![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hartogslem2 | Structured version Visualization version GIF version |
Description: Lemma for hartogs 9538. (Contributed by Mario Carneiro, 14-Jan-2013.) |
Ref | Expression |
---|---|
hartogslem.2 | ⊢ 𝐹 = {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} |
hartogslem.3 | ⊢ 𝑅 = {⟨𝑠, 𝑡⟩ ∣ ∃𝑤 ∈ 𝑦 ∃𝑧 ∈ 𝑦 ((𝑠 = (𝑓‘𝑤) ∧ 𝑡 = (𝑓‘𝑧)) ∧ 𝑤 E 𝑧)} |
Ref | Expression |
---|---|
hartogslem2 | ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hartogslem.2 | . . . 4 ⊢ 𝐹 = {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} | |
2 | hartogslem.3 | . . . 4 ⊢ 𝑅 = {⟨𝑠, 𝑡⟩ ∣ ∃𝑤 ∈ 𝑦 ∃𝑧 ∈ 𝑦 ((𝑠 = (𝑓‘𝑤) ∧ 𝑡 = (𝑓‘𝑧)) ∧ 𝑤 E 𝑧)} | |
3 | 1, 2 | hartogslem1 9536 | . . 3 ⊢ (dom 𝐹 ⊆ 𝒫 (𝐴 × 𝐴) ∧ Fun 𝐹 ∧ (𝐴 ∈ 𝑉 → ran 𝐹 = {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴})) |
4 | 3 | simp3i 1141 | . 2 ⊢ (𝐴 ∈ 𝑉 → ran 𝐹 = {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴}) |
5 | 3 | simp2i 1140 | . . . 4 ⊢ Fun 𝐹 |
6 | 3 | simp1i 1139 | . . . . 5 ⊢ dom 𝐹 ⊆ 𝒫 (𝐴 × 𝐴) |
7 | sqxpexg 7741 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (𝐴 × 𝐴) ∈ V) | |
8 | 7 | pwexd 5377 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝒫 (𝐴 × 𝐴) ∈ V) |
9 | ssexg 5323 | . . . . 5 ⊢ ((dom 𝐹 ⊆ 𝒫 (𝐴 × 𝐴) ∧ 𝒫 (𝐴 × 𝐴) ∈ V) → dom 𝐹 ∈ V) | |
10 | 6, 8, 9 | sylancr 587 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → dom 𝐹 ∈ V) |
11 | funex 7220 | . . . 4 ⊢ ((Fun 𝐹 ∧ dom 𝐹 ∈ V) → 𝐹 ∈ V) | |
12 | 5, 10, 11 | sylancr 587 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐹 ∈ V) |
13 | rnexg 7894 | . . 3 ⊢ (𝐹 ∈ V → ran 𝐹 ∈ V) | |
14 | 12, 13 | syl 17 | . 2 ⊢ (𝐴 ∈ 𝑉 → ran 𝐹 ∈ V) |
15 | 4, 14 | eqeltrrd 2834 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∃wrex 3070 {crab 3432 Vcvv 3474 ∖ cdif 3945 ⊆ wss 3948 𝒫 cpw 4602 class class class wbr 5148 {copab 5210 I cid 5573 E cep 5579 We wwe 5630 × cxp 5674 dom cdm 5676 ran crn 5677 ↾ cres 5678 Oncon0 6364 Fun wfun 6537 ‘cfv 6543 ≼ cdom 8936 OrdIsocoi 9503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7364 df-ov 7411 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-en 8939 df-dom 8940 df-oi 9504 |
This theorem is referenced by: hartogs 9538 |
Copyright terms: Public domain | W3C validator |