MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsdir2lem2 Structured version   Visualization version   GIF version

Theorem lgsdir2lem2 25403
Description: Lemma for lgsdir2 25407. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypotheses
Ref Expression
lgsdir2lem2.1 (𝐾 ∈ ℤ ∧ 2 ∥ (𝐾 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...𝐾) → (𝐴 mod 8) ∈ 𝑆)))
lgsdir2lem2.2 𝑀 = (𝐾 + 1)
lgsdir2lem2.3 𝑁 = (𝑀 + 1)
lgsdir2lem2.4 𝑁𝑆
Assertion
Ref Expression
lgsdir2lem2 (𝑁 ∈ ℤ ∧ 2 ∥ (𝑁 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...𝑁) → (𝐴 mod 8) ∈ 𝑆)))

Proof of Theorem lgsdir2lem2
StepHypRef Expression
1 lgsdir2lem2.3 . . 3 𝑁 = (𝑀 + 1)
2 lgsdir2lem2.2 . . . . 5 𝑀 = (𝐾 + 1)
3 lgsdir2lem2.1 . . . . . . 7 (𝐾 ∈ ℤ ∧ 2 ∥ (𝐾 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...𝐾) → (𝐴 mod 8) ∈ 𝑆)))
43simp1i 1170 . . . . . 6 𝐾 ∈ ℤ
5 peano2z 11708 . . . . . 6 (𝐾 ∈ ℤ → (𝐾 + 1) ∈ ℤ)
64, 5ax-mp 5 . . . . 5 (𝐾 + 1) ∈ ℤ
72, 6eqeltri 2874 . . . 4 𝑀 ∈ ℤ
8 peano2z 11708 . . . 4 (𝑀 ∈ ℤ → (𝑀 + 1) ∈ ℤ)
97, 8ax-mp 5 . . 3 (𝑀 + 1) ∈ ℤ
101, 9eqeltri 2874 . 2 𝑁 ∈ ℤ
113simp2i 1171 . . . 4 2 ∥ (𝐾 + 1)
12 2z 11699 . . . . 5 2 ∈ ℤ
13 dvdsadd 15363 . . . . 5 ((2 ∈ ℤ ∧ (𝐾 + 1) ∈ ℤ) → (2 ∥ (𝐾 + 1) ↔ 2 ∥ (2 + (𝐾 + 1))))
1412, 6, 13mp2an 684 . . . 4 (2 ∥ (𝐾 + 1) ↔ 2 ∥ (2 + (𝐾 + 1)))
1511, 14mpbi 222 . . 3 2 ∥ (2 + (𝐾 + 1))
16 zcn 11671 . . . . . . . . . . 11 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
174, 16ax-mp 5 . . . . . . . . . 10 𝐾 ∈ ℂ
18 ax-1cn 10282 . . . . . . . . . 10 1 ∈ ℂ
1917, 18addcomi 10517 . . . . . . . . 9 (𝐾 + 1) = (1 + 𝐾)
202, 19eqtri 2821 . . . . . . . 8 𝑀 = (1 + 𝐾)
2120oveq1i 6888 . . . . . . 7 (𝑀 + 1) = ((1 + 𝐾) + 1)
221, 21eqtri 2821 . . . . . 6 𝑁 = ((1 + 𝐾) + 1)
23 df-2 11376 . . . . . . . 8 2 = (1 + 1)
2423oveq1i 6888 . . . . . . 7 (2 + 𝐾) = ((1 + 1) + 𝐾)
2518, 17, 18add32i 10549 . . . . . . 7 ((1 + 𝐾) + 1) = ((1 + 1) + 𝐾)
2624, 25eqtr4i 2824 . . . . . 6 (2 + 𝐾) = ((1 + 𝐾) + 1)
2722, 26eqtr4i 2824 . . . . 5 𝑁 = (2 + 𝐾)
2827oveq1i 6888 . . . 4 (𝑁 + 1) = ((2 + 𝐾) + 1)
29 2cn 11388 . . . . 5 2 ∈ ℂ
3029, 17, 18addassi 10339 . . . 4 ((2 + 𝐾) + 1) = (2 + (𝐾 + 1))
3128, 30eqtri 2821 . . 3 (𝑁 + 1) = (2 + (𝐾 + 1))
3215, 31breqtrri 4870 . 2 2 ∥ (𝑁 + 1)
33 elfzuz2 12600 . . . . 5 ((𝐴 mod 8) ∈ (0...𝑁) → 𝑁 ∈ (ℤ‘0))
34 fzm1 12674 . . . . 5 (𝑁 ∈ (ℤ‘0) → ((𝐴 mod 8) ∈ (0...𝑁) ↔ ((𝐴 mod 8) ∈ (0...(𝑁 − 1)) ∨ (𝐴 mod 8) = 𝑁)))
3533, 34syl 17 . . . 4 ((𝐴 mod 8) ∈ (0...𝑁) → ((𝐴 mod 8) ∈ (0...𝑁) ↔ ((𝐴 mod 8) ∈ (0...(𝑁 − 1)) ∨ (𝐴 mod 8) = 𝑁)))
3635ibi 259 . . 3 ((𝐴 mod 8) ∈ (0...𝑁) → ((𝐴 mod 8) ∈ (0...(𝑁 − 1)) ∨ (𝐴 mod 8) = 𝑁))
37 elfzuz2 12600 . . . . . . . 8 ((𝐴 mod 8) ∈ (0...𝑀) → 𝑀 ∈ (ℤ‘0))
38 fzm1 12674 . . . . . . . 8 (𝑀 ∈ (ℤ‘0) → ((𝐴 mod 8) ∈ (0...𝑀) ↔ ((𝐴 mod 8) ∈ (0...(𝑀 − 1)) ∨ (𝐴 mod 8) = 𝑀)))
3937, 38syl 17 . . . . . . 7 ((𝐴 mod 8) ∈ (0...𝑀) → ((𝐴 mod 8) ∈ (0...𝑀) ↔ ((𝐴 mod 8) ∈ (0...(𝑀 − 1)) ∨ (𝐴 mod 8) = 𝑀)))
4039ibi 259 . . . . . 6 ((𝐴 mod 8) ∈ (0...𝑀) → ((𝐴 mod 8) ∈ (0...(𝑀 − 1)) ∨ (𝐴 mod 8) = 𝑀))
41 zcn 11671 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
4210, 41ax-mp 5 . . . . . . . 8 𝑁 ∈ ℂ
43 zcn 11671 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
447, 43ax-mp 5 . . . . . . . 8 𝑀 ∈ ℂ
4518, 44addcomi 10517 . . . . . . . . 9 (1 + 𝑀) = (𝑀 + 1)
4645, 1eqtr4i 2824 . . . . . . . 8 (1 + 𝑀) = 𝑁
4742, 18, 44, 46subaddrii 10662 . . . . . . 7 (𝑁 − 1) = 𝑀
4847oveq2i 6889 . . . . . 6 (0...(𝑁 − 1)) = (0...𝑀)
4940, 48eleq2s 2896 . . . . 5 ((𝐴 mod 8) ∈ (0...(𝑁 − 1)) → ((𝐴 mod 8) ∈ (0...(𝑀 − 1)) ∨ (𝐴 mod 8) = 𝑀))
5020eqcomi 2808 . . . . . . . . . 10 (1 + 𝐾) = 𝑀
5144, 18, 17, 50subaddrii 10662 . . . . . . . . 9 (𝑀 − 1) = 𝐾
5251oveq2i 6889 . . . . . . . 8 (0...(𝑀 − 1)) = (0...𝐾)
5352eleq2i 2870 . . . . . . 7 ((𝐴 mod 8) ∈ (0...(𝑀 − 1)) ↔ (𝐴 mod 8) ∈ (0...𝐾))
543simp3i 1172 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...𝐾) → (𝐴 mod 8) ∈ 𝑆))
5553, 54syl5bi 234 . . . . . 6 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...(𝑀 − 1)) → (𝐴 mod 8) ∈ 𝑆))
56 2nn 11386 . . . . . . . . . . 11 2 ∈ ℕ
57 8nn 11413 . . . . . . . . . . 11 8 ∈ ℕ
58 4z 11701 . . . . . . . . . . . . . 14 4 ∈ ℤ
59 dvdsmul2 15343 . . . . . . . . . . . . . 14 ((4 ∈ ℤ ∧ 2 ∈ ℤ) → 2 ∥ (4 · 2))
6058, 12, 59mp2an 684 . . . . . . . . . . . . 13 2 ∥ (4 · 2)
61 4t2e8 11488 . . . . . . . . . . . . 13 (4 · 2) = 8
6260, 61breqtri 4868 . . . . . . . . . . . 12 2 ∥ 8
63 dvdsmod 15389 . . . . . . . . . . . 12 (((2 ∈ ℕ ∧ 8 ∈ ℕ ∧ 𝐴 ∈ ℤ) ∧ 2 ∥ 8) → (2 ∥ (𝐴 mod 8) ↔ 2 ∥ 𝐴))
6462, 63mpan2 683 . . . . . . . . . . 11 ((2 ∈ ℕ ∧ 8 ∈ ℕ ∧ 𝐴 ∈ ℤ) → (2 ∥ (𝐴 mod 8) ↔ 2 ∥ 𝐴))
6556, 57, 64mp3an12 1576 . . . . . . . . . 10 (𝐴 ∈ ℤ → (2 ∥ (𝐴 mod 8) ↔ 2 ∥ 𝐴))
6665notbid 310 . . . . . . . . 9 (𝐴 ∈ ℤ → (¬ 2 ∥ (𝐴 mod 8) ↔ ¬ 2 ∥ 𝐴))
6766biimpar 470 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ¬ 2 ∥ (𝐴 mod 8))
6811, 2breqtrri 4870 . . . . . . . . 9 2 ∥ 𝑀
69 id 22 . . . . . . . . 9 ((𝐴 mod 8) = 𝑀 → (𝐴 mod 8) = 𝑀)
7068, 69syl5breqr 4881 . . . . . . . 8 ((𝐴 mod 8) = 𝑀 → 2 ∥ (𝐴 mod 8))
7167, 70nsyl 138 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ¬ (𝐴 mod 8) = 𝑀)
7271pm2.21d 119 . . . . . 6 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) = 𝑀 → (𝐴 mod 8) ∈ 𝑆))
7355, 72jaod 886 . . . . 5 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → (((𝐴 mod 8) ∈ (0...(𝑀 − 1)) ∨ (𝐴 mod 8) = 𝑀) → (𝐴 mod 8) ∈ 𝑆))
7449, 73syl5 34 . . . 4 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...(𝑁 − 1)) → (𝐴 mod 8) ∈ 𝑆))
75 lgsdir2lem2.4 . . . . . 6 𝑁𝑆
76 eleq1 2866 . . . . . 6 ((𝐴 mod 8) = 𝑁 → ((𝐴 mod 8) ∈ 𝑆𝑁𝑆))
7775, 76mpbiri 250 . . . . 5 ((𝐴 mod 8) = 𝑁 → (𝐴 mod 8) ∈ 𝑆)
7877a1i 11 . . . 4 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) = 𝑁 → (𝐴 mod 8) ∈ 𝑆))
7974, 78jaod 886 . . 3 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → (((𝐴 mod 8) ∈ (0...(𝑁 − 1)) ∨ (𝐴 mod 8) = 𝑁) → (𝐴 mod 8) ∈ 𝑆))
8036, 79syl5 34 . 2 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...𝑁) → (𝐴 mod 8) ∈ 𝑆))
8110, 32, 803pm3.2i 1439 1 (𝑁 ∈ ℤ ∧ 2 ∥ (𝑁 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...𝑁) → (𝐴 mod 8) ∈ 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 385  wo 874  w3a 1108   = wceq 1653  wcel 2157   class class class wbr 4843  cfv 6101  (class class class)co 6878  cc 10222  0cc0 10224  1c1 10225   + caddc 10227   · cmul 10229  cmin 10556  cn 11312  2c2 11368  4c4 11370  8c8 11374  cz 11666  cuz 11930  ...cfz 12580   mod cmo 12923  cdvds 15319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301  ax-pre-sup 10302
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-sup 8590  df-inf 8591  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-div 10977  df-nn 11313  df-2 11376  df-3 11377  df-4 11378  df-5 11379  df-6 11380  df-7 11381  df-8 11382  df-n0 11581  df-z 11667  df-uz 11931  df-rp 12075  df-fz 12581  df-fl 12848  df-mod 12924  df-dvds 15320
This theorem is referenced by:  lgsdir2lem3  25404
  Copyright terms: Public domain W3C validator