![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hartogslem2 | Structured version Visualization version GIF version |
Description: Lemma for hartogs 9615. (Contributed by Mario Carneiro, 14-Jan-2013.) |
Ref | Expression |
---|---|
hartogslem.2 | ⊢ 𝐹 = {〈𝑟, 𝑦〉 ∣ (((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} |
hartogslem.3 | ⊢ 𝑅 = {〈𝑠, 𝑡〉 ∣ ∃𝑤 ∈ 𝑦 ∃𝑧 ∈ 𝑦 ((𝑠 = (𝑓‘𝑤) ∧ 𝑡 = (𝑓‘𝑧)) ∧ 𝑤 E 𝑧)} |
Ref | Expression |
---|---|
hartogslem2 | ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hartogslem.2 | . . . 4 ⊢ 𝐹 = {〈𝑟, 𝑦〉 ∣ (((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} | |
2 | hartogslem.3 | . . . 4 ⊢ 𝑅 = {〈𝑠, 𝑡〉 ∣ ∃𝑤 ∈ 𝑦 ∃𝑧 ∈ 𝑦 ((𝑠 = (𝑓‘𝑤) ∧ 𝑡 = (𝑓‘𝑧)) ∧ 𝑤 E 𝑧)} | |
3 | 1, 2 | hartogslem1 9613 | . . 3 ⊢ (dom 𝐹 ⊆ 𝒫 (𝐴 × 𝐴) ∧ Fun 𝐹 ∧ (𝐴 ∈ 𝑉 → ran 𝐹 = {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴})) |
4 | 3 | simp3i 1141 | . 2 ⊢ (𝐴 ∈ 𝑉 → ran 𝐹 = {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴}) |
5 | 3 | simp2i 1140 | . . . 4 ⊢ Fun 𝐹 |
6 | 3 | simp1i 1139 | . . . . 5 ⊢ dom 𝐹 ⊆ 𝒫 (𝐴 × 𝐴) |
7 | sqxpexg 7792 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (𝐴 × 𝐴) ∈ V) | |
8 | 7 | pwexd 5397 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝒫 (𝐴 × 𝐴) ∈ V) |
9 | ssexg 5341 | . . . . 5 ⊢ ((dom 𝐹 ⊆ 𝒫 (𝐴 × 𝐴) ∧ 𝒫 (𝐴 × 𝐴) ∈ V) → dom 𝐹 ∈ V) | |
10 | 6, 8, 9 | sylancr 586 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → dom 𝐹 ∈ V) |
11 | funex 7258 | . . . 4 ⊢ ((Fun 𝐹 ∧ dom 𝐹 ∈ V) → 𝐹 ∈ V) | |
12 | 5, 10, 11 | sylancr 586 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐹 ∈ V) |
13 | rnexg 7944 | . . 3 ⊢ (𝐹 ∈ V → ran 𝐹 ∈ V) | |
14 | 12, 13 | syl 17 | . 2 ⊢ (𝐴 ∈ 𝑉 → ran 𝐹 ∈ V) |
15 | 4, 14 | eqeltrrd 2845 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 {crab 3443 Vcvv 3488 ∖ cdif 3973 ⊆ wss 3976 𝒫 cpw 4622 class class class wbr 5166 {copab 5228 I cid 5592 E cep 5598 We wwe 5651 × cxp 5698 dom cdm 5700 ran crn 5701 ↾ cres 5702 Oncon0 6397 Fun wfun 6569 ‘cfv 6575 ≼ cdom 9003 OrdIsocoi 9580 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6334 df-ord 6400 df-on 6401 df-lim 6402 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-isom 6584 df-riota 7406 df-ov 7453 df-2nd 8033 df-frecs 8324 df-wrecs 8355 df-recs 8429 df-en 9006 df-dom 9007 df-oi 9581 |
This theorem is referenced by: hartogs 9615 |
Copyright terms: Public domain | W3C validator |