MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsdir2lem3 Structured version   Visualization version   GIF version

Theorem lgsdir2lem3 27273
Description: Lemma for lgsdir2 27276. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsdir2lem3 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5}))

Proof of Theorem lgsdir2lem3
StepHypRef Expression
1 simpl 481 . . . 4 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → 𝐴 ∈ ℤ)
2 8nn 12332 . . . 4 8 ∈ ℕ
3 zmodfz 13885 . . . 4 ((𝐴 ∈ ℤ ∧ 8 ∈ ℕ) → (𝐴 mod 8) ∈ (0...(8 − 1)))
41, 2, 3sylancl 584 . . 3 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → (𝐴 mod 8) ∈ (0...(8 − 1)))
5 8m1e7 12370 . . . 4 (8 − 1) = 7
65oveq2i 7424 . . 3 (0...(8 − 1)) = (0...7)
74, 6eleqtrdi 2835 . 2 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → (𝐴 mod 8) ∈ (0...7))
8 neg1z 12623 . . . . . . . 8 -1 ∈ ℤ
9 z0even 16338 . . . . . . . . 9 2 ∥ 0
10 1pneg1e0 12356 . . . . . . . . . 10 (1 + -1) = 0
11 ax-1cn 11191 . . . . . . . . . . 11 1 ∈ ℂ
12 neg1cn 12351 . . . . . . . . . . 11 -1 ∈ ℂ
1311, 12addcomi 11430 . . . . . . . . . 10 (1 + -1) = (-1 + 1)
1410, 13eqtr3i 2755 . . . . . . . . 9 0 = (-1 + 1)
159, 14breqtri 5169 . . . . . . . 8 2 ∥ (-1 + 1)
16 noel 4327 . . . . . . . . . . 11 ¬ (𝐴 mod 8) ∈ ∅
1716pm2.21i 119 . . . . . . . . . 10 ((𝐴 mod 8) ∈ ∅ → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5}))
18 neg1lt0 12354 . . . . . . . . . . 11 -1 < 0
19 0z 12594 . . . . . . . . . . . 12 0 ∈ ℤ
20 fzn 13544 . . . . . . . . . . . 12 ((0 ∈ ℤ ∧ -1 ∈ ℤ) → (-1 < 0 ↔ (0...-1) = ∅))
2119, 8, 20mp2an 690 . . . . . . . . . . 11 (-1 < 0 ↔ (0...-1) = ∅)
2218, 21mpbi 229 . . . . . . . . . 10 (0...-1) = ∅
2317, 22eleq2s 2843 . . . . . . . . 9 ((𝐴 mod 8) ∈ (0...-1) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5}))
2423a1i 11 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...-1) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5})))
258, 15, 243pm3.2i 1336 . . . . . . 7 (-1 ∈ ℤ ∧ 2 ∥ (-1 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...-1) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5}))))
26 1e0p1 12744 . . . . . . 7 1 = (0 + 1)
27 ssun1 4167 . . . . . . . 8 {1, 7} ⊆ ({1, 7} ∪ {3, 5})
28 1ex 11235 . . . . . . . . 9 1 ∈ V
2928prid1 4763 . . . . . . . 8 1 ∈ {1, 7}
3027, 29sselii 3970 . . . . . . 7 1 ∈ ({1, 7} ∪ {3, 5})
3125, 14, 26, 30lgsdir2lem2 27272 . . . . . 6 (1 ∈ ℤ ∧ 2 ∥ (1 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...1) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5}))))
32 df-2 12300 . . . . . 6 2 = (1 + 1)
33 df-3 12301 . . . . . 6 3 = (2 + 1)
34 ssun2 4168 . . . . . . 7 {3, 5} ⊆ ({1, 7} ∪ {3, 5})
35 3ex 12319 . . . . . . . 8 3 ∈ V
3635prid1 4763 . . . . . . 7 3 ∈ {3, 5}
3734, 36sselii 3970 . . . . . 6 3 ∈ ({1, 7} ∪ {3, 5})
3831, 32, 33, 37lgsdir2lem2 27272 . . . . 5 (3 ∈ ℤ ∧ 2 ∥ (3 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...3) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5}))))
39 df-4 12302 . . . . 5 4 = (3 + 1)
40 df-5 12303 . . . . 5 5 = (4 + 1)
41 5nn 12323 . . . . . . . 8 5 ∈ ℕ
4241elexi 3484 . . . . . . 7 5 ∈ V
4342prid2 4764 . . . . . 6 5 ∈ {3, 5}
4434, 43sselii 3970 . . . . 5 5 ∈ ({1, 7} ∪ {3, 5})
4538, 39, 40, 44lgsdir2lem2 27272 . . . 4 (5 ∈ ℤ ∧ 2 ∥ (5 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...5) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5}))))
46 df-6 12304 . . . 4 6 = (5 + 1)
47 df-7 12305 . . . 4 7 = (6 + 1)
48 7nn 12329 . . . . . . 7 7 ∈ ℕ
4948elexi 3484 . . . . . 6 7 ∈ V
5049prid2 4764 . . . . 5 7 ∈ {1, 7}
5127, 50sselii 3970 . . . 4 7 ∈ ({1, 7} ∪ {3, 5})
5245, 46, 47, 51lgsdir2lem2 27272 . . 3 (7 ∈ ℤ ∧ 2 ∥ (7 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...7) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5}))))
5352simp3i 1138 . 2 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...7) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5})))
547, 53mpd 15 1 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  cun 3939  c0 4319  {cpr 4627   class class class wbr 5144  (class class class)co 7413  0cc0 11133  1c1 11134   + caddc 11136   < clt 11273  cmin 11469  -cneg 11470  cn 12237  2c2 12292  3c3 12293  4c4 12294  5c5 12295  6c6 12296  7c7 12297  8c8 12298  cz 12583  ...cfz 13511   mod cmo 13861  cdvds 16225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210  ax-pre-sup 11211
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-iun 4994  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-sup 9460  df-inf 9461  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-div 11897  df-nn 12238  df-2 12300  df-3 12301  df-4 12302  df-5 12303  df-6 12304  df-7 12305  df-8 12306  df-n0 12498  df-z 12584  df-uz 12848  df-rp 13002  df-fz 13512  df-fl 13784  df-mod 13862  df-dvds 16226
This theorem is referenced by:  lgsdir2  27276  2lgslem3  27350  2lgsoddprmlem3  27360
  Copyright terms: Public domain W3C validator