MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  harwdom Structured version   Visualization version   GIF version

Theorem harwdom 9477
Description: The value of the Hartogs function at a set 𝑋 is weakly dominated by 𝒫 (𝑋 × 𝑋). This follows from a more precise analysis of the bound used in hartogs 9430 to prove that (har‘𝑋) is an ordinal. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
harwdom (𝑋𝑉 → (har‘𝑋) ≼* 𝒫 (𝑋 × 𝑋))

Proof of Theorem harwdom
Dummy variables 𝑦 𝑟 𝑓 𝑠 𝑡 𝑤 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . . . 6 {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} = {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))}
2 eqid 2731 . . . . . 6 {⟨𝑠, 𝑡⟩ ∣ ∃𝑤𝑦𝑧𝑦 ((𝑠 = (𝑓𝑤) ∧ 𝑡 = (𝑓𝑧)) ∧ 𝑤 E 𝑧)} = {⟨𝑠, 𝑡⟩ ∣ ∃𝑤𝑦𝑧𝑦 ((𝑠 = (𝑓𝑤) ∧ 𝑡 = (𝑓𝑧)) ∧ 𝑤 E 𝑧)}
31, 2hartogslem1 9428 . . . . 5 (dom {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} ⊆ 𝒫 (𝑋 × 𝑋) ∧ Fun {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} ∧ (𝑋𝑉 → ran {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} = {𝑥 ∈ On ∣ 𝑥𝑋}))
43simp2i 1140 . . . 4 Fun {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))}
53simp1i 1139 . . . . 5 dom {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} ⊆ 𝒫 (𝑋 × 𝑋)
6 sqxpexg 7688 . . . . . 6 (𝑋𝑉 → (𝑋 × 𝑋) ∈ V)
76pwexd 5315 . . . . 5 (𝑋𝑉 → 𝒫 (𝑋 × 𝑋) ∈ V)
8 ssexg 5259 . . . . 5 ((dom {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} ⊆ 𝒫 (𝑋 × 𝑋) ∧ 𝒫 (𝑋 × 𝑋) ∈ V) → dom {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} ∈ V)
95, 7, 8sylancr 587 . . . 4 (𝑋𝑉 → dom {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} ∈ V)
10 funex 7153 . . . 4 ((Fun {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} ∧ dom {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} ∈ V) → {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} ∈ V)
114, 9, 10sylancr 587 . . 3 (𝑋𝑉 → {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} ∈ V)
12 funfn 6511 . . . . . 6 (Fun {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} ↔ {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} Fn dom {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))})
134, 12mpbi 230 . . . . 5 {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} Fn dom {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))}
1413a1i 11 . . . 4 (𝑋𝑉 → {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} Fn dom {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))})
153simp3i 1141 . . . . 5 (𝑋𝑉 → ran {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} = {𝑥 ∈ On ∣ 𝑥𝑋})
16 harval 9446 . . . . 5 (𝑋𝑉 → (har‘𝑋) = {𝑥 ∈ On ∣ 𝑥𝑋})
1715, 16eqtr4d 2769 . . . 4 (𝑋𝑉 → ran {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} = (har‘𝑋))
18 df-fo 6487 . . . 4 ({⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))}:dom {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))}–onto→(har‘𝑋) ↔ ({⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} Fn dom {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} ∧ ran {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} = (har‘𝑋)))
1914, 17, 18sylanbrc 583 . . 3 (𝑋𝑉 → {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))}:dom {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))}–onto→(har‘𝑋))
20 fowdom 9457 . . 3 (({⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} ∈ V ∧ {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))}:dom {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))}–onto→(har‘𝑋)) → (har‘𝑋) ≼* dom {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))})
2111, 19, 20syl2anc 584 . 2 (𝑋𝑉 → (har‘𝑋) ≼* dom {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))})
22 ssdomg 8922 . . . 4 (𝒫 (𝑋 × 𝑋) ∈ V → (dom {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} ⊆ 𝒫 (𝑋 × 𝑋) → dom {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} ≼ 𝒫 (𝑋 × 𝑋)))
237, 5, 22mpisyl 21 . . 3 (𝑋𝑉 → dom {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} ≼ 𝒫 (𝑋 × 𝑋))
24 domwdom 9460 . . 3 (dom {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} ≼ 𝒫 (𝑋 × 𝑋) → dom {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} ≼* 𝒫 (𝑋 × 𝑋))
2523, 24syl 17 . 2 (𝑋𝑉 → dom {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} ≼* 𝒫 (𝑋 × 𝑋))
26 wdomtr 9461 . 2 (((har‘𝑋) ≼* dom {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} ∧ dom {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} ≼* 𝒫 (𝑋 × 𝑋)) → (har‘𝑋) ≼* 𝒫 (𝑋 × 𝑋))
2721, 25, 26syl2anc 584 1 (𝑋𝑉 → (har‘𝑋) ≼* 𝒫 (𝑋 × 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wrex 3056  {crab 3395  Vcvv 3436  cdif 3894  wss 3897  𝒫 cpw 4547   class class class wbr 5089  {copab 5151   I cid 5508   E cep 5513   We wwe 5566   × cxp 5612  dom cdm 5614  ran crn 5615  cres 5616  Oncon0 6306  Fun wfun 6475   Fn wfn 6476  ontowfo 6479  cfv 6481  cdom 8867  OrdIsocoi 9395  harchar 9442  * cwdom 9450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-en 8870  df-dom 8871  df-sdom 8872  df-oi 9396  df-har 9443  df-wdom 9451
This theorem is referenced by:  gchhar  10570
  Copyright terms: Public domain W3C validator