![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prstchomval | Structured version Visualization version GIF version |
Description: Hom-sets of the constructed category which depend on an arbitrary definition. (Contributed by Zhi Wang, 20-Sep-2024.) (New usage is discouraged.) |
Ref | Expression |
---|---|
prstcnid.c | ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) |
prstcnid.k | ⊢ (𝜑 → 𝐾 ∈ Proset ) |
prstchomval.l | ⊢ (𝜑 → ≤ = (le‘𝐶)) |
Ref | Expression |
---|---|
prstchomval | ⊢ (𝜑 → ( ≤ × {1o}) = (Hom ‘𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prstcnid.c | . . 3 ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) | |
2 | prstcnid.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ Proset ) | |
3 | homid 17357 | . . 3 ⊢ Hom = Slot (Hom ‘ndx) | |
4 | slotsbhcdif 17360 | . . . 4 ⊢ ((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) | |
5 | 4 | simp3i 1142 | . . 3 ⊢ (Hom ‘ndx) ≠ (comp‘ndx) |
6 | 1, 2, 3, 5 | prstcnidlem 47685 | . 2 ⊢ (𝜑 → (Hom ‘𝐶) = (Hom ‘(𝐾 sSet ⟨(Hom ‘ndx), ((le‘𝐾) × {1o})⟩))) |
7 | fvex 6905 | . . . 4 ⊢ (le‘𝐾) ∈ V | |
8 | snex 5432 | . . . 4 ⊢ {1o} ∈ V | |
9 | 7, 8 | xpex 7740 | . . 3 ⊢ ((le‘𝐾) × {1o}) ∈ V |
10 | 3 | setsid 17141 | . . 3 ⊢ ((𝐾 ∈ Proset ∧ ((le‘𝐾) × {1o}) ∈ V) → ((le‘𝐾) × {1o}) = (Hom ‘(𝐾 sSet ⟨(Hom ‘ndx), ((le‘𝐾) × {1o})⟩))) |
11 | 2, 9, 10 | sylancl 587 | . 2 ⊢ (𝜑 → ((le‘𝐾) × {1o}) = (Hom ‘(𝐾 sSet ⟨(Hom ‘ndx), ((le‘𝐾) × {1o})⟩))) |
12 | eqidd 2734 | . . . . 5 ⊢ (𝜑 → (le‘𝐾) = (le‘𝐾)) | |
13 | 1, 2, 12 | prstcleval 47688 | . . . 4 ⊢ (𝜑 → (le‘𝐾) = (le‘𝐶)) |
14 | prstchomval.l | . . . 4 ⊢ (𝜑 → ≤ = (le‘𝐶)) | |
15 | 13, 14 | eqtr4d 2776 | . . 3 ⊢ (𝜑 → (le‘𝐾) = ≤ ) |
16 | 15 | xpeq1d 5706 | . 2 ⊢ (𝜑 → ((le‘𝐾) × {1o}) = ( ≤ × {1o})) |
17 | 6, 11, 16 | 3eqtr2rd 2780 | 1 ⊢ (𝜑 → ( ≤ × {1o}) = (Hom ‘𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 Vcvv 3475 {csn 4629 ⟨cop 4635 × cxp 5675 ‘cfv 6544 (class class class)co 7409 1oc1o 8459 sSet csts 17096 ndxcnx 17126 Basecbs 17144 lecple 17204 Hom chom 17208 compcco 17209 Proset cproset 18246 ProsetToCatcprstc 47682 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-dec 12678 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ple 17217 df-hom 17221 df-cco 17222 df-prstc 47683 |
This theorem is referenced by: prstcthin 47696 prstchom 47697 prstchom2ALT 47699 |
Copyright terms: Public domain | W3C validator |