Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wallispilem3 Structured version   Visualization version   GIF version

Theorem wallispilem3 44298
Description: I maps to real values. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypothesis
Ref Expression
wallispilem3.1 𝐼 = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)
Assertion
Ref Expression
wallispilem3 (𝑁 ∈ ℕ0 → (𝐼𝑁) ∈ ℝ+)
Distinct variable group:   𝑥,𝑛
Allowed substitution hints:   𝐼(𝑥,𝑛)   𝑁(𝑥,𝑛)

Proof of Theorem wallispilem3
Dummy variables 𝑘 𝑚 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5109 . . . . . 6 (𝑤 = 0 → (𝑚𝑤𝑚 ≤ 0))
21imbi1d 341 . . . . 5 (𝑤 = 0 → ((𝑚𝑤 → (𝐼𝑚) ∈ ℝ+) ↔ (𝑚 ≤ 0 → (𝐼𝑚) ∈ ℝ+)))
32ralbidv 3174 . . . 4 (𝑤 = 0 → (∀𝑚 ∈ ℕ0 (𝑚𝑤 → (𝐼𝑚) ∈ ℝ+) ↔ ∀𝑚 ∈ ℕ0 (𝑚 ≤ 0 → (𝐼𝑚) ∈ ℝ+)))
4 breq2 5109 . . . . . 6 (𝑤 = 𝑦 → (𝑚𝑤𝑚𝑦))
54imbi1d 341 . . . . 5 (𝑤 = 𝑦 → ((𝑚𝑤 → (𝐼𝑚) ∈ ℝ+) ↔ (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)))
65ralbidv 3174 . . . 4 (𝑤 = 𝑦 → (∀𝑚 ∈ ℕ0 (𝑚𝑤 → (𝐼𝑚) ∈ ℝ+) ↔ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)))
7 breq2 5109 . . . . . 6 (𝑤 = (𝑦 + 1) → (𝑚𝑤𝑚 ≤ (𝑦 + 1)))
87imbi1d 341 . . . . 5 (𝑤 = (𝑦 + 1) → ((𝑚𝑤 → (𝐼𝑚) ∈ ℝ+) ↔ (𝑚 ≤ (𝑦 + 1) → (𝐼𝑚) ∈ ℝ+)))
98ralbidv 3174 . . . 4 (𝑤 = (𝑦 + 1) → (∀𝑚 ∈ ℕ0 (𝑚𝑤 → (𝐼𝑚) ∈ ℝ+) ↔ ∀𝑚 ∈ ℕ0 (𝑚 ≤ (𝑦 + 1) → (𝐼𝑚) ∈ ℝ+)))
10 breq2 5109 . . . . . 6 (𝑤 = 𝑁 → (𝑚𝑤𝑚𝑁))
1110imbi1d 341 . . . . 5 (𝑤 = 𝑁 → ((𝑚𝑤 → (𝐼𝑚) ∈ ℝ+) ↔ (𝑚𝑁 → (𝐼𝑚) ∈ ℝ+)))
1211ralbidv 3174 . . . 4 (𝑤 = 𝑁 → (∀𝑚 ∈ ℕ0 (𝑚𝑤 → (𝐼𝑚) ∈ ℝ+) ↔ ∀𝑚 ∈ ℕ0 (𝑚𝑁 → (𝐼𝑚) ∈ ℝ+)))
13 simpr 485 . . . . . . . . 9 ((𝑚 ∈ ℕ0𝑚 ≤ 0) → 𝑚 ≤ 0)
14 nn0ge0 12438 . . . . . . . . . 10 (𝑚 ∈ ℕ0 → 0 ≤ 𝑚)
1514adantr 481 . . . . . . . . 9 ((𝑚 ∈ ℕ0𝑚 ≤ 0) → 0 ≤ 𝑚)
16 nn0re 12422 . . . . . . . . . . 11 (𝑚 ∈ ℕ0𝑚 ∈ ℝ)
1716adantr 481 . . . . . . . . . 10 ((𝑚 ∈ ℕ0𝑚 ≤ 0) → 𝑚 ∈ ℝ)
18 0red 11158 . . . . . . . . . 10 ((𝑚 ∈ ℕ0𝑚 ≤ 0) → 0 ∈ ℝ)
1917, 18letri3d 11297 . . . . . . . . 9 ((𝑚 ∈ ℕ0𝑚 ≤ 0) → (𝑚 = 0 ↔ (𝑚 ≤ 0 ∧ 0 ≤ 𝑚)))
2013, 15, 19mpbir2and 711 . . . . . . . 8 ((𝑚 ∈ ℕ0𝑚 ≤ 0) → 𝑚 = 0)
2120fveq2d 6846 . . . . . . 7 ((𝑚 ∈ ℕ0𝑚 ≤ 0) → (𝐼𝑚) = (𝐼‘0))
22 wallispilem3.1 . . . . . . . . . 10 𝐼 = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)
2322wallispilem2 44297 . . . . . . . . 9 ((𝐼‘0) = π ∧ (𝐼‘1) = 2 ∧ (𝑚 ∈ (ℤ‘2) → (𝐼𝑚) = (((𝑚 − 1) / 𝑚) · (𝐼‘(𝑚 − 2)))))
2423simp1i 1139 . . . . . . . 8 (𝐼‘0) = π
25 pirp 25818 . . . . . . . 8 π ∈ ℝ+
2624, 25eqeltri 2834 . . . . . . 7 (𝐼‘0) ∈ ℝ+
2721, 26eqeltrdi 2846 . . . . . 6 ((𝑚 ∈ ℕ0𝑚 ≤ 0) → (𝐼𝑚) ∈ ℝ+)
2827ex 413 . . . . 5 (𝑚 ∈ ℕ0 → (𝑚 ≤ 0 → (𝐼𝑚) ∈ ℝ+))
2928rgen 3066 . . . 4 𝑚 ∈ ℕ0 (𝑚 ≤ 0 → (𝐼𝑚) ∈ ℝ+)
30 nfv 1917 . . . . . . 7 𝑚 𝑦 ∈ ℕ0
31 nfra1 3267 . . . . . . 7 𝑚𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)
3230, 31nfan 1902 . . . . . 6 𝑚(𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+))
33 simpllr 774 . . . . . . . . 9 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 ≤ (𝑦 + 1)) → ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+))
34 simplr 767 . . . . . . . . 9 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 ≤ (𝑦 + 1)) → 𝑚 ∈ ℕ0)
35 rsp 3230 . . . . . . . . 9 (∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+) → (𝑚 ∈ ℕ0 → (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)))
3633, 34, 35sylc 65 . . . . . . . 8 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 ≤ (𝑦 + 1)) → (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+))
37 fveq2 6842 . . . . . . . . . . . . 13 (𝑚 = 1 → (𝐼𝑚) = (𝐼‘1))
3823simp2i 1140 . . . . . . . . . . . . . 14 (𝐼‘1) = 2
39 2rp 12920 . . . . . . . . . . . . . 14 2 ∈ ℝ+
4038, 39eqeltri 2834 . . . . . . . . . . . . 13 (𝐼‘1) ∈ ℝ+
4137, 40eqeltrdi 2846 . . . . . . . . . . . 12 (𝑚 = 1 → (𝐼𝑚) ∈ ℝ+)
4241a1i 11 . . . . . . . . . . 11 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 = (𝑦 + 1)) → (𝑚 = 1 → (𝐼𝑚) ∈ ℝ+))
4323simp3i 1141 . . . . . . . . . . . . . . 15 (𝑚 ∈ (ℤ‘2) → (𝐼𝑚) = (((𝑚 − 1) / 𝑚) · (𝐼‘(𝑚 − 2))))
4443adantl 482 . . . . . . . . . . . . . 14 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 = (𝑦 + 1)) ∧ 𝑚 ∈ (ℤ‘2)) → (𝐼𝑚) = (((𝑚 − 1) / 𝑚) · (𝐼‘(𝑚 − 2))))
45 eluz2nn 12809 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ (ℤ‘2) → 𝑚 ∈ ℕ)
46 nnre 12160 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ)
47 1red 11156 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℕ → 1 ∈ ℝ)
4846, 47resubcld 11583 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ ℕ → (𝑚 − 1) ∈ ℝ)
4945, 48syl 17 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ (ℤ‘2) → (𝑚 − 1) ∈ ℝ)
50 1m1e0 12225 . . . . . . . . . . . . . . . . . . 19 (1 − 1) = 0
51 1red 11156 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ (ℤ‘2) → 1 ∈ ℝ)
52 eluzelre 12774 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ (ℤ‘2) → 𝑚 ∈ ℝ)
53 eluz2b2 12846 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ (ℤ‘2) ↔ (𝑚 ∈ ℕ ∧ 1 < 𝑚))
5453simprbi 497 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ (ℤ‘2) → 1 < 𝑚)
5551, 52, 51, 54ltsub1dd 11767 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ (ℤ‘2) → (1 − 1) < (𝑚 − 1))
5650, 55eqbrtrrid 5141 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ (ℤ‘2) → 0 < (𝑚 − 1))
5749, 56elrpd 12954 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (ℤ‘2) → (𝑚 − 1) ∈ ℝ+)
5845nnrpd 12955 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (ℤ‘2) → 𝑚 ∈ ℝ+)
5957, 58rpdivcld 12974 . . . . . . . . . . . . . . . 16 (𝑚 ∈ (ℤ‘2) → ((𝑚 − 1) / 𝑚) ∈ ℝ+)
6059adantl 482 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 = (𝑦 + 1)) ∧ 𝑚 ∈ (ℤ‘2)) → ((𝑚 − 1) / 𝑚) ∈ ℝ+)
61 breq1 5108 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = 𝑘 → (𝑚𝑦𝑘𝑦))
62 fveq2 6842 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = 𝑘 → (𝐼𝑚) = (𝐼𝑘))
6362eleq1d 2822 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = 𝑘 → ((𝐼𝑚) ∈ ℝ+ ↔ (𝐼𝑘) ∈ ℝ+))
6461, 63imbi12d 344 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = 𝑘 → ((𝑚𝑦 → (𝐼𝑚) ∈ ℝ+) ↔ (𝑘𝑦 → (𝐼𝑘) ∈ ℝ+)))
6564cbvralvw 3225 . . . . . . . . . . . . . . . . . . 19 (∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+) ↔ ∀𝑘 ∈ ℕ0 (𝑘𝑦 → (𝐼𝑘) ∈ ℝ+))
6665biimpi 215 . . . . . . . . . . . . . . . . . 18 (∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+) → ∀𝑘 ∈ ℕ0 (𝑘𝑦 → (𝐼𝑘) ∈ ℝ+))
6766ad3antlr 729 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 = (𝑦 + 1)) ∧ 𝑚 ∈ (ℤ‘2)) → ∀𝑘 ∈ ℕ0 (𝑘𝑦 → (𝐼𝑘) ∈ ℝ+))
68 uznn0sub 12802 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ (ℤ‘2) → (𝑚 − 2) ∈ ℕ0)
6968adantl 482 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 = (𝑦 + 1)) ∧ 𝑚 ∈ (ℤ‘2)) → (𝑚 − 2) ∈ ℕ0)
7067, 69jca 512 . . . . . . . . . . . . . . . 16 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 = (𝑦 + 1)) ∧ 𝑚 ∈ (ℤ‘2)) → (∀𝑘 ∈ ℕ0 (𝑘𝑦 → (𝐼𝑘) ∈ ℝ+) ∧ (𝑚 − 2) ∈ ℕ0))
71 simplll 773 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 = (𝑦 + 1)) ∧ 𝑚 ∈ (ℤ‘2)) → 𝑦 ∈ ℕ0)
72 simplr 767 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 = (𝑦 + 1)) ∧ 𝑚 ∈ (ℤ‘2)) → 𝑚 = (𝑦 + 1))
73 simpr 485 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 = (𝑦 + 1)) ∧ 𝑚 ∈ (ℤ‘2)) → 𝑚 ∈ (ℤ‘2))
74 simp2 1137 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℕ0𝑚 = (𝑦 + 1) ∧ 𝑚 ∈ (ℤ‘2)) → 𝑚 = (𝑦 + 1))
7574oveq1d 7372 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℕ0𝑚 = (𝑦 + 1) ∧ 𝑚 ∈ (ℤ‘2)) → (𝑚 − 2) = ((𝑦 + 1) − 2))
76 nn0re 12422 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ℕ0𝑦 ∈ ℝ)
77763ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℕ0𝑚 = (𝑦 + 1) ∧ 𝑚 ∈ (ℤ‘2)) → 𝑦 ∈ ℝ)
7877recnd 11183 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℕ0𝑚 = (𝑦 + 1) ∧ 𝑚 ∈ (ℤ‘2)) → 𝑦 ∈ ℂ)
79 df-2 12216 . . . . . . . . . . . . . . . . . . . . . . 23 2 = (1 + 1)
8079a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ℂ → 2 = (1 + 1))
8180oveq2d 7373 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℂ → ((𝑦 + 1) − 2) = ((𝑦 + 1) − (1 + 1)))
82 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ℂ → 𝑦 ∈ ℂ)
83 1cnd 11150 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ℂ → 1 ∈ ℂ)
8482, 83, 83pnpcan2d 11550 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℂ → ((𝑦 + 1) − (1 + 1)) = (𝑦 − 1))
8581, 84eqtrd 2776 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℂ → ((𝑦 + 1) − 2) = (𝑦 − 1))
8678, 85syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℕ0𝑚 = (𝑦 + 1) ∧ 𝑚 ∈ (ℤ‘2)) → ((𝑦 + 1) − 2) = (𝑦 − 1))
8775, 86eqtrd 2776 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℕ0𝑚 = (𝑦 + 1) ∧ 𝑚 ∈ (ℤ‘2)) → (𝑚 − 2) = (𝑦 − 1))
8877lem1d 12088 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℕ0𝑚 = (𝑦 + 1) ∧ 𝑚 ∈ (ℤ‘2)) → (𝑦 − 1) ≤ 𝑦)
8987, 88eqbrtrd 5127 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ0𝑚 = (𝑦 + 1) ∧ 𝑚 ∈ (ℤ‘2)) → (𝑚 − 2) ≤ 𝑦)
9071, 72, 73, 89syl3anc 1371 . . . . . . . . . . . . . . . 16 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 = (𝑦 + 1)) ∧ 𝑚 ∈ (ℤ‘2)) → (𝑚 − 2) ≤ 𝑦)
91 breq1 5108 . . . . . . . . . . . . . . . . . 18 (𝑘 = (𝑚 − 2) → (𝑘𝑦 ↔ (𝑚 − 2) ≤ 𝑦))
92 fveq2 6842 . . . . . . . . . . . . . . . . . . 19 (𝑘 = (𝑚 − 2) → (𝐼𝑘) = (𝐼‘(𝑚 − 2)))
9392eleq1d 2822 . . . . . . . . . . . . . . . . . 18 (𝑘 = (𝑚 − 2) → ((𝐼𝑘) ∈ ℝ+ ↔ (𝐼‘(𝑚 − 2)) ∈ ℝ+))
9491, 93imbi12d 344 . . . . . . . . . . . . . . . . 17 (𝑘 = (𝑚 − 2) → ((𝑘𝑦 → (𝐼𝑘) ∈ ℝ+) ↔ ((𝑚 − 2) ≤ 𝑦 → (𝐼‘(𝑚 − 2)) ∈ ℝ+)))
9594rspccva 3580 . . . . . . . . . . . . . . . 16 ((∀𝑘 ∈ ℕ0 (𝑘𝑦 → (𝐼𝑘) ∈ ℝ+) ∧ (𝑚 − 2) ∈ ℕ0) → ((𝑚 − 2) ≤ 𝑦 → (𝐼‘(𝑚 − 2)) ∈ ℝ+))
9670, 90, 95sylc 65 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 = (𝑦 + 1)) ∧ 𝑚 ∈ (ℤ‘2)) → (𝐼‘(𝑚 − 2)) ∈ ℝ+)
9760, 96rpmulcld 12973 . . . . . . . . . . . . . 14 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 = (𝑦 + 1)) ∧ 𝑚 ∈ (ℤ‘2)) → (((𝑚 − 1) / 𝑚) · (𝐼‘(𝑚 − 2))) ∈ ℝ+)
9844, 97eqeltrd 2838 . . . . . . . . . . . . 13 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 = (𝑦 + 1)) ∧ 𝑚 ∈ (ℤ‘2)) → (𝐼𝑚) ∈ ℝ+)
9998adantllr 717 . . . . . . . . . . . 12 (((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 = (𝑦 + 1)) ∧ 𝑚 ∈ (ℤ‘2)) → (𝐼𝑚) ∈ ℝ+)
10099ex 413 . . . . . . . . . . 11 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 = (𝑦 + 1)) → (𝑚 ∈ (ℤ‘2) → (𝐼𝑚) ∈ ℝ+))
101 simplll 773 . . . . . . . . . . . 12 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 = (𝑦 + 1)) → 𝑦 ∈ ℕ0)
102 simplr 767 . . . . . . . . . . . 12 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 = (𝑦 + 1)) → 𝑚 ∈ ℕ0)
103 simpr 485 . . . . . . . . . . . 12 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 = (𝑦 + 1)) → 𝑚 = (𝑦 + 1))
104 simp3 1138 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 = (𝑦 + 1)) → 𝑚 = (𝑦 + 1))
105 nn0p1nn 12452 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ0 → (𝑦 + 1) ∈ ℕ)
1061053ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 = (𝑦 + 1)) → (𝑦 + 1) ∈ ℕ)
107104, 106eqeltrd 2838 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 = (𝑦 + 1)) → 𝑚 ∈ ℕ)
108 elnnuz 12807 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ ↔ 𝑚 ∈ (ℤ‘1))
109107, 108sylib 217 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 = (𝑦 + 1)) → 𝑚 ∈ (ℤ‘1))
110 uzp1 12804 . . . . . . . . . . . . . 14 (𝑚 ∈ (ℤ‘1) → (𝑚 = 1 ∨ 𝑚 ∈ (ℤ‘(1 + 1))))
111 1p1e2 12278 . . . . . . . . . . . . . . . . 17 (1 + 1) = 2
112111fveq2i 6845 . . . . . . . . . . . . . . . 16 (ℤ‘(1 + 1)) = (ℤ‘2)
113112eleq2i 2829 . . . . . . . . . . . . . . 15 (𝑚 ∈ (ℤ‘(1 + 1)) ↔ 𝑚 ∈ (ℤ‘2))
114113orbi2i 911 . . . . . . . . . . . . . 14 ((𝑚 = 1 ∨ 𝑚 ∈ (ℤ‘(1 + 1))) ↔ (𝑚 = 1 ∨ 𝑚 ∈ (ℤ‘2)))
115110, 114sylib 217 . . . . . . . . . . . . 13 (𝑚 ∈ (ℤ‘1) → (𝑚 = 1 ∨ 𝑚 ∈ (ℤ‘2)))
116109, 115syl 17 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 = (𝑦 + 1)) → (𝑚 = 1 ∨ 𝑚 ∈ (ℤ‘2)))
117101, 102, 103, 116syl3anc 1371 . . . . . . . . . . 11 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 = (𝑦 + 1)) → (𝑚 = 1 ∨ 𝑚 ∈ (ℤ‘2)))
11842, 100, 117mpjaod 858 . . . . . . . . . 10 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 = (𝑦 + 1)) → (𝐼𝑚) ∈ ℝ+)
119118adantlr 713 . . . . . . . . 9 (((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 ≤ (𝑦 + 1)) ∧ 𝑚 = (𝑦 + 1)) → (𝐼𝑚) ∈ ℝ+)
120119ex 413 . . . . . . . 8 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 ≤ (𝑦 + 1)) → (𝑚 = (𝑦 + 1) → (𝐼𝑚) ∈ ℝ+))
121 simplll 773 . . . . . . . . 9 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 ≤ (𝑦 + 1)) → 𝑦 ∈ ℕ0)
122 simpr 485 . . . . . . . . 9 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 ≤ (𝑦 + 1)) → 𝑚 ≤ (𝑦 + 1))
123 simpl1 1191 . . . . . . . . . . 11 (((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 ≤ (𝑦 + 1)) ∧ 𝑚 < (𝑦 + 1)) → 𝑦 ∈ ℕ0)
124 simpl2 1192 . . . . . . . . . . 11 (((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 ≤ (𝑦 + 1)) ∧ 𝑚 < (𝑦 + 1)) → 𝑚 ∈ ℕ0)
125 simpr 485 . . . . . . . . . . 11 (((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 ≤ (𝑦 + 1)) ∧ 𝑚 < (𝑦 + 1)) → 𝑚 < (𝑦 + 1))
126 simpr 485 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ0𝑚 = 0) → 𝑚 = 0)
127 nn0ge0 12438 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ0 → 0 ≤ 𝑦)
128127adantr 481 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ0𝑚 = 0) → 0 ≤ 𝑦)
129126, 128eqbrtrd 5127 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ0𝑚 = 0) → 𝑚𝑦)
1301293ad2antl1 1185 . . . . . . . . . . . . 13 (((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 < (𝑦 + 1)) ∧ 𝑚 = 0) → 𝑚𝑦)
131 simpl1 1191 . . . . . . . . . . . . . 14 (((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 < (𝑦 + 1)) ∧ 𝑚 ∈ ℕ) → 𝑦 ∈ ℕ0)
132 simpr 485 . . . . . . . . . . . . . 14 (((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 < (𝑦 + 1)) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
133 simpl3 1193 . . . . . . . . . . . . . 14 (((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 < (𝑦 + 1)) ∧ 𝑚 ∈ ℕ) → 𝑚 < (𝑦 + 1))
134 simp3 1138 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ ∧ 𝑚 < (𝑦 + 1)) → 𝑚 < (𝑦 + 1))
135 simp2 1137 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ ∧ 𝑚 < (𝑦 + 1)) → 𝑚 ∈ ℕ)
136 simp1 1136 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ ∧ 𝑚 < (𝑦 + 1)) → 𝑦 ∈ ℕ0)
137 0red 11158 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ ∧ 𝑚 < (𝑦 + 1)) → 0 ∈ ℝ)
138483ad2ant2 1134 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ ∧ 𝑚 < (𝑦 + 1)) → (𝑚 − 1) ∈ ℝ)
139763ad2ant1 1133 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ ∧ 𝑚 < (𝑦 + 1)) → 𝑦 ∈ ℝ)
140 nnm1ge0 12571 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℕ → 0 ≤ (𝑚 − 1))
1411403ad2ant2 1134 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ ∧ 𝑚 < (𝑦 + 1)) → 0 ≤ (𝑚 − 1))
142463ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ ∧ 𝑚 < (𝑦 + 1)) → 𝑚 ∈ ℝ)
143 1red 11156 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ ∧ 𝑚 < (𝑦 + 1)) → 1 ∈ ℝ)
144142, 143, 139ltsubaddd 11751 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ ∧ 𝑚 < (𝑦 + 1)) → ((𝑚 − 1) < 𝑦𝑚 < (𝑦 + 1)))
145134, 144mpbird 256 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ ∧ 𝑚 < (𝑦 + 1)) → (𝑚 − 1) < 𝑦)
146137, 138, 139, 141, 145lelttrd 11313 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ ∧ 𝑚 < (𝑦 + 1)) → 0 < 𝑦)
147146gt0ne0d 11719 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ ∧ 𝑚 < (𝑦 + 1)) → 𝑦 ≠ 0)
148 elnnne0 12427 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℕ ↔ (𝑦 ∈ ℕ0𝑦 ≠ 0))
149136, 147, 148sylanbrc 583 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ ∧ 𝑚 < (𝑦 + 1)) → 𝑦 ∈ ℕ)
150 nnleltp1 12558 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑚𝑦𝑚 < (𝑦 + 1)))
151135, 149, 150syl2anc 584 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ ∧ 𝑚 < (𝑦 + 1)) → (𝑚𝑦𝑚 < (𝑦 + 1)))
152134, 151mpbird 256 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ ∧ 𝑚 < (𝑦 + 1)) → 𝑚𝑦)
153131, 132, 133, 152syl3anc 1371 . . . . . . . . . . . . 13 (((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 < (𝑦 + 1)) ∧ 𝑚 ∈ ℕ) → 𝑚𝑦)
154 elnn0 12415 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ0 ↔ (𝑚 ∈ ℕ ∨ 𝑚 = 0))
155154biimpi 215 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ0 → (𝑚 ∈ ℕ ∨ 𝑚 = 0))
156155orcomd 869 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ0 → (𝑚 = 0 ∨ 𝑚 ∈ ℕ))
1571563ad2ant2 1134 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 < (𝑦 + 1)) → (𝑚 = 0 ∨ 𝑚 ∈ ℕ))
158130, 153, 157mpjaodan 957 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 < (𝑦 + 1)) → 𝑚𝑦)
159158orcd 871 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 < (𝑦 + 1)) → (𝑚𝑦𝑚 = (𝑦 + 1)))
160123, 124, 125, 159syl3anc 1371 . . . . . . . . . 10 (((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 ≤ (𝑦 + 1)) ∧ 𝑚 < (𝑦 + 1)) → (𝑚𝑦𝑚 = (𝑦 + 1)))
161 simpr 485 . . . . . . . . . . 11 (((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 ≤ (𝑦 + 1)) ∧ 𝑚 = (𝑦 + 1)) → 𝑚 = (𝑦 + 1))
162161olcd 872 . . . . . . . . . 10 (((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 ≤ (𝑦 + 1)) ∧ 𝑚 = (𝑦 + 1)) → (𝑚𝑦𝑚 = (𝑦 + 1)))
163 simp3 1138 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 ≤ (𝑦 + 1)) → 𝑚 ≤ (𝑦 + 1))
164163ad2ant2 1134 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 ≤ (𝑦 + 1)) → 𝑚 ∈ ℝ)
165763ad2ant1 1133 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 ≤ (𝑦 + 1)) → 𝑦 ∈ ℝ)
166 1red 11156 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 ≤ (𝑦 + 1)) → 1 ∈ ℝ)
167165, 166readdcld 11184 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 ≤ (𝑦 + 1)) → (𝑦 + 1) ∈ ℝ)
168164, 167leloed 11298 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 ≤ (𝑦 + 1)) → (𝑚 ≤ (𝑦 + 1) ↔ (𝑚 < (𝑦 + 1) ∨ 𝑚 = (𝑦 + 1))))
169163, 168mpbid 231 . . . . . . . . . 10 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 ≤ (𝑦 + 1)) → (𝑚 < (𝑦 + 1) ∨ 𝑚 = (𝑦 + 1)))
170160, 162, 169mpjaodan 957 . . . . . . . . 9 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 ≤ (𝑦 + 1)) → (𝑚𝑦𝑚 = (𝑦 + 1)))
171121, 34, 122, 170syl3anc 1371 . . . . . . . 8 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 ≤ (𝑦 + 1)) → (𝑚𝑦𝑚 = (𝑦 + 1)))
17236, 120, 171mpjaod 858 . . . . . . 7 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 ≤ (𝑦 + 1)) → (𝐼𝑚) ∈ ℝ+)
173172exp31 420 . . . . . 6 ((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) → (𝑚 ∈ ℕ0 → (𝑚 ≤ (𝑦 + 1) → (𝐼𝑚) ∈ ℝ+)))
17432, 173ralrimi 3240 . . . . 5 ((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) → ∀𝑚 ∈ ℕ0 (𝑚 ≤ (𝑦 + 1) → (𝐼𝑚) ∈ ℝ+))
175174ex 413 . . . 4 (𝑦 ∈ ℕ0 → (∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+) → ∀𝑚 ∈ ℕ0 (𝑚 ≤ (𝑦 + 1) → (𝐼𝑚) ∈ ℝ+)))
1763, 6, 9, 12, 29, 175nn0ind 12598 . . 3 (𝑁 ∈ ℕ0 → ∀𝑚 ∈ ℕ0 (𝑚𝑁 → (𝐼𝑚) ∈ ℝ+))
177176ancri 550 . 2 (𝑁 ∈ ℕ0 → (∀𝑚 ∈ ℕ0 (𝑚𝑁 → (𝐼𝑚) ∈ ℝ+) ∧ 𝑁 ∈ ℕ0))
178 nn0re 12422 . . 3 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
179178leidd 11721 . 2 (𝑁 ∈ ℕ0𝑁𝑁)
180 breq1 5108 . . . 4 (𝑚 = 𝑁 → (𝑚𝑁𝑁𝑁))
181 fveq2 6842 . . . . 5 (𝑚 = 𝑁 → (𝐼𝑚) = (𝐼𝑁))
182181eleq1d 2822 . . . 4 (𝑚 = 𝑁 → ((𝐼𝑚) ∈ ℝ+ ↔ (𝐼𝑁) ∈ ℝ+))
183180, 182imbi12d 344 . . 3 (𝑚 = 𝑁 → ((𝑚𝑁 → (𝐼𝑚) ∈ ℝ+) ↔ (𝑁𝑁 → (𝐼𝑁) ∈ ℝ+)))
184183rspccva 3580 . 2 ((∀𝑚 ∈ ℕ0 (𝑚𝑁 → (𝐼𝑚) ∈ ℝ+) ∧ 𝑁 ∈ ℕ0) → (𝑁𝑁 → (𝐼𝑁) ∈ ℝ+))
185177, 179, 184sylc 65 1 (𝑁 ∈ ℕ0 → (𝐼𝑁) ∈ ℝ+)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064   class class class wbr 5105  cmpt 5188  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056   < clt 11189  cle 11190  cmin 11385   / cdiv 11812  cn 12153  2c2 12208  0cn0 12413  cuz 12763  +crp 12915  (,)cioo 13264  cexp 13967  sincsin 15946  πcpi 15949  citg 24982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cc 10371  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-symdif 4202  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-disj 5071  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-ofr 7618  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-omul 8417  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-acn 9878  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-sin 15952  df-cos 15953  df-pi 15955  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-cmp 22738  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-ovol 24828  df-vol 24829  df-mbf 24983  df-itg1 24984  df-itg2 24985  df-ibl 24986  df-itg 24987  df-0p 25034  df-limc 25230  df-dv 25231
This theorem is referenced by:  wallispilem4  44299  wallispilem5  44300
  Copyright terms: Public domain W3C validator