MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  harwdom Structured version   Visualization version   GIF version

Theorem harwdom 9039
Description: The value of the Hartogs function at a set 𝑋 is weakly dominated by 𝒫 (𝑋 × 𝑋). This follows from a more precise analysis of the bound used in hartogs 8992 to prove that (har‘𝑋) is an ordinal. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
harwdom (𝑋𝑉 → (har‘𝑋) ≼* 𝒫 (𝑋 × 𝑋))

Proof of Theorem harwdom
Dummy variables 𝑦 𝑟 𝑓 𝑠 𝑡 𝑤 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2798 . . . . . 6 {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} = {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))}
2 eqid 2798 . . . . . 6 {⟨𝑠, 𝑡⟩ ∣ ∃𝑤𝑦𝑧𝑦 ((𝑠 = (𝑓𝑤) ∧ 𝑡 = (𝑓𝑧)) ∧ 𝑤 E 𝑧)} = {⟨𝑠, 𝑡⟩ ∣ ∃𝑤𝑦𝑧𝑦 ((𝑠 = (𝑓𝑤) ∧ 𝑡 = (𝑓𝑧)) ∧ 𝑤 E 𝑧)}
31, 2hartogslem1 8990 . . . . 5 (dom {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} ⊆ 𝒫 (𝑋 × 𝑋) ∧ Fun {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} ∧ (𝑋𝑉 → ran {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} = {𝑥 ∈ On ∣ 𝑥𝑋}))
43simp2i 1137 . . . 4 Fun {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))}
53simp1i 1136 . . . . 5 dom {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} ⊆ 𝒫 (𝑋 × 𝑋)
6 sqxpexg 7457 . . . . . 6 (𝑋𝑉 → (𝑋 × 𝑋) ∈ V)
76pwexd 5245 . . . . 5 (𝑋𝑉 → 𝒫 (𝑋 × 𝑋) ∈ V)
8 ssexg 5191 . . . . 5 ((dom {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} ⊆ 𝒫 (𝑋 × 𝑋) ∧ 𝒫 (𝑋 × 𝑋) ∈ V) → dom {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} ∈ V)
95, 7, 8sylancr 590 . . . 4 (𝑋𝑉 → dom {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} ∈ V)
10 funex 6959 . . . 4 ((Fun {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} ∧ dom {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} ∈ V) → {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} ∈ V)
114, 9, 10sylancr 590 . . 3 (𝑋𝑉 → {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} ∈ V)
12 funfn 6354 . . . . . 6 (Fun {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} ↔ {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} Fn dom {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))})
134, 12mpbi 233 . . . . 5 {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} Fn dom {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))}
1413a1i 11 . . . 4 (𝑋𝑉 → {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} Fn dom {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))})
153simp3i 1138 . . . . 5 (𝑋𝑉 → ran {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} = {𝑥 ∈ On ∣ 𝑥𝑋})
16 harval 9008 . . . . 5 (𝑋𝑉 → (har‘𝑋) = {𝑥 ∈ On ∣ 𝑥𝑋})
1715, 16eqtr4d 2836 . . . 4 (𝑋𝑉 → ran {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} = (har‘𝑋))
18 df-fo 6330 . . . 4 ({⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))}:dom {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))}–onto→(har‘𝑋) ↔ ({⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} Fn dom {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} ∧ ran {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} = (har‘𝑋)))
1914, 17, 18sylanbrc 586 . . 3 (𝑋𝑉 → {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))}:dom {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))}–onto→(har‘𝑋))
20 fowdom 9019 . . 3 (({⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} ∈ V ∧ {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))}:dom {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))}–onto→(har‘𝑋)) → (har‘𝑋) ≼* dom {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))})
2111, 19, 20syl2anc 587 . 2 (𝑋𝑉 → (har‘𝑋) ≼* dom {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))})
22 ssdomg 8538 . . . 4 (𝒫 (𝑋 × 𝑋) ∈ V → (dom {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} ⊆ 𝒫 (𝑋 × 𝑋) → dom {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} ≼ 𝒫 (𝑋 × 𝑋)))
237, 5, 22mpisyl 21 . . 3 (𝑋𝑉 → dom {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} ≼ 𝒫 (𝑋 × 𝑋))
24 domwdom 9022 . . 3 (dom {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} ≼ 𝒫 (𝑋 × 𝑋) → dom {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} ≼* 𝒫 (𝑋 × 𝑋))
2523, 24syl 17 . 2 (𝑋𝑉 → dom {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} ≼* 𝒫 (𝑋 × 𝑋))
26 wdomtr 9023 . 2 (((har‘𝑋) ≼* dom {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} ∧ dom {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝑋 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} ≼* 𝒫 (𝑋 × 𝑋)) → (har‘𝑋) ≼* 𝒫 (𝑋 × 𝑋))
2721, 25, 26syl2anc 587 1 (𝑋𝑉 → (har‘𝑋) ≼* 𝒫 (𝑋 × 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wrex 3107  {crab 3110  Vcvv 3441  cdif 3878  wss 3881  𝒫 cpw 4497   class class class wbr 5030  {copab 5092   I cid 5424   E cep 5429   We wwe 5477   × cxp 5517  dom cdm 5519  ran crn 5520  cres 5521  Oncon0 6159  Fun wfun 6318   Fn wfn 6319  ontowfo 6322  cfv 6324  cdom 8490  OrdIsocoi 8957  harchar 9004  * cwdom 9012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-wrecs 7930  df-recs 7991  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-oi 8958  df-har 9005  df-wdom 9013
This theorem is referenced by:  gchhar  10090
  Copyright terms: Public domain W3C validator