Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hartogslem2 | Structured version Visualization version GIF version |
Description: Lemma for hartogs 9291. (Contributed by Mario Carneiro, 14-Jan-2013.) |
Ref | Expression |
---|---|
hartogslem.2 | ⊢ 𝐹 = {〈𝑟, 𝑦〉 ∣ (((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} |
hartogslem.3 | ⊢ 𝑅 = {〈𝑠, 𝑡〉 ∣ ∃𝑤 ∈ 𝑦 ∃𝑧 ∈ 𝑦 ((𝑠 = (𝑓‘𝑤) ∧ 𝑡 = (𝑓‘𝑧)) ∧ 𝑤 E 𝑧)} |
Ref | Expression |
---|---|
hartogslem2 | ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hartogslem.2 | . . . 4 ⊢ 𝐹 = {〈𝑟, 𝑦〉 ∣ (((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} | |
2 | hartogslem.3 | . . . 4 ⊢ 𝑅 = {〈𝑠, 𝑡〉 ∣ ∃𝑤 ∈ 𝑦 ∃𝑧 ∈ 𝑦 ((𝑠 = (𝑓‘𝑤) ∧ 𝑡 = (𝑓‘𝑧)) ∧ 𝑤 E 𝑧)} | |
3 | 1, 2 | hartogslem1 9289 | . . 3 ⊢ (dom 𝐹 ⊆ 𝒫 (𝐴 × 𝐴) ∧ Fun 𝐹 ∧ (𝐴 ∈ 𝑉 → ran 𝐹 = {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴})) |
4 | 3 | simp3i 1140 | . 2 ⊢ (𝐴 ∈ 𝑉 → ran 𝐹 = {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴}) |
5 | 3 | simp2i 1139 | . . . 4 ⊢ Fun 𝐹 |
6 | 3 | simp1i 1138 | . . . . 5 ⊢ dom 𝐹 ⊆ 𝒫 (𝐴 × 𝐴) |
7 | sqxpexg 7596 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (𝐴 × 𝐴) ∈ V) | |
8 | 7 | pwexd 5301 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝒫 (𝐴 × 𝐴) ∈ V) |
9 | ssexg 5246 | . . . . 5 ⊢ ((dom 𝐹 ⊆ 𝒫 (𝐴 × 𝐴) ∧ 𝒫 (𝐴 × 𝐴) ∈ V) → dom 𝐹 ∈ V) | |
10 | 6, 8, 9 | sylancr 587 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → dom 𝐹 ∈ V) |
11 | funex 7088 | . . . 4 ⊢ ((Fun 𝐹 ∧ dom 𝐹 ∈ V) → 𝐹 ∈ V) | |
12 | 5, 10, 11 | sylancr 587 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐹 ∈ V) |
13 | rnexg 7742 | . . 3 ⊢ (𝐹 ∈ V → ran 𝐹 ∈ V) | |
14 | 12, 13 | syl 17 | . 2 ⊢ (𝐴 ∈ 𝑉 → ran 𝐹 ∈ V) |
15 | 4, 14 | eqeltrrd 2840 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 {crab 3068 Vcvv 3430 ∖ cdif 3884 ⊆ wss 3887 𝒫 cpw 4534 class class class wbr 5074 {copab 5136 I cid 5484 E cep 5490 We wwe 5539 × cxp 5583 dom cdm 5585 ran crn 5586 ↾ cres 5587 Oncon0 6260 Fun wfun 6421 ‘cfv 6427 ≼ cdom 8719 OrdIsocoi 9256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5222 ax-nul 5229 ax-pow 5287 ax-pr 5351 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3432 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5485 df-eprel 5491 df-po 5499 df-so 5500 df-fr 5540 df-se 5541 df-we 5542 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-pred 6196 df-ord 6263 df-on 6264 df-lim 6265 df-suc 6266 df-iota 6385 df-fun 6429 df-fn 6430 df-f 6431 df-f1 6432 df-fo 6433 df-f1o 6434 df-fv 6435 df-isom 6436 df-riota 7225 df-ov 7271 df-2nd 7822 df-frecs 8085 df-wrecs 8116 df-recs 8190 df-en 8722 df-dom 8723 df-oi 9257 |
This theorem is referenced by: hartogs 9291 |
Copyright terms: Public domain | W3C validator |