MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hartogslem2 Structured version   Visualization version   GIF version

Theorem hartogslem2 9302
Description: Lemma for hartogs 9303. (Contributed by Mario Carneiro, 14-Jan-2013.)
Hypotheses
Ref Expression
hartogslem.2 𝐹 = {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))}
hartogslem.3 𝑅 = {⟨𝑠, 𝑡⟩ ∣ ∃𝑤𝑦𝑧𝑦 ((𝑠 = (𝑓𝑤) ∧ 𝑡 = (𝑓𝑧)) ∧ 𝑤 E 𝑧)}
Assertion
Ref Expression
hartogslem2 (𝐴𝑉 → {𝑥 ∈ On ∣ 𝑥𝐴} ∈ V)
Distinct variable groups:   𝑓,𝑠,𝑡,𝑤,𝑦,𝑧   𝑓,𝑟,𝑥,𝐴,𝑦   𝑅,𝑟,𝑥   𝑉,𝑟,𝑦
Allowed substitution hints:   𝐴(𝑧,𝑤,𝑡,𝑠)   𝑅(𝑦,𝑧,𝑤,𝑡,𝑓,𝑠)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑡,𝑓,𝑠,𝑟)   𝑉(𝑥,𝑧,𝑤,𝑡,𝑓,𝑠)

Proof of Theorem hartogslem2
StepHypRef Expression
1 hartogslem.2 . . . 4 𝐹 = {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))}
2 hartogslem.3 . . . 4 𝑅 = {⟨𝑠, 𝑡⟩ ∣ ∃𝑤𝑦𝑧𝑦 ((𝑠 = (𝑓𝑤) ∧ 𝑡 = (𝑓𝑧)) ∧ 𝑤 E 𝑧)}
31, 2hartogslem1 9301 . . 3 (dom 𝐹 ⊆ 𝒫 (𝐴 × 𝐴) ∧ Fun 𝐹 ∧ (𝐴𝑉 → ran 𝐹 = {𝑥 ∈ On ∣ 𝑥𝐴}))
43simp3i 1140 . 2 (𝐴𝑉 → ran 𝐹 = {𝑥 ∈ On ∣ 𝑥𝐴})
53simp2i 1139 . . . 4 Fun 𝐹
63simp1i 1138 . . . . 5 dom 𝐹 ⊆ 𝒫 (𝐴 × 𝐴)
7 sqxpexg 7605 . . . . . 6 (𝐴𝑉 → (𝐴 × 𝐴) ∈ V)
87pwexd 5302 . . . . 5 (𝐴𝑉 → 𝒫 (𝐴 × 𝐴) ∈ V)
9 ssexg 5247 . . . . 5 ((dom 𝐹 ⊆ 𝒫 (𝐴 × 𝐴) ∧ 𝒫 (𝐴 × 𝐴) ∈ V) → dom 𝐹 ∈ V)
106, 8, 9sylancr 587 . . . 4 (𝐴𝑉 → dom 𝐹 ∈ V)
11 funex 7095 . . . 4 ((Fun 𝐹 ∧ dom 𝐹 ∈ V) → 𝐹 ∈ V)
125, 10, 11sylancr 587 . . 3 (𝐴𝑉𝐹 ∈ V)
13 rnexg 7751 . . 3 (𝐹 ∈ V → ran 𝐹 ∈ V)
1412, 13syl 17 . 2 (𝐴𝑉 → ran 𝐹 ∈ V)
154, 14eqeltrrd 2840 1 (𝐴𝑉 → {𝑥 ∈ On ∣ 𝑥𝐴} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wrex 3065  {crab 3068  Vcvv 3432  cdif 3884  wss 3887  𝒫 cpw 4533   class class class wbr 5074  {copab 5136   I cid 5488   E cep 5494   We wwe 5543   × cxp 5587  dom cdm 5589  ran crn 5590  cres 5591  Oncon0 6266  Fun wfun 6427  cfv 6433  cdom 8731  OrdIsocoi 9268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-en 8734  df-dom 8735  df-oi 9269
This theorem is referenced by:  hartogs  9303
  Copyright terms: Public domain W3C validator