Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wallispilem3 Structured version   Visualization version   GIF version

Theorem wallispilem3 41078
Description: I maps to real values. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypothesis
Ref Expression
wallispilem3.1 𝐼 = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)
Assertion
Ref Expression
wallispilem3 (𝑁 ∈ ℕ0 → (𝐼𝑁) ∈ ℝ+)
Distinct variable group:   𝑥,𝑛
Allowed substitution hints:   𝐼(𝑥,𝑛)   𝑁(𝑥,𝑛)

Proof of Theorem wallispilem3
Dummy variables 𝑘 𝑚 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 4877 . . . . . 6 (𝑤 = 0 → (𝑚𝑤𝑚 ≤ 0))
21imbi1d 333 . . . . 5 (𝑤 = 0 → ((𝑚𝑤 → (𝐼𝑚) ∈ ℝ+) ↔ (𝑚 ≤ 0 → (𝐼𝑚) ∈ ℝ+)))
32ralbidv 3195 . . . 4 (𝑤 = 0 → (∀𝑚 ∈ ℕ0 (𝑚𝑤 → (𝐼𝑚) ∈ ℝ+) ↔ ∀𝑚 ∈ ℕ0 (𝑚 ≤ 0 → (𝐼𝑚) ∈ ℝ+)))
4 breq2 4877 . . . . . 6 (𝑤 = 𝑦 → (𝑚𝑤𝑚𝑦))
54imbi1d 333 . . . . 5 (𝑤 = 𝑦 → ((𝑚𝑤 → (𝐼𝑚) ∈ ℝ+) ↔ (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)))
65ralbidv 3195 . . . 4 (𝑤 = 𝑦 → (∀𝑚 ∈ ℕ0 (𝑚𝑤 → (𝐼𝑚) ∈ ℝ+) ↔ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)))
7 breq2 4877 . . . . . 6 (𝑤 = (𝑦 + 1) → (𝑚𝑤𝑚 ≤ (𝑦 + 1)))
87imbi1d 333 . . . . 5 (𝑤 = (𝑦 + 1) → ((𝑚𝑤 → (𝐼𝑚) ∈ ℝ+) ↔ (𝑚 ≤ (𝑦 + 1) → (𝐼𝑚) ∈ ℝ+)))
98ralbidv 3195 . . . 4 (𝑤 = (𝑦 + 1) → (∀𝑚 ∈ ℕ0 (𝑚𝑤 → (𝐼𝑚) ∈ ℝ+) ↔ ∀𝑚 ∈ ℕ0 (𝑚 ≤ (𝑦 + 1) → (𝐼𝑚) ∈ ℝ+)))
10 breq2 4877 . . . . . 6 (𝑤 = 𝑁 → (𝑚𝑤𝑚𝑁))
1110imbi1d 333 . . . . 5 (𝑤 = 𝑁 → ((𝑚𝑤 → (𝐼𝑚) ∈ ℝ+) ↔ (𝑚𝑁 → (𝐼𝑚) ∈ ℝ+)))
1211ralbidv 3195 . . . 4 (𝑤 = 𝑁 → (∀𝑚 ∈ ℕ0 (𝑚𝑤 → (𝐼𝑚) ∈ ℝ+) ↔ ∀𝑚 ∈ ℕ0 (𝑚𝑁 → (𝐼𝑚) ∈ ℝ+)))
13 simpr 479 . . . . . . . . 9 ((𝑚 ∈ ℕ0𝑚 ≤ 0) → 𝑚 ≤ 0)
14 nn0ge0 11645 . . . . . . . . . 10 (𝑚 ∈ ℕ0 → 0 ≤ 𝑚)
1514adantr 474 . . . . . . . . 9 ((𝑚 ∈ ℕ0𝑚 ≤ 0) → 0 ≤ 𝑚)
16 nn0re 11628 . . . . . . . . . . 11 (𝑚 ∈ ℕ0𝑚 ∈ ℝ)
1716adantr 474 . . . . . . . . . 10 ((𝑚 ∈ ℕ0𝑚 ≤ 0) → 𝑚 ∈ ℝ)
18 0red 10360 . . . . . . . . . 10 ((𝑚 ∈ ℕ0𝑚 ≤ 0) → 0 ∈ ℝ)
1917, 18letri3d 10498 . . . . . . . . 9 ((𝑚 ∈ ℕ0𝑚 ≤ 0) → (𝑚 = 0 ↔ (𝑚 ≤ 0 ∧ 0 ≤ 𝑚)))
2013, 15, 19mpbir2and 706 . . . . . . . 8 ((𝑚 ∈ ℕ0𝑚 ≤ 0) → 𝑚 = 0)
2120fveq2d 6437 . . . . . . 7 ((𝑚 ∈ ℕ0𝑚 ≤ 0) → (𝐼𝑚) = (𝐼‘0))
22 wallispilem3.1 . . . . . . . . . 10 𝐼 = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)
2322wallispilem2 41077 . . . . . . . . 9 ((𝐼‘0) = π ∧ (𝐼‘1) = 2 ∧ (𝑚 ∈ (ℤ‘2) → (𝐼𝑚) = (((𝑚 − 1) / 𝑚) · (𝐼‘(𝑚 − 2)))))
2423simp1i 1175 . . . . . . . 8 (𝐼‘0) = π
25 pirp 24613 . . . . . . . 8 π ∈ ℝ+
2624, 25eqeltri 2902 . . . . . . 7 (𝐼‘0) ∈ ℝ+
2721, 26syl6eqel 2914 . . . . . 6 ((𝑚 ∈ ℕ0𝑚 ≤ 0) → (𝐼𝑚) ∈ ℝ+)
2827ex 403 . . . . 5 (𝑚 ∈ ℕ0 → (𝑚 ≤ 0 → (𝐼𝑚) ∈ ℝ+))
2928rgen 3131 . . . 4 𝑚 ∈ ℕ0 (𝑚 ≤ 0 → (𝐼𝑚) ∈ ℝ+)
30 nfv 2015 . . . . . . 7 𝑚 𝑦 ∈ ℕ0
31 nfra1 3150 . . . . . . 7 𝑚𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)
3230, 31nfan 2004 . . . . . 6 𝑚(𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+))
33 simpllr 795 . . . . . . . . 9 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 ≤ (𝑦 + 1)) → ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+))
34 simplr 787 . . . . . . . . 9 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 ≤ (𝑦 + 1)) → 𝑚 ∈ ℕ0)
35 rsp 3138 . . . . . . . . 9 (∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+) → (𝑚 ∈ ℕ0 → (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)))
3633, 34, 35sylc 65 . . . . . . . 8 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 ≤ (𝑦 + 1)) → (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+))
37 fveq2 6433 . . . . . . . . . . . . 13 (𝑚 = 1 → (𝐼𝑚) = (𝐼‘1))
3823simp2i 1176 . . . . . . . . . . . . . 14 (𝐼‘1) = 2
39 2rp 12117 . . . . . . . . . . . . . 14 2 ∈ ℝ+
4038, 39eqeltri 2902 . . . . . . . . . . . . 13 (𝐼‘1) ∈ ℝ+
4137, 40syl6eqel 2914 . . . . . . . . . . . 12 (𝑚 = 1 → (𝐼𝑚) ∈ ℝ+)
4241a1i 11 . . . . . . . . . . 11 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 = (𝑦 + 1)) → (𝑚 = 1 → (𝐼𝑚) ∈ ℝ+))
4323simp3i 1177 . . . . . . . . . . . . . . 15 (𝑚 ∈ (ℤ‘2) → (𝐼𝑚) = (((𝑚 − 1) / 𝑚) · (𝐼‘(𝑚 − 2))))
4443adantl 475 . . . . . . . . . . . . . 14 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 = (𝑦 + 1)) ∧ 𝑚 ∈ (ℤ‘2)) → (𝐼𝑚) = (((𝑚 − 1) / 𝑚) · (𝐼‘(𝑚 − 2))))
45 eluz2nn 12008 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ (ℤ‘2) → 𝑚 ∈ ℕ)
46 nnre 11358 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ)
47 1red 10357 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℕ → 1 ∈ ℝ)
4846, 47resubcld 10782 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ ℕ → (𝑚 − 1) ∈ ℝ)
4945, 48syl 17 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ (ℤ‘2) → (𝑚 − 1) ∈ ℝ)
50 1m1e0 11423 . . . . . . . . . . . . . . . . . . 19 (1 − 1) = 0
51 1red 10357 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ (ℤ‘2) → 1 ∈ ℝ)
52 eluzelre 11979 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ (ℤ‘2) → 𝑚 ∈ ℝ)
53 eluz2b2 12044 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ (ℤ‘2) ↔ (𝑚 ∈ ℕ ∧ 1 < 𝑚))
5453simprbi 492 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ (ℤ‘2) → 1 < 𝑚)
5551, 52, 51, 54ltsub1dd 10964 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ (ℤ‘2) → (1 − 1) < (𝑚 − 1))
5650, 55syl5eqbrr 4909 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ (ℤ‘2) → 0 < (𝑚 − 1))
5749, 56elrpd 12153 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (ℤ‘2) → (𝑚 − 1) ∈ ℝ+)
5845nnrpd 12154 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (ℤ‘2) → 𝑚 ∈ ℝ+)
5957, 58rpdivcld 12173 . . . . . . . . . . . . . . . 16 (𝑚 ∈ (ℤ‘2) → ((𝑚 − 1) / 𝑚) ∈ ℝ+)
6059adantl 475 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 = (𝑦 + 1)) ∧ 𝑚 ∈ (ℤ‘2)) → ((𝑚 − 1) / 𝑚) ∈ ℝ+)
61 breq1 4876 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = 𝑘 → (𝑚𝑦𝑘𝑦))
62 fveq2 6433 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = 𝑘 → (𝐼𝑚) = (𝐼𝑘))
6362eleq1d 2891 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = 𝑘 → ((𝐼𝑚) ∈ ℝ+ ↔ (𝐼𝑘) ∈ ℝ+))
6461, 63imbi12d 336 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = 𝑘 → ((𝑚𝑦 → (𝐼𝑚) ∈ ℝ+) ↔ (𝑘𝑦 → (𝐼𝑘) ∈ ℝ+)))
6564cbvralv 3383 . . . . . . . . . . . . . . . . . . 19 (∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+) ↔ ∀𝑘 ∈ ℕ0 (𝑘𝑦 → (𝐼𝑘) ∈ ℝ+))
6665biimpi 208 . . . . . . . . . . . . . . . . . 18 (∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+) → ∀𝑘 ∈ ℕ0 (𝑘𝑦 → (𝐼𝑘) ∈ ℝ+))
6766ad3antlr 724 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 = (𝑦 + 1)) ∧ 𝑚 ∈ (ℤ‘2)) → ∀𝑘 ∈ ℕ0 (𝑘𝑦 → (𝐼𝑘) ∈ ℝ+))
68 uznn0sub 12001 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ (ℤ‘2) → (𝑚 − 2) ∈ ℕ0)
6968adantl 475 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 = (𝑦 + 1)) ∧ 𝑚 ∈ (ℤ‘2)) → (𝑚 − 2) ∈ ℕ0)
7067, 69jca 509 . . . . . . . . . . . . . . . 16 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 = (𝑦 + 1)) ∧ 𝑚 ∈ (ℤ‘2)) → (∀𝑘 ∈ ℕ0 (𝑘𝑦 → (𝐼𝑘) ∈ ℝ+) ∧ (𝑚 − 2) ∈ ℕ0))
71 simplll 793 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 = (𝑦 + 1)) ∧ 𝑚 ∈ (ℤ‘2)) → 𝑦 ∈ ℕ0)
72 simplr 787 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 = (𝑦 + 1)) ∧ 𝑚 ∈ (ℤ‘2)) → 𝑚 = (𝑦 + 1))
73 simpr 479 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 = (𝑦 + 1)) ∧ 𝑚 ∈ (ℤ‘2)) → 𝑚 ∈ (ℤ‘2))
74 simp2 1173 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℕ0𝑚 = (𝑦 + 1) ∧ 𝑚 ∈ (ℤ‘2)) → 𝑚 = (𝑦 + 1))
7574oveq1d 6920 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℕ0𝑚 = (𝑦 + 1) ∧ 𝑚 ∈ (ℤ‘2)) → (𝑚 − 2) = ((𝑦 + 1) − 2))
76 nn0re 11628 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ℕ0𝑦 ∈ ℝ)
77763ad2ant1 1169 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℕ0𝑚 = (𝑦 + 1) ∧ 𝑚 ∈ (ℤ‘2)) → 𝑦 ∈ ℝ)
7877recnd 10385 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℕ0𝑚 = (𝑦 + 1) ∧ 𝑚 ∈ (ℤ‘2)) → 𝑦 ∈ ℂ)
79 df-2 11414 . . . . . . . . . . . . . . . . . . . . . . 23 2 = (1 + 1)
8079a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ℂ → 2 = (1 + 1))
8180oveq2d 6921 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℂ → ((𝑦 + 1) − 2) = ((𝑦 + 1) − (1 + 1)))
82 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ℂ → 𝑦 ∈ ℂ)
83 1cnd 10351 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ℂ → 1 ∈ ℂ)
8482, 83, 83pnpcan2d 10751 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℂ → ((𝑦 + 1) − (1 + 1)) = (𝑦 − 1))
8581, 84eqtrd 2861 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℂ → ((𝑦 + 1) − 2) = (𝑦 − 1))
8678, 85syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℕ0𝑚 = (𝑦 + 1) ∧ 𝑚 ∈ (ℤ‘2)) → ((𝑦 + 1) − 2) = (𝑦 − 1))
8775, 86eqtrd 2861 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℕ0𝑚 = (𝑦 + 1) ∧ 𝑚 ∈ (ℤ‘2)) → (𝑚 − 2) = (𝑦 − 1))
8877lem1d 11287 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℕ0𝑚 = (𝑦 + 1) ∧ 𝑚 ∈ (ℤ‘2)) → (𝑦 − 1) ≤ 𝑦)
8987, 88eqbrtrd 4895 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ0𝑚 = (𝑦 + 1) ∧ 𝑚 ∈ (ℤ‘2)) → (𝑚 − 2) ≤ 𝑦)
9071, 72, 73, 89syl3anc 1496 . . . . . . . . . . . . . . . 16 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 = (𝑦 + 1)) ∧ 𝑚 ∈ (ℤ‘2)) → (𝑚 − 2) ≤ 𝑦)
91 breq1 4876 . . . . . . . . . . . . . . . . . 18 (𝑘 = (𝑚 − 2) → (𝑘𝑦 ↔ (𝑚 − 2) ≤ 𝑦))
92 fveq2 6433 . . . . . . . . . . . . . . . . . . 19 (𝑘 = (𝑚 − 2) → (𝐼𝑘) = (𝐼‘(𝑚 − 2)))
9392eleq1d 2891 . . . . . . . . . . . . . . . . . 18 (𝑘 = (𝑚 − 2) → ((𝐼𝑘) ∈ ℝ+ ↔ (𝐼‘(𝑚 − 2)) ∈ ℝ+))
9491, 93imbi12d 336 . . . . . . . . . . . . . . . . 17 (𝑘 = (𝑚 − 2) → ((𝑘𝑦 → (𝐼𝑘) ∈ ℝ+) ↔ ((𝑚 − 2) ≤ 𝑦 → (𝐼‘(𝑚 − 2)) ∈ ℝ+)))
9594rspccva 3525 . . . . . . . . . . . . . . . 16 ((∀𝑘 ∈ ℕ0 (𝑘𝑦 → (𝐼𝑘) ∈ ℝ+) ∧ (𝑚 − 2) ∈ ℕ0) → ((𝑚 − 2) ≤ 𝑦 → (𝐼‘(𝑚 − 2)) ∈ ℝ+))
9670, 90, 95sylc 65 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 = (𝑦 + 1)) ∧ 𝑚 ∈ (ℤ‘2)) → (𝐼‘(𝑚 − 2)) ∈ ℝ+)
9760, 96rpmulcld 12172 . . . . . . . . . . . . . 14 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 = (𝑦 + 1)) ∧ 𝑚 ∈ (ℤ‘2)) → (((𝑚 − 1) / 𝑚) · (𝐼‘(𝑚 − 2))) ∈ ℝ+)
9844, 97eqeltrd 2906 . . . . . . . . . . . . 13 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 = (𝑦 + 1)) ∧ 𝑚 ∈ (ℤ‘2)) → (𝐼𝑚) ∈ ℝ+)
9998adantllr 712 . . . . . . . . . . . 12 (((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 = (𝑦 + 1)) ∧ 𝑚 ∈ (ℤ‘2)) → (𝐼𝑚) ∈ ℝ+)
10099ex 403 . . . . . . . . . . 11 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 = (𝑦 + 1)) → (𝑚 ∈ (ℤ‘2) → (𝐼𝑚) ∈ ℝ+))
101 simplll 793 . . . . . . . . . . . 12 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 = (𝑦 + 1)) → 𝑦 ∈ ℕ0)
102 simplr 787 . . . . . . . . . . . 12 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 = (𝑦 + 1)) → 𝑚 ∈ ℕ0)
103 simpr 479 . . . . . . . . . . . 12 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 = (𝑦 + 1)) → 𝑚 = (𝑦 + 1))
104 simp3 1174 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 = (𝑦 + 1)) → 𝑚 = (𝑦 + 1))
105 nn0p1nn 11659 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ0 → (𝑦 + 1) ∈ ℕ)
1061053ad2ant1 1169 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 = (𝑦 + 1)) → (𝑦 + 1) ∈ ℕ)
107104, 106eqeltrd 2906 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 = (𝑦 + 1)) → 𝑚 ∈ ℕ)
108 elnnuz 12006 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ ↔ 𝑚 ∈ (ℤ‘1))
109107, 108sylib 210 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 = (𝑦 + 1)) → 𝑚 ∈ (ℤ‘1))
110 uzp1 12003 . . . . . . . . . . . . . 14 (𝑚 ∈ (ℤ‘1) → (𝑚 = 1 ∨ 𝑚 ∈ (ℤ‘(1 + 1))))
111 1p1e2 11483 . . . . . . . . . . . . . . . . 17 (1 + 1) = 2
112111fveq2i 6436 . . . . . . . . . . . . . . . 16 (ℤ‘(1 + 1)) = (ℤ‘2)
113112eleq2i 2898 . . . . . . . . . . . . . . 15 (𝑚 ∈ (ℤ‘(1 + 1)) ↔ 𝑚 ∈ (ℤ‘2))
114113orbi2i 943 . . . . . . . . . . . . . 14 ((𝑚 = 1 ∨ 𝑚 ∈ (ℤ‘(1 + 1))) ↔ (𝑚 = 1 ∨ 𝑚 ∈ (ℤ‘2)))
115110, 114sylib 210 . . . . . . . . . . . . 13 (𝑚 ∈ (ℤ‘1) → (𝑚 = 1 ∨ 𝑚 ∈ (ℤ‘2)))
116109, 115syl 17 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 = (𝑦 + 1)) → (𝑚 = 1 ∨ 𝑚 ∈ (ℤ‘2)))
117101, 102, 103, 116syl3anc 1496 . . . . . . . . . . 11 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 = (𝑦 + 1)) → (𝑚 = 1 ∨ 𝑚 ∈ (ℤ‘2)))
11842, 100, 117mpjaod 893 . . . . . . . . . 10 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 = (𝑦 + 1)) → (𝐼𝑚) ∈ ℝ+)
119118adantlr 708 . . . . . . . . 9 (((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 ≤ (𝑦 + 1)) ∧ 𝑚 = (𝑦 + 1)) → (𝐼𝑚) ∈ ℝ+)
120119ex 403 . . . . . . . 8 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 ≤ (𝑦 + 1)) → (𝑚 = (𝑦 + 1) → (𝐼𝑚) ∈ ℝ+))
121 simplll 793 . . . . . . . . 9 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 ≤ (𝑦 + 1)) → 𝑦 ∈ ℕ0)
122 simpr 479 . . . . . . . . 9 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 ≤ (𝑦 + 1)) → 𝑚 ≤ (𝑦 + 1))
123 simpl1 1248 . . . . . . . . . . 11 (((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 ≤ (𝑦 + 1)) ∧ 𝑚 < (𝑦 + 1)) → 𝑦 ∈ ℕ0)
124 simpl2 1250 . . . . . . . . . . 11 (((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 ≤ (𝑦 + 1)) ∧ 𝑚 < (𝑦 + 1)) → 𝑚 ∈ ℕ0)
125 simpr 479 . . . . . . . . . . 11 (((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 ≤ (𝑦 + 1)) ∧ 𝑚 < (𝑦 + 1)) → 𝑚 < (𝑦 + 1))
126 simpr 479 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ0𝑚 = 0) → 𝑚 = 0)
127 nn0ge0 11645 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ0 → 0 ≤ 𝑦)
128127adantr 474 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ0𝑚 = 0) → 0 ≤ 𝑦)
129126, 128eqbrtrd 4895 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ0𝑚 = 0) → 𝑚𝑦)
1301293ad2antl1 1242 . . . . . . . . . . . . 13 (((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 < (𝑦 + 1)) ∧ 𝑚 = 0) → 𝑚𝑦)
131 simpl1 1248 . . . . . . . . . . . . . 14 (((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 < (𝑦 + 1)) ∧ 𝑚 ∈ ℕ) → 𝑦 ∈ ℕ0)
132 simpr 479 . . . . . . . . . . . . . 14 (((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 < (𝑦 + 1)) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
133 simpl3 1252 . . . . . . . . . . . . . 14 (((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 < (𝑦 + 1)) ∧ 𝑚 ∈ ℕ) → 𝑚 < (𝑦 + 1))
134 simp3 1174 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ ∧ 𝑚 < (𝑦 + 1)) → 𝑚 < (𝑦 + 1))
135 simp2 1173 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ ∧ 𝑚 < (𝑦 + 1)) → 𝑚 ∈ ℕ)
136 simp1 1172 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ ∧ 𝑚 < (𝑦 + 1)) → 𝑦 ∈ ℕ0)
137 0red 10360 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ ∧ 𝑚 < (𝑦 + 1)) → 0 ∈ ℝ)
138483ad2ant2 1170 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ ∧ 𝑚 < (𝑦 + 1)) → (𝑚 − 1) ∈ ℝ)
139763ad2ant1 1169 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ ∧ 𝑚 < (𝑦 + 1)) → 𝑦 ∈ ℝ)
140 nnm1ge0 11773 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℕ → 0 ≤ (𝑚 − 1))
1411403ad2ant2 1170 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ ∧ 𝑚 < (𝑦 + 1)) → 0 ≤ (𝑚 − 1))
142463ad2ant2 1170 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ ∧ 𝑚 < (𝑦 + 1)) → 𝑚 ∈ ℝ)
143 1red 10357 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ ∧ 𝑚 < (𝑦 + 1)) → 1 ∈ ℝ)
144142, 143, 139ltsubaddd 10948 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ ∧ 𝑚 < (𝑦 + 1)) → ((𝑚 − 1) < 𝑦𝑚 < (𝑦 + 1)))
145134, 144mpbird 249 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ ∧ 𝑚 < (𝑦 + 1)) → (𝑚 − 1) < 𝑦)
146137, 138, 139, 141, 145lelttrd 10514 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ ∧ 𝑚 < (𝑦 + 1)) → 0 < 𝑦)
147146gt0ne0d 10916 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ ∧ 𝑚 < (𝑦 + 1)) → 𝑦 ≠ 0)
148 elnnne0 11634 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℕ ↔ (𝑦 ∈ ℕ0𝑦 ≠ 0))
149136, 147, 148sylanbrc 580 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ ∧ 𝑚 < (𝑦 + 1)) → 𝑦 ∈ ℕ)
150 nnleltp1 11760 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑚𝑦𝑚 < (𝑦 + 1)))
151135, 149, 150syl2anc 581 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ ∧ 𝑚 < (𝑦 + 1)) → (𝑚𝑦𝑚 < (𝑦 + 1)))
152134, 151mpbird 249 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ ∧ 𝑚 < (𝑦 + 1)) → 𝑚𝑦)
153131, 132, 133, 152syl3anc 1496 . . . . . . . . . . . . 13 (((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 < (𝑦 + 1)) ∧ 𝑚 ∈ ℕ) → 𝑚𝑦)
154 elnn0 11620 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ0 ↔ (𝑚 ∈ ℕ ∨ 𝑚 = 0))
155154biimpi 208 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ0 → (𝑚 ∈ ℕ ∨ 𝑚 = 0))
156155orcomd 904 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ0 → (𝑚 = 0 ∨ 𝑚 ∈ ℕ))
1571563ad2ant2 1170 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 < (𝑦 + 1)) → (𝑚 = 0 ∨ 𝑚 ∈ ℕ))
158130, 153, 157mpjaodan 988 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 < (𝑦 + 1)) → 𝑚𝑦)
159158orcd 906 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 < (𝑦 + 1)) → (𝑚𝑦𝑚 = (𝑦 + 1)))
160123, 124, 125, 159syl3anc 1496 . . . . . . . . . 10 (((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 ≤ (𝑦 + 1)) ∧ 𝑚 < (𝑦 + 1)) → (𝑚𝑦𝑚 = (𝑦 + 1)))
161 simpr 479 . . . . . . . . . . 11 (((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 ≤ (𝑦 + 1)) ∧ 𝑚 = (𝑦 + 1)) → 𝑚 = (𝑦 + 1))
162161olcd 907 . . . . . . . . . 10 (((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 ≤ (𝑦 + 1)) ∧ 𝑚 = (𝑦 + 1)) → (𝑚𝑦𝑚 = (𝑦 + 1)))
163 simp3 1174 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 ≤ (𝑦 + 1)) → 𝑚 ≤ (𝑦 + 1))
164163ad2ant2 1170 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 ≤ (𝑦 + 1)) → 𝑚 ∈ ℝ)
165763ad2ant1 1169 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 ≤ (𝑦 + 1)) → 𝑦 ∈ ℝ)
166 1red 10357 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 ≤ (𝑦 + 1)) → 1 ∈ ℝ)
167165, 166readdcld 10386 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 ≤ (𝑦 + 1)) → (𝑦 + 1) ∈ ℝ)
168164, 167leloed 10499 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 ≤ (𝑦 + 1)) → (𝑚 ≤ (𝑦 + 1) ↔ (𝑚 < (𝑦 + 1) ∨ 𝑚 = (𝑦 + 1))))
169163, 168mpbid 224 . . . . . . . . . 10 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 ≤ (𝑦 + 1)) → (𝑚 < (𝑦 + 1) ∨ 𝑚 = (𝑦 + 1)))
170160, 162, 169mpjaodan 988 . . . . . . . . 9 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 ≤ (𝑦 + 1)) → (𝑚𝑦𝑚 = (𝑦 + 1)))
171121, 34, 122, 170syl3anc 1496 . . . . . . . 8 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 ≤ (𝑦 + 1)) → (𝑚𝑦𝑚 = (𝑦 + 1)))
17236, 120, 171mpjaod 893 . . . . . . 7 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 ≤ (𝑦 + 1)) → (𝐼𝑚) ∈ ℝ+)
173172exp31 412 . . . . . 6 ((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) → (𝑚 ∈ ℕ0 → (𝑚 ≤ (𝑦 + 1) → (𝐼𝑚) ∈ ℝ+)))
17432, 173ralrimi 3166 . . . . 5 ((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) → ∀𝑚 ∈ ℕ0 (𝑚 ≤ (𝑦 + 1) → (𝐼𝑚) ∈ ℝ+))
175174ex 403 . . . 4 (𝑦 ∈ ℕ0 → (∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+) → ∀𝑚 ∈ ℕ0 (𝑚 ≤ (𝑦 + 1) → (𝐼𝑚) ∈ ℝ+)))
1763, 6, 9, 12, 29, 175nn0ind 11800 . . 3 (𝑁 ∈ ℕ0 → ∀𝑚 ∈ ℕ0 (𝑚𝑁 → (𝐼𝑚) ∈ ℝ+))
177176ancri 547 . 2 (𝑁 ∈ ℕ0 → (∀𝑚 ∈ ℕ0 (𝑚𝑁 → (𝐼𝑚) ∈ ℝ+) ∧ 𝑁 ∈ ℕ0))
178 nn0re 11628 . . 3 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
179178leidd 10918 . 2 (𝑁 ∈ ℕ0𝑁𝑁)
180 breq1 4876 . . . 4 (𝑚 = 𝑁 → (𝑚𝑁𝑁𝑁))
181 fveq2 6433 . . . . 5 (𝑚 = 𝑁 → (𝐼𝑚) = (𝐼𝑁))
182181eleq1d 2891 . . . 4 (𝑚 = 𝑁 → ((𝐼𝑚) ∈ ℝ+ ↔ (𝐼𝑁) ∈ ℝ+))
183180, 182imbi12d 336 . . 3 (𝑚 = 𝑁 → ((𝑚𝑁 → (𝐼𝑚) ∈ ℝ+) ↔ (𝑁𝑁 → (𝐼𝑁) ∈ ℝ+)))
184183rspccva 3525 . 2 ((∀𝑚 ∈ ℕ0 (𝑚𝑁 → (𝐼𝑚) ∈ ℝ+) ∧ 𝑁 ∈ ℕ0) → (𝑁𝑁 → (𝐼𝑁) ∈ ℝ+))
185177, 179, 184sylc 65 1 (𝑁 ∈ ℕ0 → (𝐼𝑁) ∈ ℝ+)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  wo 880  w3a 1113   = wceq 1658  wcel 2166  wne 2999  wral 3117   class class class wbr 4873  cmpt 4952  cfv 6123  (class class class)co 6905  cc 10250  cr 10251  0cc0 10252  1c1 10253   + caddc 10255   · cmul 10257   < clt 10391  cle 10392  cmin 10585   / cdiv 11009  cn 11350  2c2 11406  0cn0 11618  cuz 11968  +crp 12112  (,)cioo 12463  cexp 13154  sincsin 15166  πcpi 15169  citg 23784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-inf2 8815  ax-cc 9572  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-pre-sup 10330  ax-addf 10331  ax-mulf 10332
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-fal 1672  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-symdif 4070  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-iin 4743  df-disj 4842  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-se 5302  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-isom 6132  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-of 7157  df-ofr 7158  df-om 7327  df-1st 7428  df-2nd 7429  df-supp 7560  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-2o 7827  df-oadd 7830  df-omul 7831  df-er 8009  df-map 8124  df-pm 8125  df-ixp 8176  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-fsupp 8545  df-fi 8586  df-sup 8617  df-inf 8618  df-oi 8684  df-card 9078  df-acn 9081  df-cda 9305  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-2 11414  df-3 11415  df-4 11416  df-5 11417  df-6 11418  df-7 11419  df-8 11420  df-9 11421  df-n0 11619  df-z 11705  df-dec 11822  df-uz 11969  df-q 12072  df-rp 12113  df-xneg 12232  df-xadd 12233  df-xmul 12234  df-ioo 12467  df-ioc 12468  df-ico 12469  df-icc 12470  df-fz 12620  df-fzo 12761  df-fl 12888  df-mod 12964  df-seq 13096  df-exp 13155  df-fac 13354  df-bc 13383  df-hash 13411  df-shft 14184  df-cj 14216  df-re 14217  df-im 14218  df-sqrt 14352  df-abs 14353  df-limsup 14579  df-clim 14596  df-rlim 14597  df-sum 14794  df-ef 15170  df-sin 15172  df-cos 15173  df-pi 15175  df-struct 16224  df-ndx 16225  df-slot 16226  df-base 16228  df-sets 16229  df-ress 16230  df-plusg 16318  df-mulr 16319  df-starv 16320  df-sca 16321  df-vsca 16322  df-ip 16323  df-tset 16324  df-ple 16325  df-ds 16327  df-unif 16328  df-hom 16329  df-cco 16330  df-rest 16436  df-topn 16437  df-0g 16455  df-gsum 16456  df-topgen 16457  df-pt 16458  df-prds 16461  df-xrs 16515  df-qtop 16520  df-imas 16521  df-xps 16523  df-mre 16599  df-mrc 16600  df-acs 16602  df-mgm 17595  df-sgrp 17637  df-mnd 17648  df-submnd 17689  df-mulg 17895  df-cntz 18100  df-cmn 18548  df-psmet 20098  df-xmet 20099  df-met 20100  df-bl 20101  df-mopn 20102  df-fbas 20103  df-fg 20104  df-cnfld 20107  df-top 21069  df-topon 21086  df-topsp 21108  df-bases 21121  df-cld 21194  df-ntr 21195  df-cls 21196  df-nei 21273  df-lp 21311  df-perf 21312  df-cn 21402  df-cnp 21403  df-haus 21490  df-cmp 21561  df-tx 21736  df-hmeo 21929  df-fil 22020  df-fm 22112  df-flim 22113  df-flf 22114  df-xms 22495  df-ms 22496  df-tms 22497  df-cncf 23051  df-ovol 23630  df-vol 23631  df-mbf 23785  df-itg1 23786  df-itg2 23787  df-ibl 23788  df-itg 23789  df-0p 23836  df-limc 24029  df-dv 24030
This theorem is referenced by:  wallispilem4  41079  wallispilem5  41080
  Copyright terms: Public domain W3C validator