MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsdir2lem2 Structured version   Visualization version   GIF version

Theorem lgsdir2lem2 27253
Description: Lemma for lgsdir2 27257. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypotheses
Ref Expression
lgsdir2lem2.1 (𝐾 ∈ ℤ ∧ 2 ∥ (𝐾 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...𝐾) → (𝐴 mod 8) ∈ 𝑆)))
lgsdir2lem2.2 𝑀 = (𝐾 + 1)
lgsdir2lem2.3 𝑁 = (𝑀 + 1)
lgsdir2lem2.4 𝑁𝑆
Assertion
Ref Expression
lgsdir2lem2 (𝑁 ∈ ℤ ∧ 2 ∥ (𝑁 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...𝑁) → (𝐴 mod 8) ∈ 𝑆)))

Proof of Theorem lgsdir2lem2
StepHypRef Expression
1 lgsdir2lem2.3 . . 3 𝑁 = (𝑀 + 1)
2 lgsdir2lem2.2 . . . . 5 𝑀 = (𝐾 + 1)
3 lgsdir2lem2.1 . . . . . . 7 (𝐾 ∈ ℤ ∧ 2 ∥ (𝐾 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...𝐾) → (𝐴 mod 8) ∈ 𝑆)))
43simp1i 1139 . . . . . 6 𝐾 ∈ ℤ
5 peano2z 12534 . . . . . 6 (𝐾 ∈ ℤ → (𝐾 + 1) ∈ ℤ)
64, 5ax-mp 5 . . . . 5 (𝐾 + 1) ∈ ℤ
72, 6eqeltri 2824 . . . 4 𝑀 ∈ ℤ
8 peano2z 12534 . . . 4 (𝑀 ∈ ℤ → (𝑀 + 1) ∈ ℤ)
97, 8ax-mp 5 . . 3 (𝑀 + 1) ∈ ℤ
101, 9eqeltri 2824 . 2 𝑁 ∈ ℤ
113simp2i 1140 . . . 4 2 ∥ (𝐾 + 1)
12 2z 12525 . . . . 5 2 ∈ ℤ
13 dvdsadd 16231 . . . . 5 ((2 ∈ ℤ ∧ (𝐾 + 1) ∈ ℤ) → (2 ∥ (𝐾 + 1) ↔ 2 ∥ (2 + (𝐾 + 1))))
1412, 6, 13mp2an 692 . . . 4 (2 ∥ (𝐾 + 1) ↔ 2 ∥ (2 + (𝐾 + 1)))
1511, 14mpbi 230 . . 3 2 ∥ (2 + (𝐾 + 1))
16 zcn 12494 . . . . . . . . . . 11 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
174, 16ax-mp 5 . . . . . . . . . 10 𝐾 ∈ ℂ
18 ax-1cn 11086 . . . . . . . . . 10 1 ∈ ℂ
1917, 18addcomi 11325 . . . . . . . . 9 (𝐾 + 1) = (1 + 𝐾)
202, 19eqtri 2752 . . . . . . . 8 𝑀 = (1 + 𝐾)
2120oveq1i 7363 . . . . . . 7 (𝑀 + 1) = ((1 + 𝐾) + 1)
221, 21eqtri 2752 . . . . . 6 𝑁 = ((1 + 𝐾) + 1)
23 df-2 12209 . . . . . . . 8 2 = (1 + 1)
2423oveq1i 7363 . . . . . . 7 (2 + 𝐾) = ((1 + 1) + 𝐾)
2518, 17, 18add32i 11358 . . . . . . 7 ((1 + 𝐾) + 1) = ((1 + 1) + 𝐾)
2624, 25eqtr4i 2755 . . . . . 6 (2 + 𝐾) = ((1 + 𝐾) + 1)
2722, 26eqtr4i 2755 . . . . 5 𝑁 = (2 + 𝐾)
2827oveq1i 7363 . . . 4 (𝑁 + 1) = ((2 + 𝐾) + 1)
29 2cn 12221 . . . . 5 2 ∈ ℂ
3029, 17, 18addassi 11144 . . . 4 ((2 + 𝐾) + 1) = (2 + (𝐾 + 1))
3128, 30eqtri 2752 . . 3 (𝑁 + 1) = (2 + (𝐾 + 1))
3215, 31breqtrri 5122 . 2 2 ∥ (𝑁 + 1)
33 elfzuz2 13450 . . . . 5 ((𝐴 mod 8) ∈ (0...𝑁) → 𝑁 ∈ (ℤ‘0))
34 fzm1 13528 . . . . 5 (𝑁 ∈ (ℤ‘0) → ((𝐴 mod 8) ∈ (0...𝑁) ↔ ((𝐴 mod 8) ∈ (0...(𝑁 − 1)) ∨ (𝐴 mod 8) = 𝑁)))
3533, 34syl 17 . . . 4 ((𝐴 mod 8) ∈ (0...𝑁) → ((𝐴 mod 8) ∈ (0...𝑁) ↔ ((𝐴 mod 8) ∈ (0...(𝑁 − 1)) ∨ (𝐴 mod 8) = 𝑁)))
3635ibi 267 . . 3 ((𝐴 mod 8) ∈ (0...𝑁) → ((𝐴 mod 8) ∈ (0...(𝑁 − 1)) ∨ (𝐴 mod 8) = 𝑁))
37 elfzuz2 13450 . . . . . . . 8 ((𝐴 mod 8) ∈ (0...𝑀) → 𝑀 ∈ (ℤ‘0))
38 fzm1 13528 . . . . . . . 8 (𝑀 ∈ (ℤ‘0) → ((𝐴 mod 8) ∈ (0...𝑀) ↔ ((𝐴 mod 8) ∈ (0...(𝑀 − 1)) ∨ (𝐴 mod 8) = 𝑀)))
3937, 38syl 17 . . . . . . 7 ((𝐴 mod 8) ∈ (0...𝑀) → ((𝐴 mod 8) ∈ (0...𝑀) ↔ ((𝐴 mod 8) ∈ (0...(𝑀 − 1)) ∨ (𝐴 mod 8) = 𝑀)))
4039ibi 267 . . . . . 6 ((𝐴 mod 8) ∈ (0...𝑀) → ((𝐴 mod 8) ∈ (0...(𝑀 − 1)) ∨ (𝐴 mod 8) = 𝑀))
41 zcn 12494 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
427, 41ax-mp 5 . . . . . . . 8 𝑀 ∈ ℂ
4342, 18, 1mvrraddi 11398 . . . . . . 7 (𝑁 − 1) = 𝑀
4443oveq2i 7364 . . . . . 6 (0...(𝑁 − 1)) = (0...𝑀)
4540, 44eleq2s 2846 . . . . 5 ((𝐴 mod 8) ∈ (0...(𝑁 − 1)) → ((𝐴 mod 8) ∈ (0...(𝑀 − 1)) ∨ (𝐴 mod 8) = 𝑀))
4617, 18, 2mvrraddi 11398 . . . . . . . . 9 (𝑀 − 1) = 𝐾
4746oveq2i 7364 . . . . . . . 8 (0...(𝑀 − 1)) = (0...𝐾)
4847eleq2i 2820 . . . . . . 7 ((𝐴 mod 8) ∈ (0...(𝑀 − 1)) ↔ (𝐴 mod 8) ∈ (0...𝐾))
493simp3i 1141 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...𝐾) → (𝐴 mod 8) ∈ 𝑆))
5048, 49biimtrid 242 . . . . . 6 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...(𝑀 − 1)) → (𝐴 mod 8) ∈ 𝑆))
51 2nn 12219 . . . . . . . . . . 11 2 ∈ ℕ
52 8nn 12241 . . . . . . . . . . 11 8 ∈ ℕ
53 4z 12527 . . . . . . . . . . . . . 14 4 ∈ ℤ
54 dvdsmul2 16207 . . . . . . . . . . . . . 14 ((4 ∈ ℤ ∧ 2 ∈ ℤ) → 2 ∥ (4 · 2))
5553, 12, 54mp2an 692 . . . . . . . . . . . . 13 2 ∥ (4 · 2)
56 4t2e8 12309 . . . . . . . . . . . . 13 (4 · 2) = 8
5755, 56breqtri 5120 . . . . . . . . . . . 12 2 ∥ 8
58 dvdsmod 16258 . . . . . . . . . . . 12 (((2 ∈ ℕ ∧ 8 ∈ ℕ ∧ 𝐴 ∈ ℤ) ∧ 2 ∥ 8) → (2 ∥ (𝐴 mod 8) ↔ 2 ∥ 𝐴))
5957, 58mpan2 691 . . . . . . . . . . 11 ((2 ∈ ℕ ∧ 8 ∈ ℕ ∧ 𝐴 ∈ ℤ) → (2 ∥ (𝐴 mod 8) ↔ 2 ∥ 𝐴))
6051, 52, 59mp3an12 1453 . . . . . . . . . 10 (𝐴 ∈ ℤ → (2 ∥ (𝐴 mod 8) ↔ 2 ∥ 𝐴))
6160notbid 318 . . . . . . . . 9 (𝐴 ∈ ℤ → (¬ 2 ∥ (𝐴 mod 8) ↔ ¬ 2 ∥ 𝐴))
6261biimpar 477 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ¬ 2 ∥ (𝐴 mod 8))
6311, 2breqtrri 5122 . . . . . . . . 9 2 ∥ 𝑀
64 id 22 . . . . . . . . 9 ((𝐴 mod 8) = 𝑀 → (𝐴 mod 8) = 𝑀)
6563, 64breqtrrid 5133 . . . . . . . 8 ((𝐴 mod 8) = 𝑀 → 2 ∥ (𝐴 mod 8))
6662, 65nsyl 140 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ¬ (𝐴 mod 8) = 𝑀)
6766pm2.21d 121 . . . . . 6 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) = 𝑀 → (𝐴 mod 8) ∈ 𝑆))
6850, 67jaod 859 . . . . 5 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → (((𝐴 mod 8) ∈ (0...(𝑀 − 1)) ∨ (𝐴 mod 8) = 𝑀) → (𝐴 mod 8) ∈ 𝑆))
6945, 68syl5 34 . . . 4 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...(𝑁 − 1)) → (𝐴 mod 8) ∈ 𝑆))
70 lgsdir2lem2.4 . . . . . 6 𝑁𝑆
71 eleq1 2816 . . . . . 6 ((𝐴 mod 8) = 𝑁 → ((𝐴 mod 8) ∈ 𝑆𝑁𝑆))
7270, 71mpbiri 258 . . . . 5 ((𝐴 mod 8) = 𝑁 → (𝐴 mod 8) ∈ 𝑆)
7372a1i 11 . . . 4 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) = 𝑁 → (𝐴 mod 8) ∈ 𝑆))
7469, 73jaod 859 . . 3 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → (((𝐴 mod 8) ∈ (0...(𝑁 − 1)) ∨ (𝐴 mod 8) = 𝑁) → (𝐴 mod 8) ∈ 𝑆))
7536, 74syl5 34 . 2 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...𝑁) → (𝐴 mod 8) ∈ 𝑆))
7610, 32, 753pm3.2i 1340 1 (𝑁 ∈ ℤ ∧ 2 ∥ (𝑁 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...𝑁) → (𝐴 mod 8) ∈ 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5095  cfv 6486  (class class class)co 7353  cc 11026  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033  cmin 11365  cn 12146  2c2 12201  4c4 12203  8c8 12207  cz 12489  cuz 12753  ...cfz 13428   mod cmo 13791  cdvds 16181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-fz 13429  df-fl 13714  df-mod 13792  df-dvds 16182
This theorem is referenced by:  lgsdir2lem3  27254
  Copyright terms: Public domain W3C validator