MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hartogslem2 Structured version   Visualization version   GIF version

Theorem hartogslem2 9025
Description: Lemma for hartogs 9026. (Contributed by Mario Carneiro, 14-Jan-2013.)
Hypotheses
Ref Expression
hartogslem.2 𝐹 = {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))}
hartogslem.3 𝑅 = {⟨𝑠, 𝑡⟩ ∣ ∃𝑤𝑦𝑧𝑦 ((𝑠 = (𝑓𝑤) ∧ 𝑡 = (𝑓𝑧)) ∧ 𝑤 E 𝑧)}
Assertion
Ref Expression
hartogslem2 (𝐴𝑉 → {𝑥 ∈ On ∣ 𝑥𝐴} ∈ V)
Distinct variable groups:   𝑓,𝑠,𝑡,𝑤,𝑦,𝑧   𝑓,𝑟,𝑥,𝐴,𝑦   𝑅,𝑟,𝑥   𝑉,𝑟,𝑦
Allowed substitution hints:   𝐴(𝑧,𝑤,𝑡,𝑠)   𝑅(𝑦,𝑧,𝑤,𝑡,𝑓,𝑠)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑡,𝑓,𝑠,𝑟)   𝑉(𝑥,𝑧,𝑤,𝑡,𝑓,𝑠)

Proof of Theorem hartogslem2
StepHypRef Expression
1 hartogslem.2 . . . 4 𝐹 = {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))}
2 hartogslem.3 . . . 4 𝑅 = {⟨𝑠, 𝑡⟩ ∣ ∃𝑤𝑦𝑧𝑦 ((𝑠 = (𝑓𝑤) ∧ 𝑡 = (𝑓𝑧)) ∧ 𝑤 E 𝑧)}
31, 2hartogslem1 9024 . . 3 (dom 𝐹 ⊆ 𝒫 (𝐴 × 𝐴) ∧ Fun 𝐹 ∧ (𝐴𝑉 → ran 𝐹 = {𝑥 ∈ On ∣ 𝑥𝐴}))
43simp3i 1139 . 2 (𝐴𝑉 → ran 𝐹 = {𝑥 ∈ On ∣ 𝑥𝐴})
53simp2i 1138 . . . 4 Fun 𝐹
63simp1i 1137 . . . . 5 dom 𝐹 ⊆ 𝒫 (𝐴 × 𝐴)
7 sqxpexg 7469 . . . . . 6 (𝐴𝑉 → (𝐴 × 𝐴) ∈ V)
87pwexd 5241 . . . . 5 (𝐴𝑉 → 𝒫 (𝐴 × 𝐴) ∈ V)
9 ssexg 5186 . . . . 5 ((dom 𝐹 ⊆ 𝒫 (𝐴 × 𝐴) ∧ 𝒫 (𝐴 × 𝐴) ∈ V) → dom 𝐹 ∈ V)
106, 8, 9sylancr 591 . . . 4 (𝐴𝑉 → dom 𝐹 ∈ V)
11 funex 6966 . . . 4 ((Fun 𝐹 ∧ dom 𝐹 ∈ V) → 𝐹 ∈ V)
125, 10, 11sylancr 591 . . 3 (𝐴𝑉𝐹 ∈ V)
13 rnexg 7607 . . 3 (𝐹 ∈ V → ran 𝐹 ∈ V)
1412, 13syl 17 . 2 (𝐴𝑉 → ran 𝐹 ∈ V)
154, 14eqeltrrd 2852 1 (𝐴𝑉 → {𝑥 ∈ On ∣ 𝑥𝐴} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400  w3a 1085   = wceq 1539  wcel 2112  wrex 3069  {crab 3072  Vcvv 3407  cdif 3851  wss 3854  𝒫 cpw 4487   class class class wbr 5025  {copab 5087   I cid 5422   E cep 5427   We wwe 5475   × cxp 5515  dom cdm 5517  ran crn 5518  cres 5519  Oncon0 6162  Fun wfun 6322  cfv 6328  cdom 8518  OrdIsocoi 8991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5149  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-ral 3073  df-rex 3074  df-reu 3075  df-rmo 3076  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-pss 3873  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-tp 4520  df-op 4522  df-uni 4792  df-iun 4878  df-br 5026  df-opab 5088  df-mpt 5106  df-tr 5132  df-id 5423  df-eprel 5428  df-po 5436  df-so 5437  df-fr 5476  df-se 5477  df-we 5478  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7101  df-wrecs 7950  df-recs 8011  df-en 8521  df-dom 8522  df-oi 8992
This theorem is referenced by:  hartogs  9026
  Copyright terms: Public domain W3C validator