| Step | Hyp | Ref
| Expression |
| 1 | | breq2 5147 |
. . . . . 6
⊢ (𝑤 = 0 → (𝑚 ≤ 𝑤 ↔ 𝑚 ≤ 0)) |
| 2 | 1 | imbi1d 341 |
. . . . 5
⊢ (𝑤 = 0 → ((𝑚 ≤ 𝑤 → (𝐼‘𝑚) ∈ ℝ+) ↔ (𝑚 ≤ 0 → (𝐼‘𝑚) ∈
ℝ+))) |
| 3 | 2 | ralbidv 3178 |
. . . 4
⊢ (𝑤 = 0 → (∀𝑚 ∈ ℕ0
(𝑚 ≤ 𝑤 → (𝐼‘𝑚) ∈ ℝ+) ↔
∀𝑚 ∈
ℕ0 (𝑚 ≤
0 → (𝐼‘𝑚) ∈
ℝ+))) |
| 4 | | breq2 5147 |
. . . . . 6
⊢ (𝑤 = 𝑦 → (𝑚 ≤ 𝑤 ↔ 𝑚 ≤ 𝑦)) |
| 5 | 4 | imbi1d 341 |
. . . . 5
⊢ (𝑤 = 𝑦 → ((𝑚 ≤ 𝑤 → (𝐼‘𝑚) ∈ ℝ+) ↔ (𝑚 ≤ 𝑦 → (𝐼‘𝑚) ∈
ℝ+))) |
| 6 | 5 | ralbidv 3178 |
. . . 4
⊢ (𝑤 = 𝑦 → (∀𝑚 ∈ ℕ0 (𝑚 ≤ 𝑤 → (𝐼‘𝑚) ∈ ℝ+) ↔
∀𝑚 ∈
ℕ0 (𝑚 ≤
𝑦 → (𝐼‘𝑚) ∈
ℝ+))) |
| 7 | | breq2 5147 |
. . . . . 6
⊢ (𝑤 = (𝑦 + 1) → (𝑚 ≤ 𝑤 ↔ 𝑚 ≤ (𝑦 + 1))) |
| 8 | 7 | imbi1d 341 |
. . . . 5
⊢ (𝑤 = (𝑦 + 1) → ((𝑚 ≤ 𝑤 → (𝐼‘𝑚) ∈ ℝ+) ↔ (𝑚 ≤ (𝑦 + 1) → (𝐼‘𝑚) ∈
ℝ+))) |
| 9 | 8 | ralbidv 3178 |
. . . 4
⊢ (𝑤 = (𝑦 + 1) → (∀𝑚 ∈ ℕ0 (𝑚 ≤ 𝑤 → (𝐼‘𝑚) ∈ ℝ+) ↔
∀𝑚 ∈
ℕ0 (𝑚 ≤
(𝑦 + 1) → (𝐼‘𝑚) ∈
ℝ+))) |
| 10 | | breq2 5147 |
. . . . . 6
⊢ (𝑤 = 𝑁 → (𝑚 ≤ 𝑤 ↔ 𝑚 ≤ 𝑁)) |
| 11 | 10 | imbi1d 341 |
. . . . 5
⊢ (𝑤 = 𝑁 → ((𝑚 ≤ 𝑤 → (𝐼‘𝑚) ∈ ℝ+) ↔ (𝑚 ≤ 𝑁 → (𝐼‘𝑚) ∈
ℝ+))) |
| 12 | 11 | ralbidv 3178 |
. . . 4
⊢ (𝑤 = 𝑁 → (∀𝑚 ∈ ℕ0 (𝑚 ≤ 𝑤 → (𝐼‘𝑚) ∈ ℝ+) ↔
∀𝑚 ∈
ℕ0 (𝑚 ≤
𝑁 → (𝐼‘𝑚) ∈
ℝ+))) |
| 13 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝑚 ∈ ℕ0
∧ 𝑚 ≤ 0) →
𝑚 ≤ 0) |
| 14 | | nn0ge0 12551 |
. . . . . . . . . 10
⊢ (𝑚 ∈ ℕ0
→ 0 ≤ 𝑚) |
| 15 | 14 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑚 ∈ ℕ0
∧ 𝑚 ≤ 0) → 0
≤ 𝑚) |
| 16 | | nn0re 12535 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ ℕ0
→ 𝑚 ∈
ℝ) |
| 17 | 16 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑚 ∈ ℕ0
∧ 𝑚 ≤ 0) →
𝑚 ∈
ℝ) |
| 18 | | 0red 11264 |
. . . . . . . . . 10
⊢ ((𝑚 ∈ ℕ0
∧ 𝑚 ≤ 0) → 0
∈ ℝ) |
| 19 | 17, 18 | letri3d 11403 |
. . . . . . . . 9
⊢ ((𝑚 ∈ ℕ0
∧ 𝑚 ≤ 0) →
(𝑚 = 0 ↔ (𝑚 ≤ 0 ∧ 0 ≤ 𝑚))) |
| 20 | 13, 15, 19 | mpbir2and 713 |
. . . . . . . 8
⊢ ((𝑚 ∈ ℕ0
∧ 𝑚 ≤ 0) →
𝑚 = 0) |
| 21 | 20 | fveq2d 6910 |
. . . . . . 7
⊢ ((𝑚 ∈ ℕ0
∧ 𝑚 ≤ 0) →
(𝐼‘𝑚) = (𝐼‘0)) |
| 22 | | wallispilem3.1 |
. . . . . . . . . 10
⊢ 𝐼 = (𝑛 ∈ ℕ0 ↦
∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥) |
| 23 | 22 | wallispilem2 46081 |
. . . . . . . . 9
⊢ ((𝐼‘0) = π ∧ (𝐼‘1) = 2 ∧ (𝑚 ∈
(ℤ≥‘2) → (𝐼‘𝑚) = (((𝑚 − 1) / 𝑚) · (𝐼‘(𝑚 − 2))))) |
| 24 | 23 | simp1i 1140 |
. . . . . . . 8
⊢ (𝐼‘0) =
π |
| 25 | | pirp 26503 |
. . . . . . . 8
⊢ π
∈ ℝ+ |
| 26 | 24, 25 | eqeltri 2837 |
. . . . . . 7
⊢ (𝐼‘0) ∈
ℝ+ |
| 27 | 21, 26 | eqeltrdi 2849 |
. . . . . 6
⊢ ((𝑚 ∈ ℕ0
∧ 𝑚 ≤ 0) →
(𝐼‘𝑚) ∈
ℝ+) |
| 28 | 27 | ex 412 |
. . . . 5
⊢ (𝑚 ∈ ℕ0
→ (𝑚 ≤ 0 →
(𝐼‘𝑚) ∈
ℝ+)) |
| 29 | 28 | rgen 3063 |
. . . 4
⊢
∀𝑚 ∈
ℕ0 (𝑚 ≤
0 → (𝐼‘𝑚) ∈
ℝ+) |
| 30 | | nfv 1914 |
. . . . . . 7
⊢
Ⅎ𝑚 𝑦 ∈
ℕ0 |
| 31 | | nfra1 3284 |
. . . . . . 7
⊢
Ⅎ𝑚∀𝑚 ∈ ℕ0 (𝑚 ≤ 𝑦 → (𝐼‘𝑚) ∈
ℝ+) |
| 32 | 30, 31 | nfan 1899 |
. . . . . 6
⊢
Ⅎ𝑚(𝑦 ∈ ℕ0
∧ ∀𝑚 ∈
ℕ0 (𝑚 ≤
𝑦 → (𝐼‘𝑚) ∈
ℝ+)) |
| 33 | | simpllr 776 |
. . . . . . . . 9
⊢ ((((𝑦 ∈ ℕ0
∧ ∀𝑚 ∈
ℕ0 (𝑚 ≤
𝑦 → (𝐼‘𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0)
∧ 𝑚 ≤ (𝑦 + 1)) → ∀𝑚 ∈ ℕ0
(𝑚 ≤ 𝑦 → (𝐼‘𝑚) ∈
ℝ+)) |
| 34 | | simplr 769 |
. . . . . . . . 9
⊢ ((((𝑦 ∈ ℕ0
∧ ∀𝑚 ∈
ℕ0 (𝑚 ≤
𝑦 → (𝐼‘𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0)
∧ 𝑚 ≤ (𝑦 + 1)) → 𝑚 ∈ ℕ0) |
| 35 | | rsp 3247 |
. . . . . . . . 9
⊢
(∀𝑚 ∈
ℕ0 (𝑚 ≤
𝑦 → (𝐼‘𝑚) ∈ ℝ+) → (𝑚 ∈ ℕ0
→ (𝑚 ≤ 𝑦 → (𝐼‘𝑚) ∈
ℝ+))) |
| 36 | 33, 34, 35 | sylc 65 |
. . . . . . . 8
⊢ ((((𝑦 ∈ ℕ0
∧ ∀𝑚 ∈
ℕ0 (𝑚 ≤
𝑦 → (𝐼‘𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0)
∧ 𝑚 ≤ (𝑦 + 1)) → (𝑚 ≤ 𝑦 → (𝐼‘𝑚) ∈
ℝ+)) |
| 37 | | fveq2 6906 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 1 → (𝐼‘𝑚) = (𝐼‘1)) |
| 38 | 23 | simp2i 1141 |
. . . . . . . . . . . . . 14
⊢ (𝐼‘1) = 2 |
| 39 | | 2rp 13039 |
. . . . . . . . . . . . . 14
⊢ 2 ∈
ℝ+ |
| 40 | 38, 39 | eqeltri 2837 |
. . . . . . . . . . . . 13
⊢ (𝐼‘1) ∈
ℝ+ |
| 41 | 37, 40 | eqeltrdi 2849 |
. . . . . . . . . . . 12
⊢ (𝑚 = 1 → (𝐼‘𝑚) ∈
ℝ+) |
| 42 | 41 | a1i 11 |
. . . . . . . . . . 11
⊢ ((((𝑦 ∈ ℕ0
∧ ∀𝑚 ∈
ℕ0 (𝑚 ≤
𝑦 → (𝐼‘𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0)
∧ 𝑚 = (𝑦 + 1)) → (𝑚 = 1 → (𝐼‘𝑚) ∈
ℝ+)) |
| 43 | 23 | simp3i 1142 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈
(ℤ≥‘2) → (𝐼‘𝑚) = (((𝑚 − 1) / 𝑚) · (𝐼‘(𝑚 − 2)))) |
| 44 | 43 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝑦 ∈ ℕ0
∧ ∀𝑚 ∈
ℕ0 (𝑚 ≤
𝑦 → (𝐼‘𝑚) ∈ ℝ+)) ∧ 𝑚 = (𝑦 + 1)) ∧ 𝑚 ∈ (ℤ≥‘2))
→ (𝐼‘𝑚) = (((𝑚 − 1) / 𝑚) · (𝐼‘(𝑚 − 2)))) |
| 45 | | eluz2nn 12924 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 ∈
(ℤ≥‘2) → 𝑚 ∈ ℕ) |
| 46 | | nnre 12273 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 ∈ ℕ → 𝑚 ∈
ℝ) |
| 47 | | 1red 11262 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 ∈ ℕ → 1 ∈
ℝ) |
| 48 | 46, 47 | resubcld 11691 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 ∈ ℕ → (𝑚 − 1) ∈
ℝ) |
| 49 | 45, 48 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 ∈
(ℤ≥‘2) → (𝑚 − 1) ∈ ℝ) |
| 50 | | 1m1e0 12338 |
. . . . . . . . . . . . . . . . . . 19
⊢ (1
− 1) = 0 |
| 51 | | 1red 11262 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 ∈
(ℤ≥‘2) → 1 ∈ ℝ) |
| 52 | | eluzelre 12889 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 ∈
(ℤ≥‘2) → 𝑚 ∈ ℝ) |
| 53 | | eluz2b2 12963 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 ∈
(ℤ≥‘2) ↔ (𝑚 ∈ ℕ ∧ 1 < 𝑚)) |
| 54 | 53 | simprbi 496 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 ∈
(ℤ≥‘2) → 1 < 𝑚) |
| 55 | 51, 52, 51, 54 | ltsub1dd 11875 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 ∈
(ℤ≥‘2) → (1 − 1) < (𝑚 − 1)) |
| 56 | 50, 55 | eqbrtrrid 5179 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 ∈
(ℤ≥‘2) → 0 < (𝑚 − 1)) |
| 57 | 49, 56 | elrpd 13074 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 ∈
(ℤ≥‘2) → (𝑚 − 1) ∈
ℝ+) |
| 58 | 45 | nnrpd 13075 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 ∈
(ℤ≥‘2) → 𝑚 ∈ ℝ+) |
| 59 | 57, 58 | rpdivcld 13094 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈
(ℤ≥‘2) → ((𝑚 − 1) / 𝑚) ∈
ℝ+) |
| 60 | 59 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑦 ∈ ℕ0
∧ ∀𝑚 ∈
ℕ0 (𝑚 ≤
𝑦 → (𝐼‘𝑚) ∈ ℝ+)) ∧ 𝑚 = (𝑦 + 1)) ∧ 𝑚 ∈ (ℤ≥‘2))
→ ((𝑚 − 1) /
𝑚) ∈
ℝ+) |
| 61 | | breq1 5146 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 = 𝑘 → (𝑚 ≤ 𝑦 ↔ 𝑘 ≤ 𝑦)) |
| 62 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑚 = 𝑘 → (𝐼‘𝑚) = (𝐼‘𝑘)) |
| 63 | 62 | eleq1d 2826 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 = 𝑘 → ((𝐼‘𝑚) ∈ ℝ+ ↔ (𝐼‘𝑘) ∈
ℝ+)) |
| 64 | 61, 63 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 = 𝑘 → ((𝑚 ≤ 𝑦 → (𝐼‘𝑚) ∈ ℝ+) ↔ (𝑘 ≤ 𝑦 → (𝐼‘𝑘) ∈
ℝ+))) |
| 65 | 64 | cbvralvw 3237 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑚 ∈
ℕ0 (𝑚 ≤
𝑦 → (𝐼‘𝑚) ∈ ℝ+) ↔
∀𝑘 ∈
ℕ0 (𝑘 ≤
𝑦 → (𝐼‘𝑘) ∈
ℝ+)) |
| 66 | 65 | biimpi 216 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑚 ∈
ℕ0 (𝑚 ≤
𝑦 → (𝐼‘𝑚) ∈ ℝ+) →
∀𝑘 ∈
ℕ0 (𝑘 ≤
𝑦 → (𝐼‘𝑘) ∈
ℝ+)) |
| 67 | 66 | ad3antlr 731 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑦 ∈ ℕ0
∧ ∀𝑚 ∈
ℕ0 (𝑚 ≤
𝑦 → (𝐼‘𝑚) ∈ ℝ+)) ∧ 𝑚 = (𝑦 + 1)) ∧ 𝑚 ∈ (ℤ≥‘2))
→ ∀𝑘 ∈
ℕ0 (𝑘 ≤
𝑦 → (𝐼‘𝑘) ∈
ℝ+)) |
| 68 | | uznn0sub 12917 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 ∈
(ℤ≥‘2) → (𝑚 − 2) ∈
ℕ0) |
| 69 | 68 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑦 ∈ ℕ0
∧ ∀𝑚 ∈
ℕ0 (𝑚 ≤
𝑦 → (𝐼‘𝑚) ∈ ℝ+)) ∧ 𝑚 = (𝑦 + 1)) ∧ 𝑚 ∈ (ℤ≥‘2))
→ (𝑚 − 2) ∈
ℕ0) |
| 70 | 67, 69 | jca 511 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑦 ∈ ℕ0
∧ ∀𝑚 ∈
ℕ0 (𝑚 ≤
𝑦 → (𝐼‘𝑚) ∈ ℝ+)) ∧ 𝑚 = (𝑦 + 1)) ∧ 𝑚 ∈ (ℤ≥‘2))
→ (∀𝑘 ∈
ℕ0 (𝑘 ≤
𝑦 → (𝐼‘𝑘) ∈ ℝ+) ∧ (𝑚 − 2) ∈
ℕ0)) |
| 71 | | simplll 775 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑦 ∈ ℕ0
∧ ∀𝑚 ∈
ℕ0 (𝑚 ≤
𝑦 → (𝐼‘𝑚) ∈ ℝ+)) ∧ 𝑚 = (𝑦 + 1)) ∧ 𝑚 ∈ (ℤ≥‘2))
→ 𝑦 ∈
ℕ0) |
| 72 | | simplr 769 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑦 ∈ ℕ0
∧ ∀𝑚 ∈
ℕ0 (𝑚 ≤
𝑦 → (𝐼‘𝑚) ∈ ℝ+)) ∧ 𝑚 = (𝑦 + 1)) ∧ 𝑚 ∈ (ℤ≥‘2))
→ 𝑚 = (𝑦 + 1)) |
| 73 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑦 ∈ ℕ0
∧ ∀𝑚 ∈
ℕ0 (𝑚 ≤
𝑦 → (𝐼‘𝑚) ∈ ℝ+)) ∧ 𝑚 = (𝑦 + 1)) ∧ 𝑚 ∈ (ℤ≥‘2))
→ 𝑚 ∈
(ℤ≥‘2)) |
| 74 | | simp2 1138 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 ∈ ℕ0
∧ 𝑚 = (𝑦 + 1) ∧ 𝑚 ∈ (ℤ≥‘2))
→ 𝑚 = (𝑦 + 1)) |
| 75 | 74 | oveq1d 7446 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ ℕ0
∧ 𝑚 = (𝑦 + 1) ∧ 𝑚 ∈ (ℤ≥‘2))
→ (𝑚 − 2) =
((𝑦 + 1) −
2)) |
| 76 | | nn0re 12535 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ ℕ0
→ 𝑦 ∈
ℝ) |
| 77 | 76 | 3ad2ant1 1134 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑦 ∈ ℕ0
∧ 𝑚 = (𝑦 + 1) ∧ 𝑚 ∈ (ℤ≥‘2))
→ 𝑦 ∈
ℝ) |
| 78 | 77 | recnd 11289 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 ∈ ℕ0
∧ 𝑚 = (𝑦 + 1) ∧ 𝑚 ∈ (ℤ≥‘2))
→ 𝑦 ∈
ℂ) |
| 79 | | df-2 12329 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 2 = (1 +
1) |
| 80 | 79 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ ℂ → 2 = (1 +
1)) |
| 81 | 80 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ ℂ → ((𝑦 + 1) − 2) = ((𝑦 + 1) − (1 +
1))) |
| 82 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ ℂ → 𝑦 ∈
ℂ) |
| 83 | | 1cnd 11256 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ ℂ → 1 ∈
ℂ) |
| 84 | 82, 83, 83 | pnpcan2d 11658 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ ℂ → ((𝑦 + 1) − (1 + 1)) = (𝑦 − 1)) |
| 85 | 81, 84 | eqtrd 2777 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ ℂ → ((𝑦 + 1) − 2) = (𝑦 − 1)) |
| 86 | 78, 85 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ ℕ0
∧ 𝑚 = (𝑦 + 1) ∧ 𝑚 ∈ (ℤ≥‘2))
→ ((𝑦 + 1) − 2)
= (𝑦 −
1)) |
| 87 | 75, 86 | eqtrd 2777 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ ℕ0
∧ 𝑚 = (𝑦 + 1) ∧ 𝑚 ∈ (ℤ≥‘2))
→ (𝑚 − 2) =
(𝑦 −
1)) |
| 88 | 77 | lem1d 12201 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ ℕ0
∧ 𝑚 = (𝑦 + 1) ∧ 𝑚 ∈ (ℤ≥‘2))
→ (𝑦 − 1) ≤
𝑦) |
| 89 | 87, 88 | eqbrtrd 5165 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ ℕ0
∧ 𝑚 = (𝑦 + 1) ∧ 𝑚 ∈ (ℤ≥‘2))
→ (𝑚 − 2) ≤
𝑦) |
| 90 | 71, 72, 73, 89 | syl3anc 1373 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑦 ∈ ℕ0
∧ ∀𝑚 ∈
ℕ0 (𝑚 ≤
𝑦 → (𝐼‘𝑚) ∈ ℝ+)) ∧ 𝑚 = (𝑦 + 1)) ∧ 𝑚 ∈ (ℤ≥‘2))
→ (𝑚 − 2) ≤
𝑦) |
| 91 | | breq1 5146 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = (𝑚 − 2) → (𝑘 ≤ 𝑦 ↔ (𝑚 − 2) ≤ 𝑦)) |
| 92 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = (𝑚 − 2) → (𝐼‘𝑘) = (𝐼‘(𝑚 − 2))) |
| 93 | 92 | eleq1d 2826 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = (𝑚 − 2) → ((𝐼‘𝑘) ∈ ℝ+ ↔ (𝐼‘(𝑚 − 2)) ∈
ℝ+)) |
| 94 | 91, 93 | imbi12d 344 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = (𝑚 − 2) → ((𝑘 ≤ 𝑦 → (𝐼‘𝑘) ∈ ℝ+) ↔ ((𝑚 − 2) ≤ 𝑦 → (𝐼‘(𝑚 − 2)) ∈
ℝ+))) |
| 95 | 94 | rspccva 3621 |
. . . . . . . . . . . . . . . 16
⊢
((∀𝑘 ∈
ℕ0 (𝑘 ≤
𝑦 → (𝐼‘𝑘) ∈ ℝ+) ∧ (𝑚 − 2) ∈
ℕ0) → ((𝑚 − 2) ≤ 𝑦 → (𝐼‘(𝑚 − 2)) ∈
ℝ+)) |
| 96 | 70, 90, 95 | sylc 65 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑦 ∈ ℕ0
∧ ∀𝑚 ∈
ℕ0 (𝑚 ≤
𝑦 → (𝐼‘𝑚) ∈ ℝ+)) ∧ 𝑚 = (𝑦 + 1)) ∧ 𝑚 ∈ (ℤ≥‘2))
→ (𝐼‘(𝑚 − 2)) ∈
ℝ+) |
| 97 | 60, 96 | rpmulcld 13093 |
. . . . . . . . . . . . . 14
⊢ ((((𝑦 ∈ ℕ0
∧ ∀𝑚 ∈
ℕ0 (𝑚 ≤
𝑦 → (𝐼‘𝑚) ∈ ℝ+)) ∧ 𝑚 = (𝑦 + 1)) ∧ 𝑚 ∈ (ℤ≥‘2))
→ (((𝑚 − 1) /
𝑚) · (𝐼‘(𝑚 − 2))) ∈
ℝ+) |
| 98 | 44, 97 | eqeltrd 2841 |
. . . . . . . . . . . . 13
⊢ ((((𝑦 ∈ ℕ0
∧ ∀𝑚 ∈
ℕ0 (𝑚 ≤
𝑦 → (𝐼‘𝑚) ∈ ℝ+)) ∧ 𝑚 = (𝑦 + 1)) ∧ 𝑚 ∈ (ℤ≥‘2))
→ (𝐼‘𝑚) ∈
ℝ+) |
| 99 | 98 | adantllr 719 |
. . . . . . . . . . . 12
⊢
(((((𝑦 ∈
ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚 ≤ 𝑦 → (𝐼‘𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0)
∧ 𝑚 = (𝑦 + 1)) ∧ 𝑚 ∈ (ℤ≥‘2))
→ (𝐼‘𝑚) ∈
ℝ+) |
| 100 | 99 | ex 412 |
. . . . . . . . . . 11
⊢ ((((𝑦 ∈ ℕ0
∧ ∀𝑚 ∈
ℕ0 (𝑚 ≤
𝑦 → (𝐼‘𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0)
∧ 𝑚 = (𝑦 + 1)) → (𝑚 ∈
(ℤ≥‘2) → (𝐼‘𝑚) ∈
ℝ+)) |
| 101 | | simplll 775 |
. . . . . . . . . . . 12
⊢ ((((𝑦 ∈ ℕ0
∧ ∀𝑚 ∈
ℕ0 (𝑚 ≤
𝑦 → (𝐼‘𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0)
∧ 𝑚 = (𝑦 + 1)) → 𝑦 ∈ ℕ0) |
| 102 | | simplr 769 |
. . . . . . . . . . . 12
⊢ ((((𝑦 ∈ ℕ0
∧ ∀𝑚 ∈
ℕ0 (𝑚 ≤
𝑦 → (𝐼‘𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0)
∧ 𝑚 = (𝑦 + 1)) → 𝑚 ∈ ℕ0) |
| 103 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((((𝑦 ∈ ℕ0
∧ ∀𝑚 ∈
ℕ0 (𝑚 ≤
𝑦 → (𝐼‘𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0)
∧ 𝑚 = (𝑦 + 1)) → 𝑚 = (𝑦 + 1)) |
| 104 | | simp3 1139 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ ℕ0
∧ 𝑚 ∈
ℕ0 ∧ 𝑚
= (𝑦 + 1)) → 𝑚 = (𝑦 + 1)) |
| 105 | | nn0p1nn 12565 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ ℕ0
→ (𝑦 + 1) ∈
ℕ) |
| 106 | 105 | 3ad2ant1 1134 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ ℕ0
∧ 𝑚 ∈
ℕ0 ∧ 𝑚
= (𝑦 + 1)) → (𝑦 + 1) ∈
ℕ) |
| 107 | 104, 106 | eqeltrd 2841 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℕ0
∧ 𝑚 ∈
ℕ0 ∧ 𝑚
= (𝑦 + 1)) → 𝑚 ∈
ℕ) |
| 108 | | elnnuz 12922 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ ℕ ↔ 𝑚 ∈
(ℤ≥‘1)) |
| 109 | 107, 108 | sylib 218 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ ℕ0
∧ 𝑚 ∈
ℕ0 ∧ 𝑚
= (𝑦 + 1)) → 𝑚 ∈
(ℤ≥‘1)) |
| 110 | | uzp1 12919 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈
(ℤ≥‘1) → (𝑚 = 1 ∨ 𝑚 ∈ (ℤ≥‘(1 +
1)))) |
| 111 | | 1p1e2 12391 |
. . . . . . . . . . . . . . . . 17
⊢ (1 + 1) =
2 |
| 112 | 111 | fveq2i 6909 |
. . . . . . . . . . . . . . . 16
⊢
(ℤ≥‘(1 + 1)) =
(ℤ≥‘2) |
| 113 | 112 | eleq2i 2833 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈
(ℤ≥‘(1 + 1)) ↔ 𝑚 ∈
(ℤ≥‘2)) |
| 114 | 113 | orbi2i 913 |
. . . . . . . . . . . . . 14
⊢ ((𝑚 = 1 ∨ 𝑚 ∈ (ℤ≥‘(1 +
1))) ↔ (𝑚 = 1 ∨
𝑚 ∈
(ℤ≥‘2))) |
| 115 | 110, 114 | sylib 218 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈
(ℤ≥‘1) → (𝑚 = 1 ∨ 𝑚 ∈
(ℤ≥‘2))) |
| 116 | 109, 115 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ℕ0
∧ 𝑚 ∈
ℕ0 ∧ 𝑚
= (𝑦 + 1)) → (𝑚 = 1 ∨ 𝑚 ∈
(ℤ≥‘2))) |
| 117 | 101, 102,
103, 116 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ ((((𝑦 ∈ ℕ0
∧ ∀𝑚 ∈
ℕ0 (𝑚 ≤
𝑦 → (𝐼‘𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0)
∧ 𝑚 = (𝑦 + 1)) → (𝑚 = 1 ∨ 𝑚 ∈
(ℤ≥‘2))) |
| 118 | 42, 100, 117 | mpjaod 861 |
. . . . . . . . . 10
⊢ ((((𝑦 ∈ ℕ0
∧ ∀𝑚 ∈
ℕ0 (𝑚 ≤
𝑦 → (𝐼‘𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0)
∧ 𝑚 = (𝑦 + 1)) → (𝐼‘𝑚) ∈
ℝ+) |
| 119 | 118 | adantlr 715 |
. . . . . . . . 9
⊢
(((((𝑦 ∈
ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚 ≤ 𝑦 → (𝐼‘𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0)
∧ 𝑚 ≤ (𝑦 + 1)) ∧ 𝑚 = (𝑦 + 1)) → (𝐼‘𝑚) ∈
ℝ+) |
| 120 | 119 | ex 412 |
. . . . . . . 8
⊢ ((((𝑦 ∈ ℕ0
∧ ∀𝑚 ∈
ℕ0 (𝑚 ≤
𝑦 → (𝐼‘𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0)
∧ 𝑚 ≤ (𝑦 + 1)) → (𝑚 = (𝑦 + 1) → (𝐼‘𝑚) ∈
ℝ+)) |
| 121 | | simplll 775 |
. . . . . . . . 9
⊢ ((((𝑦 ∈ ℕ0
∧ ∀𝑚 ∈
ℕ0 (𝑚 ≤
𝑦 → (𝐼‘𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0)
∧ 𝑚 ≤ (𝑦 + 1)) → 𝑦 ∈ ℕ0) |
| 122 | | simpr 484 |
. . . . . . . . 9
⊢ ((((𝑦 ∈ ℕ0
∧ ∀𝑚 ∈
ℕ0 (𝑚 ≤
𝑦 → (𝐼‘𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0)
∧ 𝑚 ≤ (𝑦 + 1)) → 𝑚 ≤ (𝑦 + 1)) |
| 123 | | simpl1 1192 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ ℕ0
∧ 𝑚 ∈
ℕ0 ∧ 𝑚
≤ (𝑦 + 1)) ∧ 𝑚 < (𝑦 + 1)) → 𝑦 ∈ ℕ0) |
| 124 | | simpl2 1193 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ ℕ0
∧ 𝑚 ∈
ℕ0 ∧ 𝑚
≤ (𝑦 + 1)) ∧ 𝑚 < (𝑦 + 1)) → 𝑚 ∈ ℕ0) |
| 125 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ ℕ0
∧ 𝑚 ∈
ℕ0 ∧ 𝑚
≤ (𝑦 + 1)) ∧ 𝑚 < (𝑦 + 1)) → 𝑚 < (𝑦 + 1)) |
| 126 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ ℕ0
∧ 𝑚 = 0) → 𝑚 = 0) |
| 127 | | nn0ge0 12551 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ ℕ0
→ 0 ≤ 𝑦) |
| 128 | 127 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ ℕ0
∧ 𝑚 = 0) → 0 ≤
𝑦) |
| 129 | 126, 128 | eqbrtrd 5165 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℕ0
∧ 𝑚 = 0) → 𝑚 ≤ 𝑦) |
| 130 | 129 | 3ad2antl1 1186 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∈ ℕ0
∧ 𝑚 ∈
ℕ0 ∧ 𝑚
< (𝑦 + 1)) ∧ 𝑚 = 0) → 𝑚 ≤ 𝑦) |
| 131 | | simpl1 1192 |
. . . . . . . . . . . . . 14
⊢ (((𝑦 ∈ ℕ0
∧ 𝑚 ∈
ℕ0 ∧ 𝑚
< (𝑦 + 1)) ∧ 𝑚 ∈ ℕ) → 𝑦 ∈
ℕ0) |
| 132 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ (((𝑦 ∈ ℕ0
∧ 𝑚 ∈
ℕ0 ∧ 𝑚
< (𝑦 + 1)) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈
ℕ) |
| 133 | | simpl3 1194 |
. . . . . . . . . . . . . 14
⊢ (((𝑦 ∈ ℕ0
∧ 𝑚 ∈
ℕ0 ∧ 𝑚
< (𝑦 + 1)) ∧ 𝑚 ∈ ℕ) → 𝑚 < (𝑦 + 1)) |
| 134 | | simp3 1139 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ ℕ0
∧ 𝑚 ∈ ℕ
∧ 𝑚 < (𝑦 + 1)) → 𝑚 < (𝑦 + 1)) |
| 135 | | simp2 1138 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ ℕ0
∧ 𝑚 ∈ ℕ
∧ 𝑚 < (𝑦 + 1)) → 𝑚 ∈ ℕ) |
| 136 | | simp1 1137 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ ℕ0
∧ 𝑚 ∈ ℕ
∧ 𝑚 < (𝑦 + 1)) → 𝑦 ∈ ℕ0) |
| 137 | | 0red 11264 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ ℕ0
∧ 𝑚 ∈ ℕ
∧ 𝑚 < (𝑦 + 1)) → 0 ∈
ℝ) |
| 138 | 48 | 3ad2ant2 1135 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ ℕ0
∧ 𝑚 ∈ ℕ
∧ 𝑚 < (𝑦 + 1)) → (𝑚 − 1) ∈
ℝ) |
| 139 | 76 | 3ad2ant1 1134 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ ℕ0
∧ 𝑚 ∈ ℕ
∧ 𝑚 < (𝑦 + 1)) → 𝑦 ∈ ℝ) |
| 140 | | nnm1ge0 12686 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 ∈ ℕ → 0 ≤
(𝑚 −
1)) |
| 141 | 140 | 3ad2ant2 1135 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ ℕ0
∧ 𝑚 ∈ ℕ
∧ 𝑚 < (𝑦 + 1)) → 0 ≤ (𝑚 − 1)) |
| 142 | 46 | 3ad2ant2 1135 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑦 ∈ ℕ0
∧ 𝑚 ∈ ℕ
∧ 𝑚 < (𝑦 + 1)) → 𝑚 ∈ ℝ) |
| 143 | | 1red 11262 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑦 ∈ ℕ0
∧ 𝑚 ∈ ℕ
∧ 𝑚 < (𝑦 + 1)) → 1 ∈
ℝ) |
| 144 | 142, 143,
139 | ltsubaddd 11859 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 ∈ ℕ0
∧ 𝑚 ∈ ℕ
∧ 𝑚 < (𝑦 + 1)) → ((𝑚 − 1) < 𝑦 ↔ 𝑚 < (𝑦 + 1))) |
| 145 | 134, 144 | mpbird 257 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ ℕ0
∧ 𝑚 ∈ ℕ
∧ 𝑚 < (𝑦 + 1)) → (𝑚 − 1) < 𝑦) |
| 146 | 137, 138,
139, 141, 145 | lelttrd 11419 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ ℕ0
∧ 𝑚 ∈ ℕ
∧ 𝑚 < (𝑦 + 1)) → 0 < 𝑦) |
| 147 | 146 | gt0ne0d 11827 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ ℕ0
∧ 𝑚 ∈ ℕ
∧ 𝑚 < (𝑦 + 1)) → 𝑦 ≠ 0) |
| 148 | | elnnne0 12540 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ ℕ ↔ (𝑦 ∈ ℕ0
∧ 𝑦 ≠
0)) |
| 149 | 136, 147,
148 | sylanbrc 583 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ ℕ0
∧ 𝑚 ∈ ℕ
∧ 𝑚 < (𝑦 + 1)) → 𝑦 ∈ ℕ) |
| 150 | | nnleltp1 12673 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑚 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑚 ≤ 𝑦 ↔ 𝑚 < (𝑦 + 1))) |
| 151 | 135, 149,
150 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ ℕ0
∧ 𝑚 ∈ ℕ
∧ 𝑚 < (𝑦 + 1)) → (𝑚 ≤ 𝑦 ↔ 𝑚 < (𝑦 + 1))) |
| 152 | 134, 151 | mpbird 257 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℕ0
∧ 𝑚 ∈ ℕ
∧ 𝑚 < (𝑦 + 1)) → 𝑚 ≤ 𝑦) |
| 153 | 131, 132,
133, 152 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∈ ℕ0
∧ 𝑚 ∈
ℕ0 ∧ 𝑚
< (𝑦 + 1)) ∧ 𝑚 ∈ ℕ) → 𝑚 ≤ 𝑦) |
| 154 | | elnn0 12528 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈ ℕ0
↔ (𝑚 ∈ ℕ
∨ 𝑚 =
0)) |
| 155 | 154 | biimpi 216 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ ℕ0
→ (𝑚 ∈ ℕ
∨ 𝑚 =
0)) |
| 156 | 155 | orcomd 872 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ ℕ0
→ (𝑚 = 0 ∨ 𝑚 ∈
ℕ)) |
| 157 | 156 | 3ad2ant2 1135 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ ℕ0
∧ 𝑚 ∈
ℕ0 ∧ 𝑚
< (𝑦 + 1)) → (𝑚 = 0 ∨ 𝑚 ∈ ℕ)) |
| 158 | 130, 153,
157 | mpjaodan 961 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ℕ0
∧ 𝑚 ∈
ℕ0 ∧ 𝑚
< (𝑦 + 1)) → 𝑚 ≤ 𝑦) |
| 159 | 158 | orcd 874 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℕ0
∧ 𝑚 ∈
ℕ0 ∧ 𝑚
< (𝑦 + 1)) → (𝑚 ≤ 𝑦 ∨ 𝑚 = (𝑦 + 1))) |
| 160 | 123, 124,
125, 159 | syl3anc 1373 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ ℕ0
∧ 𝑚 ∈
ℕ0 ∧ 𝑚
≤ (𝑦 + 1)) ∧ 𝑚 < (𝑦 + 1)) → (𝑚 ≤ 𝑦 ∨ 𝑚 = (𝑦 + 1))) |
| 161 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ ℕ0
∧ 𝑚 ∈
ℕ0 ∧ 𝑚
≤ (𝑦 + 1)) ∧ 𝑚 = (𝑦 + 1)) → 𝑚 = (𝑦 + 1)) |
| 162 | 161 | olcd 875 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ ℕ0
∧ 𝑚 ∈
ℕ0 ∧ 𝑚
≤ (𝑦 + 1)) ∧ 𝑚 = (𝑦 + 1)) → (𝑚 ≤ 𝑦 ∨ 𝑚 = (𝑦 + 1))) |
| 163 | | simp3 1139 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℕ0
∧ 𝑚 ∈
ℕ0 ∧ 𝑚
≤ (𝑦 + 1)) → 𝑚 ≤ (𝑦 + 1)) |
| 164 | 16 | 3ad2ant2 1135 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ℕ0
∧ 𝑚 ∈
ℕ0 ∧ 𝑚
≤ (𝑦 + 1)) → 𝑚 ∈
ℝ) |
| 165 | 76 | 3ad2ant1 1134 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ ℕ0
∧ 𝑚 ∈
ℕ0 ∧ 𝑚
≤ (𝑦 + 1)) → 𝑦 ∈
ℝ) |
| 166 | | 1red 11262 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ ℕ0
∧ 𝑚 ∈
ℕ0 ∧ 𝑚
≤ (𝑦 + 1)) → 1
∈ ℝ) |
| 167 | 165, 166 | readdcld 11290 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ℕ0
∧ 𝑚 ∈
ℕ0 ∧ 𝑚
≤ (𝑦 + 1)) → (𝑦 + 1) ∈
ℝ) |
| 168 | 164, 167 | leloed 11404 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℕ0
∧ 𝑚 ∈
ℕ0 ∧ 𝑚
≤ (𝑦 + 1)) → (𝑚 ≤ (𝑦 + 1) ↔ (𝑚 < (𝑦 + 1) ∨ 𝑚 = (𝑦 + 1)))) |
| 169 | 163, 168 | mpbid 232 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℕ0
∧ 𝑚 ∈
ℕ0 ∧ 𝑚
≤ (𝑦 + 1)) → (𝑚 < (𝑦 + 1) ∨ 𝑚 = (𝑦 + 1))) |
| 170 | 160, 162,
169 | mpjaodan 961 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℕ0
∧ 𝑚 ∈
ℕ0 ∧ 𝑚
≤ (𝑦 + 1)) → (𝑚 ≤ 𝑦 ∨ 𝑚 = (𝑦 + 1))) |
| 171 | 121, 34, 122, 170 | syl3anc 1373 |
. . . . . . . 8
⊢ ((((𝑦 ∈ ℕ0
∧ ∀𝑚 ∈
ℕ0 (𝑚 ≤
𝑦 → (𝐼‘𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0)
∧ 𝑚 ≤ (𝑦 + 1)) → (𝑚 ≤ 𝑦 ∨ 𝑚 = (𝑦 + 1))) |
| 172 | 36, 120, 171 | mpjaod 861 |
. . . . . . 7
⊢ ((((𝑦 ∈ ℕ0
∧ ∀𝑚 ∈
ℕ0 (𝑚 ≤
𝑦 → (𝐼‘𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0)
∧ 𝑚 ≤ (𝑦 + 1)) → (𝐼‘𝑚) ∈
ℝ+) |
| 173 | 172 | exp31 419 |
. . . . . 6
⊢ ((𝑦 ∈ ℕ0
∧ ∀𝑚 ∈
ℕ0 (𝑚 ≤
𝑦 → (𝐼‘𝑚) ∈ ℝ+)) → (𝑚 ∈ ℕ0
→ (𝑚 ≤ (𝑦 + 1) → (𝐼‘𝑚) ∈
ℝ+))) |
| 174 | 32, 173 | ralrimi 3257 |
. . . . 5
⊢ ((𝑦 ∈ ℕ0
∧ ∀𝑚 ∈
ℕ0 (𝑚 ≤
𝑦 → (𝐼‘𝑚) ∈ ℝ+)) →
∀𝑚 ∈
ℕ0 (𝑚 ≤
(𝑦 + 1) → (𝐼‘𝑚) ∈
ℝ+)) |
| 175 | 174 | ex 412 |
. . . 4
⊢ (𝑦 ∈ ℕ0
→ (∀𝑚 ∈
ℕ0 (𝑚 ≤
𝑦 → (𝐼‘𝑚) ∈ ℝ+) →
∀𝑚 ∈
ℕ0 (𝑚 ≤
(𝑦 + 1) → (𝐼‘𝑚) ∈
ℝ+))) |
| 176 | 3, 6, 9, 12, 29, 175 | nn0ind 12713 |
. . 3
⊢ (𝑁 ∈ ℕ0
→ ∀𝑚 ∈
ℕ0 (𝑚 ≤
𝑁 → (𝐼‘𝑚) ∈
ℝ+)) |
| 177 | 176 | ancri 549 |
. 2
⊢ (𝑁 ∈ ℕ0
→ (∀𝑚 ∈
ℕ0 (𝑚 ≤
𝑁 → (𝐼‘𝑚) ∈ ℝ+) ∧ 𝑁 ∈
ℕ0)) |
| 178 | | nn0re 12535 |
. . 3
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℝ) |
| 179 | 178 | leidd 11829 |
. 2
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ≤ 𝑁) |
| 180 | | breq1 5146 |
. . . 4
⊢ (𝑚 = 𝑁 → (𝑚 ≤ 𝑁 ↔ 𝑁 ≤ 𝑁)) |
| 181 | | fveq2 6906 |
. . . . 5
⊢ (𝑚 = 𝑁 → (𝐼‘𝑚) = (𝐼‘𝑁)) |
| 182 | 181 | eleq1d 2826 |
. . . 4
⊢ (𝑚 = 𝑁 → ((𝐼‘𝑚) ∈ ℝ+ ↔ (𝐼‘𝑁) ∈
ℝ+)) |
| 183 | 180, 182 | imbi12d 344 |
. . 3
⊢ (𝑚 = 𝑁 → ((𝑚 ≤ 𝑁 → (𝐼‘𝑚) ∈ ℝ+) ↔ (𝑁 ≤ 𝑁 → (𝐼‘𝑁) ∈
ℝ+))) |
| 184 | 183 | rspccva 3621 |
. 2
⊢
((∀𝑚 ∈
ℕ0 (𝑚 ≤
𝑁 → (𝐼‘𝑚) ∈ ℝ+) ∧ 𝑁 ∈ ℕ0)
→ (𝑁 ≤ 𝑁 → (𝐼‘𝑁) ∈
ℝ+)) |
| 185 | 177, 179,
184 | sylc 65 |
1
⊢ (𝑁 ∈ ℕ0
→ (𝐼‘𝑁) ∈
ℝ+) |