MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsdir2lem2 Structured version   Visualization version   GIF version

Theorem lgsdir2lem2 27233
Description: Lemma for lgsdir2 27237. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypotheses
Ref Expression
lgsdir2lem2.1 (๐พ โˆˆ โ„ค โˆง 2 โˆฅ (๐พ + 1) โˆง ((๐ด โˆˆ โ„ค โˆง ยฌ 2 โˆฅ ๐ด) โ†’ ((๐ด mod 8) โˆˆ (0...๐พ) โ†’ (๐ด mod 8) โˆˆ ๐‘†)))
lgsdir2lem2.2 ๐‘€ = (๐พ + 1)
lgsdir2lem2.3 ๐‘ = (๐‘€ + 1)
lgsdir2lem2.4 ๐‘ โˆˆ ๐‘†
Assertion
Ref Expression
lgsdir2lem2 (๐‘ โˆˆ โ„ค โˆง 2 โˆฅ (๐‘ + 1) โˆง ((๐ด โˆˆ โ„ค โˆง ยฌ 2 โˆฅ ๐ด) โ†’ ((๐ด mod 8) โˆˆ (0...๐‘) โ†’ (๐ด mod 8) โˆˆ ๐‘†)))

Proof of Theorem lgsdir2lem2
StepHypRef Expression
1 lgsdir2lem2.3 . . 3 ๐‘ = (๐‘€ + 1)
2 lgsdir2lem2.2 . . . . 5 ๐‘€ = (๐พ + 1)
3 lgsdir2lem2.1 . . . . . . 7 (๐พ โˆˆ โ„ค โˆง 2 โˆฅ (๐พ + 1) โˆง ((๐ด โˆˆ โ„ค โˆง ยฌ 2 โˆฅ ๐ด) โ†’ ((๐ด mod 8) โˆˆ (0...๐พ) โ†’ (๐ด mod 8) โˆˆ ๐‘†)))
43simp1i 1137 . . . . . 6 ๐พ โˆˆ โ„ค
5 peano2z 12619 . . . . . 6 (๐พ โˆˆ โ„ค โ†’ (๐พ + 1) โˆˆ โ„ค)
64, 5ax-mp 5 . . . . 5 (๐พ + 1) โˆˆ โ„ค
72, 6eqeltri 2824 . . . 4 ๐‘€ โˆˆ โ„ค
8 peano2z 12619 . . . 4 (๐‘€ โˆˆ โ„ค โ†’ (๐‘€ + 1) โˆˆ โ„ค)
97, 8ax-mp 5 . . 3 (๐‘€ + 1) โˆˆ โ„ค
101, 9eqeltri 2824 . 2 ๐‘ โˆˆ โ„ค
113simp2i 1138 . . . 4 2 โˆฅ (๐พ + 1)
12 2z 12610 . . . . 5 2 โˆˆ โ„ค
13 dvdsadd 16264 . . . . 5 ((2 โˆˆ โ„ค โˆง (๐พ + 1) โˆˆ โ„ค) โ†’ (2 โˆฅ (๐พ + 1) โ†” 2 โˆฅ (2 + (๐พ + 1))))
1412, 6, 13mp2an 691 . . . 4 (2 โˆฅ (๐พ + 1) โ†” 2 โˆฅ (2 + (๐พ + 1)))
1511, 14mpbi 229 . . 3 2 โˆฅ (2 + (๐พ + 1))
16 zcn 12579 . . . . . . . . . . 11 (๐พ โˆˆ โ„ค โ†’ ๐พ โˆˆ โ„‚)
174, 16ax-mp 5 . . . . . . . . . 10 ๐พ โˆˆ โ„‚
18 ax-1cn 11182 . . . . . . . . . 10 1 โˆˆ โ„‚
1917, 18addcomi 11421 . . . . . . . . 9 (๐พ + 1) = (1 + ๐พ)
202, 19eqtri 2755 . . . . . . . 8 ๐‘€ = (1 + ๐พ)
2120oveq1i 7424 . . . . . . 7 (๐‘€ + 1) = ((1 + ๐พ) + 1)
221, 21eqtri 2755 . . . . . 6 ๐‘ = ((1 + ๐พ) + 1)
23 df-2 12291 . . . . . . . 8 2 = (1 + 1)
2423oveq1i 7424 . . . . . . 7 (2 + ๐พ) = ((1 + 1) + ๐พ)
2518, 17, 18add32i 11453 . . . . . . 7 ((1 + ๐พ) + 1) = ((1 + 1) + ๐พ)
2624, 25eqtr4i 2758 . . . . . 6 (2 + ๐พ) = ((1 + ๐พ) + 1)
2722, 26eqtr4i 2758 . . . . 5 ๐‘ = (2 + ๐พ)
2827oveq1i 7424 . . . 4 (๐‘ + 1) = ((2 + ๐พ) + 1)
29 2cn 12303 . . . . 5 2 โˆˆ โ„‚
3029, 17, 18addassi 11240 . . . 4 ((2 + ๐พ) + 1) = (2 + (๐พ + 1))
3128, 30eqtri 2755 . . 3 (๐‘ + 1) = (2 + (๐พ + 1))
3215, 31breqtrri 5169 . 2 2 โˆฅ (๐‘ + 1)
33 elfzuz2 13524 . . . . 5 ((๐ด mod 8) โˆˆ (0...๐‘) โ†’ ๐‘ โˆˆ (โ„คโ‰ฅโ€˜0))
34 fzm1 13599 . . . . 5 (๐‘ โˆˆ (โ„คโ‰ฅโ€˜0) โ†’ ((๐ด mod 8) โˆˆ (0...๐‘) โ†” ((๐ด mod 8) โˆˆ (0...(๐‘ โˆ’ 1)) โˆจ (๐ด mod 8) = ๐‘)))
3533, 34syl 17 . . . 4 ((๐ด mod 8) โˆˆ (0...๐‘) โ†’ ((๐ด mod 8) โˆˆ (0...๐‘) โ†” ((๐ด mod 8) โˆˆ (0...(๐‘ โˆ’ 1)) โˆจ (๐ด mod 8) = ๐‘)))
3635ibi 267 . . 3 ((๐ด mod 8) โˆˆ (0...๐‘) โ†’ ((๐ด mod 8) โˆˆ (0...(๐‘ โˆ’ 1)) โˆจ (๐ด mod 8) = ๐‘))
37 elfzuz2 13524 . . . . . . . 8 ((๐ด mod 8) โˆˆ (0...๐‘€) โ†’ ๐‘€ โˆˆ (โ„คโ‰ฅโ€˜0))
38 fzm1 13599 . . . . . . . 8 (๐‘€ โˆˆ (โ„คโ‰ฅโ€˜0) โ†’ ((๐ด mod 8) โˆˆ (0...๐‘€) โ†” ((๐ด mod 8) โˆˆ (0...(๐‘€ โˆ’ 1)) โˆจ (๐ด mod 8) = ๐‘€)))
3937, 38syl 17 . . . . . . 7 ((๐ด mod 8) โˆˆ (0...๐‘€) โ†’ ((๐ด mod 8) โˆˆ (0...๐‘€) โ†” ((๐ด mod 8) โˆˆ (0...(๐‘€ โˆ’ 1)) โˆจ (๐ด mod 8) = ๐‘€)))
4039ibi 267 . . . . . 6 ((๐ด mod 8) โˆˆ (0...๐‘€) โ†’ ((๐ด mod 8) โˆˆ (0...(๐‘€ โˆ’ 1)) โˆจ (๐ด mod 8) = ๐‘€))
41 zcn 12579 . . . . . . . . 9 (๐‘€ โˆˆ โ„ค โ†’ ๐‘€ โˆˆ โ„‚)
427, 41ax-mp 5 . . . . . . . 8 ๐‘€ โˆˆ โ„‚
4342, 18, 1mvrraddi 11493 . . . . . . 7 (๐‘ โˆ’ 1) = ๐‘€
4443oveq2i 7425 . . . . . 6 (0...(๐‘ โˆ’ 1)) = (0...๐‘€)
4540, 44eleq2s 2846 . . . . 5 ((๐ด mod 8) โˆˆ (0...(๐‘ โˆ’ 1)) โ†’ ((๐ด mod 8) โˆˆ (0...(๐‘€ โˆ’ 1)) โˆจ (๐ด mod 8) = ๐‘€))
4617, 18, 2mvrraddi 11493 . . . . . . . . 9 (๐‘€ โˆ’ 1) = ๐พ
4746oveq2i 7425 . . . . . . . 8 (0...(๐‘€ โˆ’ 1)) = (0...๐พ)
4847eleq2i 2820 . . . . . . 7 ((๐ด mod 8) โˆˆ (0...(๐‘€ โˆ’ 1)) โ†” (๐ด mod 8) โˆˆ (0...๐พ))
493simp3i 1139 . . . . . . 7 ((๐ด โˆˆ โ„ค โˆง ยฌ 2 โˆฅ ๐ด) โ†’ ((๐ด mod 8) โˆˆ (0...๐พ) โ†’ (๐ด mod 8) โˆˆ ๐‘†))
5048, 49biimtrid 241 . . . . . 6 ((๐ด โˆˆ โ„ค โˆง ยฌ 2 โˆฅ ๐ด) โ†’ ((๐ด mod 8) โˆˆ (0...(๐‘€ โˆ’ 1)) โ†’ (๐ด mod 8) โˆˆ ๐‘†))
51 2nn 12301 . . . . . . . . . . 11 2 โˆˆ โ„•
52 8nn 12323 . . . . . . . . . . 11 8 โˆˆ โ„•
53 4z 12612 . . . . . . . . . . . . . 14 4 โˆˆ โ„ค
54 dvdsmul2 16241 . . . . . . . . . . . . . 14 ((4 โˆˆ โ„ค โˆง 2 โˆˆ โ„ค) โ†’ 2 โˆฅ (4 ยท 2))
5553, 12, 54mp2an 691 . . . . . . . . . . . . 13 2 โˆฅ (4 ยท 2)
56 4t2e8 12396 . . . . . . . . . . . . 13 (4 ยท 2) = 8
5755, 56breqtri 5167 . . . . . . . . . . . 12 2 โˆฅ 8
58 dvdsmod 16291 . . . . . . . . . . . 12 (((2 โˆˆ โ„• โˆง 8 โˆˆ โ„• โˆง ๐ด โˆˆ โ„ค) โˆง 2 โˆฅ 8) โ†’ (2 โˆฅ (๐ด mod 8) โ†” 2 โˆฅ ๐ด))
5957, 58mpan2 690 . . . . . . . . . . 11 ((2 โˆˆ โ„• โˆง 8 โˆˆ โ„• โˆง ๐ด โˆˆ โ„ค) โ†’ (2 โˆฅ (๐ด mod 8) โ†” 2 โˆฅ ๐ด))
6051, 52, 59mp3an12 1448 . . . . . . . . . 10 (๐ด โˆˆ โ„ค โ†’ (2 โˆฅ (๐ด mod 8) โ†” 2 โˆฅ ๐ด))
6160notbid 318 . . . . . . . . 9 (๐ด โˆˆ โ„ค โ†’ (ยฌ 2 โˆฅ (๐ด mod 8) โ†” ยฌ 2 โˆฅ ๐ด))
6261biimpar 477 . . . . . . . 8 ((๐ด โˆˆ โ„ค โˆง ยฌ 2 โˆฅ ๐ด) โ†’ ยฌ 2 โˆฅ (๐ด mod 8))
6311, 2breqtrri 5169 . . . . . . . . 9 2 โˆฅ ๐‘€
64 id 22 . . . . . . . . 9 ((๐ด mod 8) = ๐‘€ โ†’ (๐ด mod 8) = ๐‘€)
6563, 64breqtrrid 5180 . . . . . . . 8 ((๐ด mod 8) = ๐‘€ โ†’ 2 โˆฅ (๐ด mod 8))
6662, 65nsyl 140 . . . . . . 7 ((๐ด โˆˆ โ„ค โˆง ยฌ 2 โˆฅ ๐ด) โ†’ ยฌ (๐ด mod 8) = ๐‘€)
6766pm2.21d 121 . . . . . 6 ((๐ด โˆˆ โ„ค โˆง ยฌ 2 โˆฅ ๐ด) โ†’ ((๐ด mod 8) = ๐‘€ โ†’ (๐ด mod 8) โˆˆ ๐‘†))
6850, 67jaod 858 . . . . 5 ((๐ด โˆˆ โ„ค โˆง ยฌ 2 โˆฅ ๐ด) โ†’ (((๐ด mod 8) โˆˆ (0...(๐‘€ โˆ’ 1)) โˆจ (๐ด mod 8) = ๐‘€) โ†’ (๐ด mod 8) โˆˆ ๐‘†))
6945, 68syl5 34 . . . 4 ((๐ด โˆˆ โ„ค โˆง ยฌ 2 โˆฅ ๐ด) โ†’ ((๐ด mod 8) โˆˆ (0...(๐‘ โˆ’ 1)) โ†’ (๐ด mod 8) โˆˆ ๐‘†))
70 lgsdir2lem2.4 . . . . . 6 ๐‘ โˆˆ ๐‘†
71 eleq1 2816 . . . . . 6 ((๐ด mod 8) = ๐‘ โ†’ ((๐ด mod 8) โˆˆ ๐‘† โ†” ๐‘ โˆˆ ๐‘†))
7270, 71mpbiri 258 . . . . 5 ((๐ด mod 8) = ๐‘ โ†’ (๐ด mod 8) โˆˆ ๐‘†)
7372a1i 11 . . . 4 ((๐ด โˆˆ โ„ค โˆง ยฌ 2 โˆฅ ๐ด) โ†’ ((๐ด mod 8) = ๐‘ โ†’ (๐ด mod 8) โˆˆ ๐‘†))
7469, 73jaod 858 . . 3 ((๐ด โˆˆ โ„ค โˆง ยฌ 2 โˆฅ ๐ด) โ†’ (((๐ด mod 8) โˆˆ (0...(๐‘ โˆ’ 1)) โˆจ (๐ด mod 8) = ๐‘) โ†’ (๐ด mod 8) โˆˆ ๐‘†))
7536, 74syl5 34 . 2 ((๐ด โˆˆ โ„ค โˆง ยฌ 2 โˆฅ ๐ด) โ†’ ((๐ด mod 8) โˆˆ (0...๐‘) โ†’ (๐ด mod 8) โˆˆ ๐‘†))
7610, 32, 753pm3.2i 1337 1 (๐‘ โˆˆ โ„ค โˆง 2 โˆฅ (๐‘ + 1) โˆง ((๐ด โˆˆ โ„ค โˆง ยฌ 2 โˆฅ ๐ด) โ†’ ((๐ด mod 8) โˆˆ (0...๐‘) โ†’ (๐ด mod 8) โˆˆ ๐‘†)))
Colors of variables: wff setvar class
Syntax hints:  ยฌ wn 3   โ†’ wi 4   โ†” wb 205   โˆง wa 395   โˆจ wo 846   โˆง w3a 1085   = wceq 1534   โˆˆ wcel 2099   class class class wbr 5142  โ€˜cfv 6542  (class class class)co 7414  โ„‚cc 11122  0cc0 11124  1c1 11125   + caddc 11127   ยท cmul 11129   โˆ’ cmin 11460  โ„•cn 12228  2c2 12283  4c4 12285  8c8 12289  โ„คcz 12574  โ„คโ‰ฅcuz 12838  ...cfz 13502   mod cmo 13852   โˆฅ cdvds 16216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732  ax-cnex 11180  ax-resscn 11181  ax-1cn 11182  ax-icn 11183  ax-addcl 11184  ax-addrcl 11185  ax-mulcl 11186  ax-mulrcl 11187  ax-mulcom 11188  ax-addass 11189  ax-mulass 11190  ax-distr 11191  ax-i2m1 11192  ax-1ne0 11193  ax-1rid 11194  ax-rnegex 11195  ax-rrecex 11196  ax-cnre 11197  ax-pre-lttri 11198  ax-pre-lttrn 11199  ax-pre-ltadd 11200  ax-pre-mulgt0 11201  ax-pre-sup 11202
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7863  df-1st 7985  df-2nd 7986  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-er 8716  df-en 8954  df-dom 8955  df-sdom 8956  df-sup 9451  df-inf 9452  df-pnf 11266  df-mnf 11267  df-xr 11268  df-ltxr 11269  df-le 11270  df-sub 11462  df-neg 11463  df-div 11888  df-nn 12229  df-2 12291  df-3 12292  df-4 12293  df-5 12294  df-6 12295  df-7 12296  df-8 12297  df-n0 12489  df-z 12575  df-uz 12839  df-rp 12993  df-fz 13503  df-fl 13775  df-mod 13853  df-dvds 16217
This theorem is referenced by:  lgsdir2lem3  27234
  Copyright terms: Public domain W3C validator