Proof of Theorem lgsdir2lem3
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simpl 482 | . . . 4
⊢ ((𝐴 ∈ ℤ ∧ ¬ 2
∥ 𝐴) → 𝐴 ∈
ℤ) | 
| 2 |  | 8nn 12362 | . . . 4
⊢ 8 ∈
ℕ | 
| 3 |  | zmodfz 13934 | . . . 4
⊢ ((𝐴 ∈ ℤ ∧ 8 ∈
ℕ) → (𝐴 mod 8)
∈ (0...(8 − 1))) | 
| 4 | 1, 2, 3 | sylancl 586 | . . 3
⊢ ((𝐴 ∈ ℤ ∧ ¬ 2
∥ 𝐴) → (𝐴 mod 8) ∈ (0...(8 −
1))) | 
| 5 |  | 8m1e7 12400 | . . . 4
⊢ (8
− 1) = 7 | 
| 6 | 5 | oveq2i 7443 | . . 3
⊢ (0...(8
− 1)) = (0...7) | 
| 7 | 4, 6 | eleqtrdi 2850 | . 2
⊢ ((𝐴 ∈ ℤ ∧ ¬ 2
∥ 𝐴) → (𝐴 mod 8) ∈
(0...7)) | 
| 8 |  | neg1z 12655 | . . . . . . . 8
⊢ -1 ∈
ℤ | 
| 9 |  | z0even 16405 | . . . . . . . . 9
⊢ 2 ∥
0 | 
| 10 |  | 1pneg1e0 12386 | . . . . . . . . . 10
⊢ (1 + -1)
= 0 | 
| 11 |  | ax-1cn 11214 | . . . . . . . . . . 11
⊢ 1 ∈
ℂ | 
| 12 |  | neg1cn 12381 | . . . . . . . . . . 11
⊢ -1 ∈
ℂ | 
| 13 | 11, 12 | addcomi 11453 | . . . . . . . . . 10
⊢ (1 + -1)
= (-1 + 1) | 
| 14 | 10, 13 | eqtr3i 2766 | . . . . . . . . 9
⊢ 0 = (-1 +
1) | 
| 15 | 9, 14 | breqtri 5167 | . . . . . . . 8
⊢ 2 ∥
(-1 + 1) | 
| 16 |  | noel 4337 | . . . . . . . . . . 11
⊢  ¬
(𝐴 mod 8) ∈
∅ | 
| 17 | 16 | pm2.21i 119 | . . . . . . . . . 10
⊢ ((𝐴 mod 8) ∈ ∅ →
(𝐴 mod 8) ∈ ({1, 7}
∪ {3, 5})) | 
| 18 |  | neg1lt0 12384 | . . . . . . . . . . 11
⊢ -1 <
0 | 
| 19 |  | 0z 12626 | . . . . . . . . . . . 12
⊢ 0 ∈
ℤ | 
| 20 |  | fzn 13581 | . . . . . . . . . . . 12
⊢ ((0
∈ ℤ ∧ -1 ∈ ℤ) → (-1 < 0 ↔ (0...-1) =
∅)) | 
| 21 | 19, 8, 20 | mp2an 692 | . . . . . . . . . . 11
⊢ (-1 <
0 ↔ (0...-1) = ∅) | 
| 22 | 18, 21 | mpbi 230 | . . . . . . . . . 10
⊢ (0...-1)
= ∅ | 
| 23 | 17, 22 | eleq2s 2858 | . . . . . . . . 9
⊢ ((𝐴 mod 8) ∈ (0...-1) →
(𝐴 mod 8) ∈ ({1, 7}
∪ {3, 5})) | 
| 24 | 23 | a1i 11 | . . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ ¬ 2
∥ 𝐴) → ((𝐴 mod 8) ∈ (0...-1) →
(𝐴 mod 8) ∈ ({1, 7}
∪ {3, 5}))) | 
| 25 | 8, 15, 24 | 3pm3.2i 1339 | . . . . . . 7
⊢ (-1
∈ ℤ ∧ 2 ∥ (-1 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...-1) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3,
5})))) | 
| 26 |  | 1e0p1 12777 | . . . . . . 7
⊢ 1 = (0 +
1) | 
| 27 |  | ssun1 4177 | . . . . . . . 8
⊢ {1, 7}
⊆ ({1, 7} ∪ {3, 5}) | 
| 28 |  | 1ex 11258 | . . . . . . . . 9
⊢ 1 ∈
V | 
| 29 | 28 | prid1 4761 | . . . . . . . 8
⊢ 1 ∈
{1, 7} | 
| 30 | 27, 29 | sselii 3979 | . . . . . . 7
⊢ 1 ∈
({1, 7} ∪ {3, 5}) | 
| 31 | 25, 14, 26, 30 | lgsdir2lem2 27371 | . . . . . 6
⊢ (1 ∈
ℤ ∧ 2 ∥ (1 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...1) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3,
5})))) | 
| 32 |  | df-2 12330 | . . . . . 6
⊢ 2 = (1 +
1) | 
| 33 |  | df-3 12331 | . . . . . 6
⊢ 3 = (2 +
1) | 
| 34 |  | ssun2 4178 | . . . . . . 7
⊢ {3, 5}
⊆ ({1, 7} ∪ {3, 5}) | 
| 35 |  | 3ex 12349 | . . . . . . . 8
⊢ 3 ∈
V | 
| 36 | 35 | prid1 4761 | . . . . . . 7
⊢ 3 ∈
{3, 5} | 
| 37 | 34, 36 | sselii 3979 | . . . . . 6
⊢ 3 ∈
({1, 7} ∪ {3, 5}) | 
| 38 | 31, 32, 33, 37 | lgsdir2lem2 27371 | . . . . 5
⊢ (3 ∈
ℤ ∧ 2 ∥ (3 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...3) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3,
5})))) | 
| 39 |  | df-4 12332 | . . . . 5
⊢ 4 = (3 +
1) | 
| 40 |  | df-5 12333 | . . . . 5
⊢ 5 = (4 +
1) | 
| 41 |  | 5nn 12353 | . . . . . . . 8
⊢ 5 ∈
ℕ | 
| 42 | 41 | elexi 3502 | . . . . . . 7
⊢ 5 ∈
V | 
| 43 | 42 | prid2 4762 | . . . . . 6
⊢ 5 ∈
{3, 5} | 
| 44 | 34, 43 | sselii 3979 | . . . . 5
⊢ 5 ∈
({1, 7} ∪ {3, 5}) | 
| 45 | 38, 39, 40, 44 | lgsdir2lem2 27371 | . . . 4
⊢ (5 ∈
ℤ ∧ 2 ∥ (5 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...5) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3,
5})))) | 
| 46 |  | df-6 12334 | . . . 4
⊢ 6 = (5 +
1) | 
| 47 |  | df-7 12335 | . . . 4
⊢ 7 = (6 +
1) | 
| 48 |  | 7nn 12359 | . . . . . . 7
⊢ 7 ∈
ℕ | 
| 49 | 48 | elexi 3502 | . . . . . 6
⊢ 7 ∈
V | 
| 50 | 49 | prid2 4762 | . . . . 5
⊢ 7 ∈
{1, 7} | 
| 51 | 27, 50 | sselii 3979 | . . . 4
⊢ 7 ∈
({1, 7} ∪ {3, 5}) | 
| 52 | 45, 46, 47, 51 | lgsdir2lem2 27371 | . . 3
⊢ (7 ∈
ℤ ∧ 2 ∥ (7 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...7) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3,
5})))) | 
| 53 | 52 | simp3i 1141 | . 2
⊢ ((𝐴 ∈ ℤ ∧ ¬ 2
∥ 𝐴) → ((𝐴 mod 8) ∈ (0...7) →
(𝐴 mod 8) ∈ ({1, 7}
∪ {3, 5}))) | 
| 54 | 7, 53 | mpd 15 | 1
⊢ ((𝐴 ∈ ℤ ∧ ¬ 2
∥ 𝐴) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3,
5})) |