 11 | funex 7221 | . . . 4 ⊢ ((Fun 𝐹 ∧ dom 𝐹 ∈ V) → 𝐹 ∈ V) | |
| 12 | 5, 10, 11 | sylancr 587 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐹 ∈ V) |
| 13 | rnexg 7906 | . . 3 ⊢ (𝐹 ∈ V → ran 𝐹 ∈ V) | |
| 14 | 12, 13 | syl 17 | . 2 ⊢ (𝐴 ∈ 𝑉 → ran 𝐹 ∈ V) |
| 15 | 4, 14 | eqeltrrd 2834 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∃wrex 3059 {crab 3419 Vcvv 3463 ∖ cdif 3928 ⊆ wss 3931 𝒫 cpw 4580 class class class wbr 5123 {copab 5185 I cid 5557 E cep 5563 We wwe 5616 × cxp 5663 dom cdm 5665 ran crn 5666 ↾ cres 5667 Oncon0 6363 Fun wfun 6535 ‘cfv 6541 ≼ cdom 8965 OrdIsocoi 9531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7416 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-en 8968 df-dom 8969 df-oi 9532 |
| This theorem is referenced by: hartogs 9566 |
| Copyright terms: Public domain | W3C validator |