Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wallispilem3 Structured version   Visualization version   GIF version

Theorem wallispilem3 46096
Description: I maps to real values. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypothesis
Ref Expression
wallispilem3.1 𝐼 = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)
Assertion
Ref Expression
wallispilem3 (𝑁 ∈ ℕ0 → (𝐼𝑁) ∈ ℝ+)
Distinct variable group:   𝑥,𝑛
Allowed substitution hints:   𝐼(𝑥,𝑛)   𝑁(𝑥,𝑛)

Proof of Theorem wallispilem3
Dummy variables 𝑘 𝑚 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5123 . . . . . 6 (𝑤 = 0 → (𝑚𝑤𝑚 ≤ 0))
21imbi1d 341 . . . . 5 (𝑤 = 0 → ((𝑚𝑤 → (𝐼𝑚) ∈ ℝ+) ↔ (𝑚 ≤ 0 → (𝐼𝑚) ∈ ℝ+)))
32ralbidv 3163 . . . 4 (𝑤 = 0 → (∀𝑚 ∈ ℕ0 (𝑚𝑤 → (𝐼𝑚) ∈ ℝ+) ↔ ∀𝑚 ∈ ℕ0 (𝑚 ≤ 0 → (𝐼𝑚) ∈ ℝ+)))
4 breq2 5123 . . . . . 6 (𝑤 = 𝑦 → (𝑚𝑤𝑚𝑦))
54imbi1d 341 . . . . 5 (𝑤 = 𝑦 → ((𝑚𝑤 → (𝐼𝑚) ∈ ℝ+) ↔ (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)))
65ralbidv 3163 . . . 4 (𝑤 = 𝑦 → (∀𝑚 ∈ ℕ0 (𝑚𝑤 → (𝐼𝑚) ∈ ℝ+) ↔ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)))
7 breq2 5123 . . . . . 6 (𝑤 = (𝑦 + 1) → (𝑚𝑤𝑚 ≤ (𝑦 + 1)))
87imbi1d 341 . . . . 5 (𝑤 = (𝑦 + 1) → ((𝑚𝑤 → (𝐼𝑚) ∈ ℝ+) ↔ (𝑚 ≤ (𝑦 + 1) → (𝐼𝑚) ∈ ℝ+)))
98ralbidv 3163 . . . 4 (𝑤 = (𝑦 + 1) → (∀𝑚 ∈ ℕ0 (𝑚𝑤 → (𝐼𝑚) ∈ ℝ+) ↔ ∀𝑚 ∈ ℕ0 (𝑚 ≤ (𝑦 + 1) → (𝐼𝑚) ∈ ℝ+)))
10 breq2 5123 . . . . . 6 (𝑤 = 𝑁 → (𝑚𝑤𝑚𝑁))
1110imbi1d 341 . . . . 5 (𝑤 = 𝑁 → ((𝑚𝑤 → (𝐼𝑚) ∈ ℝ+) ↔ (𝑚𝑁 → (𝐼𝑚) ∈ ℝ+)))
1211ralbidv 3163 . . . 4 (𝑤 = 𝑁 → (∀𝑚 ∈ ℕ0 (𝑚𝑤 → (𝐼𝑚) ∈ ℝ+) ↔ ∀𝑚 ∈ ℕ0 (𝑚𝑁 → (𝐼𝑚) ∈ ℝ+)))
13 simpr 484 . . . . . . . . 9 ((𝑚 ∈ ℕ0𝑚 ≤ 0) → 𝑚 ≤ 0)
14 nn0ge0 12526 . . . . . . . . . 10 (𝑚 ∈ ℕ0 → 0 ≤ 𝑚)
1514adantr 480 . . . . . . . . 9 ((𝑚 ∈ ℕ0𝑚 ≤ 0) → 0 ≤ 𝑚)
16 nn0re 12510 . . . . . . . . . . 11 (𝑚 ∈ ℕ0𝑚 ∈ ℝ)
1716adantr 480 . . . . . . . . . 10 ((𝑚 ∈ ℕ0𝑚 ≤ 0) → 𝑚 ∈ ℝ)
18 0red 11238 . . . . . . . . . 10 ((𝑚 ∈ ℕ0𝑚 ≤ 0) → 0 ∈ ℝ)
1917, 18letri3d 11377 . . . . . . . . 9 ((𝑚 ∈ ℕ0𝑚 ≤ 0) → (𝑚 = 0 ↔ (𝑚 ≤ 0 ∧ 0 ≤ 𝑚)))
2013, 15, 19mpbir2and 713 . . . . . . . 8 ((𝑚 ∈ ℕ0𝑚 ≤ 0) → 𝑚 = 0)
2120fveq2d 6880 . . . . . . 7 ((𝑚 ∈ ℕ0𝑚 ≤ 0) → (𝐼𝑚) = (𝐼‘0))
22 wallispilem3.1 . . . . . . . . . 10 𝐼 = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)
2322wallispilem2 46095 . . . . . . . . 9 ((𝐼‘0) = π ∧ (𝐼‘1) = 2 ∧ (𝑚 ∈ (ℤ‘2) → (𝐼𝑚) = (((𝑚 − 1) / 𝑚) · (𝐼‘(𝑚 − 2)))))
2423simp1i 1139 . . . . . . . 8 (𝐼‘0) = π
25 pirp 26422 . . . . . . . 8 π ∈ ℝ+
2624, 25eqeltri 2830 . . . . . . 7 (𝐼‘0) ∈ ℝ+
2721, 26eqeltrdi 2842 . . . . . 6 ((𝑚 ∈ ℕ0𝑚 ≤ 0) → (𝐼𝑚) ∈ ℝ+)
2827ex 412 . . . . 5 (𝑚 ∈ ℕ0 → (𝑚 ≤ 0 → (𝐼𝑚) ∈ ℝ+))
2928rgen 3053 . . . 4 𝑚 ∈ ℕ0 (𝑚 ≤ 0 → (𝐼𝑚) ∈ ℝ+)
30 nfv 1914 . . . . . . 7 𝑚 𝑦 ∈ ℕ0
31 nfra1 3266 . . . . . . 7 𝑚𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)
3230, 31nfan 1899 . . . . . 6 𝑚(𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+))
33 simpllr 775 . . . . . . . . 9 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 ≤ (𝑦 + 1)) → ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+))
34 simplr 768 . . . . . . . . 9 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 ≤ (𝑦 + 1)) → 𝑚 ∈ ℕ0)
35 rsp 3230 . . . . . . . . 9 (∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+) → (𝑚 ∈ ℕ0 → (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)))
3633, 34, 35sylc 65 . . . . . . . 8 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 ≤ (𝑦 + 1)) → (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+))
37 fveq2 6876 . . . . . . . . . . . . 13 (𝑚 = 1 → (𝐼𝑚) = (𝐼‘1))
3823simp2i 1140 . . . . . . . . . . . . . 14 (𝐼‘1) = 2
39 2rp 13013 . . . . . . . . . . . . . 14 2 ∈ ℝ+
4038, 39eqeltri 2830 . . . . . . . . . . . . 13 (𝐼‘1) ∈ ℝ+
4137, 40eqeltrdi 2842 . . . . . . . . . . . 12 (𝑚 = 1 → (𝐼𝑚) ∈ ℝ+)
4241a1i 11 . . . . . . . . . . 11 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 = (𝑦 + 1)) → (𝑚 = 1 → (𝐼𝑚) ∈ ℝ+))
4323simp3i 1141 . . . . . . . . . . . . . . 15 (𝑚 ∈ (ℤ‘2) → (𝐼𝑚) = (((𝑚 − 1) / 𝑚) · (𝐼‘(𝑚 − 2))))
4443adantl 481 . . . . . . . . . . . . . 14 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 = (𝑦 + 1)) ∧ 𝑚 ∈ (ℤ‘2)) → (𝐼𝑚) = (((𝑚 − 1) / 𝑚) · (𝐼‘(𝑚 − 2))))
45 eluz2nn 12898 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ (ℤ‘2) → 𝑚 ∈ ℕ)
46 nnre 12247 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ)
47 1red 11236 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℕ → 1 ∈ ℝ)
4846, 47resubcld 11665 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ ℕ → (𝑚 − 1) ∈ ℝ)
4945, 48syl 17 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ (ℤ‘2) → (𝑚 − 1) ∈ ℝ)
50 1m1e0 12312 . . . . . . . . . . . . . . . . . . 19 (1 − 1) = 0
51 1red 11236 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ (ℤ‘2) → 1 ∈ ℝ)
52 eluzelre 12863 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ (ℤ‘2) → 𝑚 ∈ ℝ)
53 eluz2b2 12937 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ (ℤ‘2) ↔ (𝑚 ∈ ℕ ∧ 1 < 𝑚))
5453simprbi 496 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ (ℤ‘2) → 1 < 𝑚)
5551, 52, 51, 54ltsub1dd 11849 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ (ℤ‘2) → (1 − 1) < (𝑚 − 1))
5650, 55eqbrtrrid 5155 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ (ℤ‘2) → 0 < (𝑚 − 1))
5749, 56elrpd 13048 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (ℤ‘2) → (𝑚 − 1) ∈ ℝ+)
5845nnrpd 13049 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (ℤ‘2) → 𝑚 ∈ ℝ+)
5957, 58rpdivcld 13068 . . . . . . . . . . . . . . . 16 (𝑚 ∈ (ℤ‘2) → ((𝑚 − 1) / 𝑚) ∈ ℝ+)
6059adantl 481 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 = (𝑦 + 1)) ∧ 𝑚 ∈ (ℤ‘2)) → ((𝑚 − 1) / 𝑚) ∈ ℝ+)
61 breq1 5122 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = 𝑘 → (𝑚𝑦𝑘𝑦))
62 fveq2 6876 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = 𝑘 → (𝐼𝑚) = (𝐼𝑘))
6362eleq1d 2819 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = 𝑘 → ((𝐼𝑚) ∈ ℝ+ ↔ (𝐼𝑘) ∈ ℝ+))
6461, 63imbi12d 344 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = 𝑘 → ((𝑚𝑦 → (𝐼𝑚) ∈ ℝ+) ↔ (𝑘𝑦 → (𝐼𝑘) ∈ ℝ+)))
6564cbvralvw 3220 . . . . . . . . . . . . . . . . . . 19 (∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+) ↔ ∀𝑘 ∈ ℕ0 (𝑘𝑦 → (𝐼𝑘) ∈ ℝ+))
6665biimpi 216 . . . . . . . . . . . . . . . . . 18 (∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+) → ∀𝑘 ∈ ℕ0 (𝑘𝑦 → (𝐼𝑘) ∈ ℝ+))
6766ad3antlr 731 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 = (𝑦 + 1)) ∧ 𝑚 ∈ (ℤ‘2)) → ∀𝑘 ∈ ℕ0 (𝑘𝑦 → (𝐼𝑘) ∈ ℝ+))
68 uznn0sub 12891 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ (ℤ‘2) → (𝑚 − 2) ∈ ℕ0)
6968adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 = (𝑦 + 1)) ∧ 𝑚 ∈ (ℤ‘2)) → (𝑚 − 2) ∈ ℕ0)
7067, 69jca 511 . . . . . . . . . . . . . . . 16 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 = (𝑦 + 1)) ∧ 𝑚 ∈ (ℤ‘2)) → (∀𝑘 ∈ ℕ0 (𝑘𝑦 → (𝐼𝑘) ∈ ℝ+) ∧ (𝑚 − 2) ∈ ℕ0))
71 simplll 774 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 = (𝑦 + 1)) ∧ 𝑚 ∈ (ℤ‘2)) → 𝑦 ∈ ℕ0)
72 simplr 768 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 = (𝑦 + 1)) ∧ 𝑚 ∈ (ℤ‘2)) → 𝑚 = (𝑦 + 1))
73 simpr 484 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 = (𝑦 + 1)) ∧ 𝑚 ∈ (ℤ‘2)) → 𝑚 ∈ (ℤ‘2))
74 simp2 1137 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℕ0𝑚 = (𝑦 + 1) ∧ 𝑚 ∈ (ℤ‘2)) → 𝑚 = (𝑦 + 1))
7574oveq1d 7420 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℕ0𝑚 = (𝑦 + 1) ∧ 𝑚 ∈ (ℤ‘2)) → (𝑚 − 2) = ((𝑦 + 1) − 2))
76 nn0re 12510 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ℕ0𝑦 ∈ ℝ)
77763ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℕ0𝑚 = (𝑦 + 1) ∧ 𝑚 ∈ (ℤ‘2)) → 𝑦 ∈ ℝ)
7877recnd 11263 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℕ0𝑚 = (𝑦 + 1) ∧ 𝑚 ∈ (ℤ‘2)) → 𝑦 ∈ ℂ)
79 df-2 12303 . . . . . . . . . . . . . . . . . . . . . . 23 2 = (1 + 1)
8079a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ℂ → 2 = (1 + 1))
8180oveq2d 7421 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℂ → ((𝑦 + 1) − 2) = ((𝑦 + 1) − (1 + 1)))
82 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ℂ → 𝑦 ∈ ℂ)
83 1cnd 11230 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ℂ → 1 ∈ ℂ)
8482, 83, 83pnpcan2d 11632 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℂ → ((𝑦 + 1) − (1 + 1)) = (𝑦 − 1))
8581, 84eqtrd 2770 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℂ → ((𝑦 + 1) − 2) = (𝑦 − 1))
8678, 85syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℕ0𝑚 = (𝑦 + 1) ∧ 𝑚 ∈ (ℤ‘2)) → ((𝑦 + 1) − 2) = (𝑦 − 1))
8775, 86eqtrd 2770 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℕ0𝑚 = (𝑦 + 1) ∧ 𝑚 ∈ (ℤ‘2)) → (𝑚 − 2) = (𝑦 − 1))
8877lem1d 12175 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℕ0𝑚 = (𝑦 + 1) ∧ 𝑚 ∈ (ℤ‘2)) → (𝑦 − 1) ≤ 𝑦)
8987, 88eqbrtrd 5141 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ0𝑚 = (𝑦 + 1) ∧ 𝑚 ∈ (ℤ‘2)) → (𝑚 − 2) ≤ 𝑦)
9071, 72, 73, 89syl3anc 1373 . . . . . . . . . . . . . . . 16 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 = (𝑦 + 1)) ∧ 𝑚 ∈ (ℤ‘2)) → (𝑚 − 2) ≤ 𝑦)
91 breq1 5122 . . . . . . . . . . . . . . . . . 18 (𝑘 = (𝑚 − 2) → (𝑘𝑦 ↔ (𝑚 − 2) ≤ 𝑦))
92 fveq2 6876 . . . . . . . . . . . . . . . . . . 19 (𝑘 = (𝑚 − 2) → (𝐼𝑘) = (𝐼‘(𝑚 − 2)))
9392eleq1d 2819 . . . . . . . . . . . . . . . . . 18 (𝑘 = (𝑚 − 2) → ((𝐼𝑘) ∈ ℝ+ ↔ (𝐼‘(𝑚 − 2)) ∈ ℝ+))
9491, 93imbi12d 344 . . . . . . . . . . . . . . . . 17 (𝑘 = (𝑚 − 2) → ((𝑘𝑦 → (𝐼𝑘) ∈ ℝ+) ↔ ((𝑚 − 2) ≤ 𝑦 → (𝐼‘(𝑚 − 2)) ∈ ℝ+)))
9594rspccva 3600 . . . . . . . . . . . . . . . 16 ((∀𝑘 ∈ ℕ0 (𝑘𝑦 → (𝐼𝑘) ∈ ℝ+) ∧ (𝑚 − 2) ∈ ℕ0) → ((𝑚 − 2) ≤ 𝑦 → (𝐼‘(𝑚 − 2)) ∈ ℝ+))
9670, 90, 95sylc 65 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 = (𝑦 + 1)) ∧ 𝑚 ∈ (ℤ‘2)) → (𝐼‘(𝑚 − 2)) ∈ ℝ+)
9760, 96rpmulcld 13067 . . . . . . . . . . . . . 14 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 = (𝑦 + 1)) ∧ 𝑚 ∈ (ℤ‘2)) → (((𝑚 − 1) / 𝑚) · (𝐼‘(𝑚 − 2))) ∈ ℝ+)
9844, 97eqeltrd 2834 . . . . . . . . . . . . 13 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 = (𝑦 + 1)) ∧ 𝑚 ∈ (ℤ‘2)) → (𝐼𝑚) ∈ ℝ+)
9998adantllr 719 . . . . . . . . . . . 12 (((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 = (𝑦 + 1)) ∧ 𝑚 ∈ (ℤ‘2)) → (𝐼𝑚) ∈ ℝ+)
10099ex 412 . . . . . . . . . . 11 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 = (𝑦 + 1)) → (𝑚 ∈ (ℤ‘2) → (𝐼𝑚) ∈ ℝ+))
101 simplll 774 . . . . . . . . . . . 12 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 = (𝑦 + 1)) → 𝑦 ∈ ℕ0)
102 simplr 768 . . . . . . . . . . . 12 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 = (𝑦 + 1)) → 𝑚 ∈ ℕ0)
103 simpr 484 . . . . . . . . . . . 12 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 = (𝑦 + 1)) → 𝑚 = (𝑦 + 1))
104 simp3 1138 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 = (𝑦 + 1)) → 𝑚 = (𝑦 + 1))
105 nn0p1nn 12540 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ0 → (𝑦 + 1) ∈ ℕ)
1061053ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 = (𝑦 + 1)) → (𝑦 + 1) ∈ ℕ)
107104, 106eqeltrd 2834 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 = (𝑦 + 1)) → 𝑚 ∈ ℕ)
108 elnnuz 12896 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ ↔ 𝑚 ∈ (ℤ‘1))
109107, 108sylib 218 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 = (𝑦 + 1)) → 𝑚 ∈ (ℤ‘1))
110 uzp1 12893 . . . . . . . . . . . . . 14 (𝑚 ∈ (ℤ‘1) → (𝑚 = 1 ∨ 𝑚 ∈ (ℤ‘(1 + 1))))
111 1p1e2 12365 . . . . . . . . . . . . . . . . 17 (1 + 1) = 2
112111fveq2i 6879 . . . . . . . . . . . . . . . 16 (ℤ‘(1 + 1)) = (ℤ‘2)
113112eleq2i 2826 . . . . . . . . . . . . . . 15 (𝑚 ∈ (ℤ‘(1 + 1)) ↔ 𝑚 ∈ (ℤ‘2))
114113orbi2i 912 . . . . . . . . . . . . . 14 ((𝑚 = 1 ∨ 𝑚 ∈ (ℤ‘(1 + 1))) ↔ (𝑚 = 1 ∨ 𝑚 ∈ (ℤ‘2)))
115110, 114sylib 218 . . . . . . . . . . . . 13 (𝑚 ∈ (ℤ‘1) → (𝑚 = 1 ∨ 𝑚 ∈ (ℤ‘2)))
116109, 115syl 17 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 = (𝑦 + 1)) → (𝑚 = 1 ∨ 𝑚 ∈ (ℤ‘2)))
117101, 102, 103, 116syl3anc 1373 . . . . . . . . . . 11 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 = (𝑦 + 1)) → (𝑚 = 1 ∨ 𝑚 ∈ (ℤ‘2)))
11842, 100, 117mpjaod 860 . . . . . . . . . 10 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 = (𝑦 + 1)) → (𝐼𝑚) ∈ ℝ+)
119118adantlr 715 . . . . . . . . 9 (((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 ≤ (𝑦 + 1)) ∧ 𝑚 = (𝑦 + 1)) → (𝐼𝑚) ∈ ℝ+)
120119ex 412 . . . . . . . 8 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 ≤ (𝑦 + 1)) → (𝑚 = (𝑦 + 1) → (𝐼𝑚) ∈ ℝ+))
121 simplll 774 . . . . . . . . 9 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 ≤ (𝑦 + 1)) → 𝑦 ∈ ℕ0)
122 simpr 484 . . . . . . . . 9 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 ≤ (𝑦 + 1)) → 𝑚 ≤ (𝑦 + 1))
123 simpl1 1192 . . . . . . . . . . 11 (((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 ≤ (𝑦 + 1)) ∧ 𝑚 < (𝑦 + 1)) → 𝑦 ∈ ℕ0)
124 simpl2 1193 . . . . . . . . . . 11 (((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 ≤ (𝑦 + 1)) ∧ 𝑚 < (𝑦 + 1)) → 𝑚 ∈ ℕ0)
125 simpr 484 . . . . . . . . . . 11 (((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 ≤ (𝑦 + 1)) ∧ 𝑚 < (𝑦 + 1)) → 𝑚 < (𝑦 + 1))
126 simpr 484 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ0𝑚 = 0) → 𝑚 = 0)
127 nn0ge0 12526 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ0 → 0 ≤ 𝑦)
128127adantr 480 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ0𝑚 = 0) → 0 ≤ 𝑦)
129126, 128eqbrtrd 5141 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ0𝑚 = 0) → 𝑚𝑦)
1301293ad2antl1 1186 . . . . . . . . . . . . 13 (((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 < (𝑦 + 1)) ∧ 𝑚 = 0) → 𝑚𝑦)
131 simpl1 1192 . . . . . . . . . . . . . 14 (((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 < (𝑦 + 1)) ∧ 𝑚 ∈ ℕ) → 𝑦 ∈ ℕ0)
132 simpr 484 . . . . . . . . . . . . . 14 (((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 < (𝑦 + 1)) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
133 simpl3 1194 . . . . . . . . . . . . . 14 (((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 < (𝑦 + 1)) ∧ 𝑚 ∈ ℕ) → 𝑚 < (𝑦 + 1))
134 simp3 1138 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ ∧ 𝑚 < (𝑦 + 1)) → 𝑚 < (𝑦 + 1))
135 simp2 1137 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ ∧ 𝑚 < (𝑦 + 1)) → 𝑚 ∈ ℕ)
136 simp1 1136 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ ∧ 𝑚 < (𝑦 + 1)) → 𝑦 ∈ ℕ0)
137 0red 11238 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ ∧ 𝑚 < (𝑦 + 1)) → 0 ∈ ℝ)
138483ad2ant2 1134 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ ∧ 𝑚 < (𝑦 + 1)) → (𝑚 − 1) ∈ ℝ)
139763ad2ant1 1133 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ ∧ 𝑚 < (𝑦 + 1)) → 𝑦 ∈ ℝ)
140 nnm1ge0 12661 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℕ → 0 ≤ (𝑚 − 1))
1411403ad2ant2 1134 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ ∧ 𝑚 < (𝑦 + 1)) → 0 ≤ (𝑚 − 1))
142463ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ ∧ 𝑚 < (𝑦 + 1)) → 𝑚 ∈ ℝ)
143 1red 11236 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ ∧ 𝑚 < (𝑦 + 1)) → 1 ∈ ℝ)
144142, 143, 139ltsubaddd 11833 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ ∧ 𝑚 < (𝑦 + 1)) → ((𝑚 − 1) < 𝑦𝑚 < (𝑦 + 1)))
145134, 144mpbird 257 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ ∧ 𝑚 < (𝑦 + 1)) → (𝑚 − 1) < 𝑦)
146137, 138, 139, 141, 145lelttrd 11393 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ ∧ 𝑚 < (𝑦 + 1)) → 0 < 𝑦)
147146gt0ne0d 11801 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ ∧ 𝑚 < (𝑦 + 1)) → 𝑦 ≠ 0)
148 elnnne0 12515 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℕ ↔ (𝑦 ∈ ℕ0𝑦 ≠ 0))
149136, 147, 148sylanbrc 583 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ ∧ 𝑚 < (𝑦 + 1)) → 𝑦 ∈ ℕ)
150 nnleltp1 12648 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑚𝑦𝑚 < (𝑦 + 1)))
151135, 149, 150syl2anc 584 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ ∧ 𝑚 < (𝑦 + 1)) → (𝑚𝑦𝑚 < (𝑦 + 1)))
152134, 151mpbird 257 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ ∧ 𝑚 < (𝑦 + 1)) → 𝑚𝑦)
153131, 132, 133, 152syl3anc 1373 . . . . . . . . . . . . 13 (((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 < (𝑦 + 1)) ∧ 𝑚 ∈ ℕ) → 𝑚𝑦)
154 elnn0 12503 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ0 ↔ (𝑚 ∈ ℕ ∨ 𝑚 = 0))
155154biimpi 216 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ0 → (𝑚 ∈ ℕ ∨ 𝑚 = 0))
156155orcomd 871 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ0 → (𝑚 = 0 ∨ 𝑚 ∈ ℕ))
1571563ad2ant2 1134 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 < (𝑦 + 1)) → (𝑚 = 0 ∨ 𝑚 ∈ ℕ))
158130, 153, 157mpjaodan 960 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 < (𝑦 + 1)) → 𝑚𝑦)
159158orcd 873 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 < (𝑦 + 1)) → (𝑚𝑦𝑚 = (𝑦 + 1)))
160123, 124, 125, 159syl3anc 1373 . . . . . . . . . 10 (((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 ≤ (𝑦 + 1)) ∧ 𝑚 < (𝑦 + 1)) → (𝑚𝑦𝑚 = (𝑦 + 1)))
161 simpr 484 . . . . . . . . . . 11 (((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 ≤ (𝑦 + 1)) ∧ 𝑚 = (𝑦 + 1)) → 𝑚 = (𝑦 + 1))
162161olcd 874 . . . . . . . . . 10 (((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 ≤ (𝑦 + 1)) ∧ 𝑚 = (𝑦 + 1)) → (𝑚𝑦𝑚 = (𝑦 + 1)))
163 simp3 1138 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 ≤ (𝑦 + 1)) → 𝑚 ≤ (𝑦 + 1))
164163ad2ant2 1134 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 ≤ (𝑦 + 1)) → 𝑚 ∈ ℝ)
165763ad2ant1 1133 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 ≤ (𝑦 + 1)) → 𝑦 ∈ ℝ)
166 1red 11236 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 ≤ (𝑦 + 1)) → 1 ∈ ℝ)
167165, 166readdcld 11264 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 ≤ (𝑦 + 1)) → (𝑦 + 1) ∈ ℝ)
168164, 167leloed 11378 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 ≤ (𝑦 + 1)) → (𝑚 ≤ (𝑦 + 1) ↔ (𝑚 < (𝑦 + 1) ∨ 𝑚 = (𝑦 + 1))))
169163, 168mpbid 232 . . . . . . . . . 10 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 ≤ (𝑦 + 1)) → (𝑚 < (𝑦 + 1) ∨ 𝑚 = (𝑦 + 1)))
170160, 162, 169mpjaodan 960 . . . . . . . . 9 ((𝑦 ∈ ℕ0𝑚 ∈ ℕ0𝑚 ≤ (𝑦 + 1)) → (𝑚𝑦𝑚 = (𝑦 + 1)))
171121, 34, 122, 170syl3anc 1373 . . . . . . . 8 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 ≤ (𝑦 + 1)) → (𝑚𝑦𝑚 = (𝑦 + 1)))
17236, 120, 171mpjaod 860 . . . . . . 7 ((((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 ≤ (𝑦 + 1)) → (𝐼𝑚) ∈ ℝ+)
173172exp31 419 . . . . . 6 ((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) → (𝑚 ∈ ℕ0 → (𝑚 ≤ (𝑦 + 1) → (𝐼𝑚) ∈ ℝ+)))
17432, 173ralrimi 3240 . . . . 5 ((𝑦 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+)) → ∀𝑚 ∈ ℕ0 (𝑚 ≤ (𝑦 + 1) → (𝐼𝑚) ∈ ℝ+))
175174ex 412 . . . 4 (𝑦 ∈ ℕ0 → (∀𝑚 ∈ ℕ0 (𝑚𝑦 → (𝐼𝑚) ∈ ℝ+) → ∀𝑚 ∈ ℕ0 (𝑚 ≤ (𝑦 + 1) → (𝐼𝑚) ∈ ℝ+)))
1763, 6, 9, 12, 29, 175nn0ind 12688 . . 3 (𝑁 ∈ ℕ0 → ∀𝑚 ∈ ℕ0 (𝑚𝑁 → (𝐼𝑚) ∈ ℝ+))
177176ancri 549 . 2 (𝑁 ∈ ℕ0 → (∀𝑚 ∈ ℕ0 (𝑚𝑁 → (𝐼𝑚) ∈ ℝ+) ∧ 𝑁 ∈ ℕ0))
178 nn0re 12510 . . 3 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
179178leidd 11803 . 2 (𝑁 ∈ ℕ0𝑁𝑁)
180 breq1 5122 . . . 4 (𝑚 = 𝑁 → (𝑚𝑁𝑁𝑁))
181 fveq2 6876 . . . . 5 (𝑚 = 𝑁 → (𝐼𝑚) = (𝐼𝑁))
182181eleq1d 2819 . . . 4 (𝑚 = 𝑁 → ((𝐼𝑚) ∈ ℝ+ ↔ (𝐼𝑁) ∈ ℝ+))
183180, 182imbi12d 344 . . 3 (𝑚 = 𝑁 → ((𝑚𝑁 → (𝐼𝑚) ∈ ℝ+) ↔ (𝑁𝑁 → (𝐼𝑁) ∈ ℝ+)))
184183rspccva 3600 . 2 ((∀𝑚 ∈ ℕ0 (𝑚𝑁 → (𝐼𝑚) ∈ ℝ+) ∧ 𝑁 ∈ ℕ0) → (𝑁𝑁 → (𝐼𝑁) ∈ ℝ+))
185177, 179, 184sylc 65 1 (𝑁 ∈ ℕ0 → (𝐼𝑁) ∈ ℝ+)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wral 3051   class class class wbr 5119  cmpt 5201  cfv 6531  (class class class)co 7405  cc 11127  cr 11128  0cc0 11129  1c1 11130   + caddc 11132   · cmul 11134   < clt 11269  cle 11270  cmin 11466   / cdiv 11894  cn 12240  2c2 12295  0cn0 12501  cuz 12852  +crp 13008  (,)cioo 13362  cexp 14079  sincsin 16079  πcpi 16082  citg 25571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cc 10449  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-symdif 4228  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-disj 5087  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-ofr 7672  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-omul 8485  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-dju 9915  df-card 9953  df-acn 9956  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ioc 13367  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-fac 14292  df-bc 14321  df-hash 14349  df-shft 15086  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-limsup 15487  df-clim 15504  df-rlim 15505  df-sum 15703  df-ef 16083  df-sin 16085  df-cos 16086  df-pi 16088  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-pt 17458  df-prds 17461  df-xrs 17516  df-qtop 17521  df-imas 17522  df-xps 17524  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-mulg 19051  df-cntz 19300  df-cmn 19763  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-fbas 21312  df-fg 21313  df-cnfld 21316  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-lp 23074  df-perf 23075  df-cn 23165  df-cnp 23166  df-haus 23253  df-cmp 23325  df-tx 23500  df-hmeo 23693  df-fil 23784  df-fm 23876  df-flim 23877  df-flf 23878  df-xms 24259  df-ms 24260  df-tms 24261  df-cncf 24822  df-ovol 25417  df-vol 25418  df-mbf 25572  df-itg1 25573  df-itg2 25574  df-ibl 25575  df-itg 25576  df-0p 25623  df-limc 25819  df-dv 25820
This theorem is referenced by:  wallispilem4  46097  wallispilem5  46098
  Copyright terms: Public domain W3C validator