Proof of Theorem lgsdir2lem3
Step | Hyp | Ref
| Expression |
1 | | simpl 483 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ ¬ 2
∥ 𝐴) → 𝐴 ∈
ℤ) |
2 | | 8nn 12068 |
. . . 4
⊢ 8 ∈
ℕ |
3 | | zmodfz 13613 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 8 ∈
ℕ) → (𝐴 mod 8)
∈ (0...(8 − 1))) |
4 | 1, 2, 3 | sylancl 586 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ ¬ 2
∥ 𝐴) → (𝐴 mod 8) ∈ (0...(8 −
1))) |
5 | | 8m1e7 12106 |
. . . 4
⊢ (8
− 1) = 7 |
6 | 5 | oveq2i 7286 |
. . 3
⊢ (0...(8
− 1)) = (0...7) |
7 | 4, 6 | eleqtrdi 2849 |
. 2
⊢ ((𝐴 ∈ ℤ ∧ ¬ 2
∥ 𝐴) → (𝐴 mod 8) ∈
(0...7)) |
8 | | neg1z 12356 |
. . . . . . . 8
⊢ -1 ∈
ℤ |
9 | | z0even 16076 |
. . . . . . . . 9
⊢ 2 ∥
0 |
10 | | 1pneg1e0 12092 |
. . . . . . . . . 10
⊢ (1 + -1)
= 0 |
11 | | ax-1cn 10929 |
. . . . . . . . . . 11
⊢ 1 ∈
ℂ |
12 | | neg1cn 12087 |
. . . . . . . . . . 11
⊢ -1 ∈
ℂ |
13 | 11, 12 | addcomi 11166 |
. . . . . . . . . 10
⊢ (1 + -1)
= (-1 + 1) |
14 | 10, 13 | eqtr3i 2768 |
. . . . . . . . 9
⊢ 0 = (-1 +
1) |
15 | 9, 14 | breqtri 5099 |
. . . . . . . 8
⊢ 2 ∥
(-1 + 1) |
16 | | noel 4264 |
. . . . . . . . . . 11
⊢ ¬
(𝐴 mod 8) ∈
∅ |
17 | 16 | pm2.21i 119 |
. . . . . . . . . 10
⊢ ((𝐴 mod 8) ∈ ∅ →
(𝐴 mod 8) ∈ ({1, 7}
∪ {3, 5})) |
18 | | neg1lt0 12090 |
. . . . . . . . . . 11
⊢ -1 <
0 |
19 | | 0z 12330 |
. . . . . . . . . . . 12
⊢ 0 ∈
ℤ |
20 | | fzn 13272 |
. . . . . . . . . . . 12
⊢ ((0
∈ ℤ ∧ -1 ∈ ℤ) → (-1 < 0 ↔ (0...-1) =
∅)) |
21 | 19, 8, 20 | mp2an 689 |
. . . . . . . . . . 11
⊢ (-1 <
0 ↔ (0...-1) = ∅) |
22 | 18, 21 | mpbi 229 |
. . . . . . . . . 10
⊢ (0...-1)
= ∅ |
23 | 17, 22 | eleq2s 2857 |
. . . . . . . . 9
⊢ ((𝐴 mod 8) ∈ (0...-1) →
(𝐴 mod 8) ∈ ({1, 7}
∪ {3, 5})) |
24 | 23 | a1i 11 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ ¬ 2
∥ 𝐴) → ((𝐴 mod 8) ∈ (0...-1) →
(𝐴 mod 8) ∈ ({1, 7}
∪ {3, 5}))) |
25 | 8, 15, 24 | 3pm3.2i 1338 |
. . . . . . 7
⊢ (-1
∈ ℤ ∧ 2 ∥ (-1 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...-1) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3,
5})))) |
26 | | 1e0p1 12479 |
. . . . . . 7
⊢ 1 = (0 +
1) |
27 | | ssun1 4106 |
. . . . . . . 8
⊢ {1, 7}
⊆ ({1, 7} ∪ {3, 5}) |
28 | | 1ex 10971 |
. . . . . . . . 9
⊢ 1 ∈
V |
29 | 28 | prid1 4698 |
. . . . . . . 8
⊢ 1 ∈
{1, 7} |
30 | 27, 29 | sselii 3918 |
. . . . . . 7
⊢ 1 ∈
({1, 7} ∪ {3, 5}) |
31 | 25, 14, 26, 30 | lgsdir2lem2 26474 |
. . . . . 6
⊢ (1 ∈
ℤ ∧ 2 ∥ (1 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...1) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3,
5})))) |
32 | | df-2 12036 |
. . . . . 6
⊢ 2 = (1 +
1) |
33 | | df-3 12037 |
. . . . . 6
⊢ 3 = (2 +
1) |
34 | | ssun2 4107 |
. . . . . . 7
⊢ {3, 5}
⊆ ({1, 7} ∪ {3, 5}) |
35 | | 3ex 12055 |
. . . . . . . 8
⊢ 3 ∈
V |
36 | 35 | prid1 4698 |
. . . . . . 7
⊢ 3 ∈
{3, 5} |
37 | 34, 36 | sselii 3918 |
. . . . . 6
⊢ 3 ∈
({1, 7} ∪ {3, 5}) |
38 | 31, 32, 33, 37 | lgsdir2lem2 26474 |
. . . . 5
⊢ (3 ∈
ℤ ∧ 2 ∥ (3 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...3) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3,
5})))) |
39 | | df-4 12038 |
. . . . 5
⊢ 4 = (3 +
1) |
40 | | df-5 12039 |
. . . . 5
⊢ 5 = (4 +
1) |
41 | | 5nn 12059 |
. . . . . . . 8
⊢ 5 ∈
ℕ |
42 | 41 | elexi 3451 |
. . . . . . 7
⊢ 5 ∈
V |
43 | 42 | prid2 4699 |
. . . . . 6
⊢ 5 ∈
{3, 5} |
44 | 34, 43 | sselii 3918 |
. . . . 5
⊢ 5 ∈
({1, 7} ∪ {3, 5}) |
45 | 38, 39, 40, 44 | lgsdir2lem2 26474 |
. . . 4
⊢ (5 ∈
ℤ ∧ 2 ∥ (5 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...5) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3,
5})))) |
46 | | df-6 12040 |
. . . 4
⊢ 6 = (5 +
1) |
47 | | df-7 12041 |
. . . 4
⊢ 7 = (6 +
1) |
48 | | 7nn 12065 |
. . . . . . 7
⊢ 7 ∈
ℕ |
49 | 48 | elexi 3451 |
. . . . . 6
⊢ 7 ∈
V |
50 | 49 | prid2 4699 |
. . . . 5
⊢ 7 ∈
{1, 7} |
51 | 27, 50 | sselii 3918 |
. . . 4
⊢ 7 ∈
({1, 7} ∪ {3, 5}) |
52 | 45, 46, 47, 51 | lgsdir2lem2 26474 |
. . 3
⊢ (7 ∈
ℤ ∧ 2 ∥ (7 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...7) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3,
5})))) |
53 | 52 | simp3i 1140 |
. 2
⊢ ((𝐴 ∈ ℤ ∧ ¬ 2
∥ 𝐴) → ((𝐴 mod 8) ∈ (0...7) →
(𝐴 mod 8) ∈ ({1, 7}
∪ {3, 5}))) |
54 | 7, 53 | mpd 15 |
1
⊢ ((𝐴 ∈ ℤ ∧ ¬ 2
∥ 𝐴) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3,
5})) |