MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  siilem2 Structured version   Visualization version   GIF version

Theorem siilem2 28406
Description: Lemma for sii 28408. (Contributed by NM, 24-Nov-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
siii.1 𝑋 = (BaseSet‘𝑈)
siii.6 𝑁 = (normCV𝑈)
siii.7 𝑃 = (·𝑖OLD𝑈)
siii.9 𝑈 ∈ CPreHilOLD
siii.a 𝐴𝑋
siii.b 𝐵𝑋
siii2.3 𝑀 = ( −𝑣𝑈)
siii2.4 𝑆 = ( ·𝑠OLD𝑈)
Assertion
Ref Expression
siilem2 ((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))) → ((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) → (√‘((𝐴𝑃𝐵) · (𝐶 · ((𝑁𝐵)↑2)))) ≤ ((𝑁𝐴) · (𝑁𝐵))))

Proof of Theorem siilem2
StepHypRef Expression
1 oveq1 6983 . . . 4 (𝐶 = if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → (𝐶 · ((𝑁𝐵)↑2)) = (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · ((𝑁𝐵)↑2)))
21eqeq2d 2789 . . 3 (𝐶 = if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → ((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) ↔ (𝐵𝑃𝐴) = (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · ((𝑁𝐵)↑2))))
31oveq2d 6992 . . . . 5 (𝐶 = if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → ((𝐴𝑃𝐵) · (𝐶 · ((𝑁𝐵)↑2))) = ((𝐴𝑃𝐵) · (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · ((𝑁𝐵)↑2))))
43fveq2d 6503 . . . 4 (𝐶 = if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → (√‘((𝐴𝑃𝐵) · (𝐶 · ((𝑁𝐵)↑2)))) = (√‘((𝐴𝑃𝐵) · (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · ((𝑁𝐵)↑2)))))
54breq1d 4939 . . 3 (𝐶 = if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → ((√‘((𝐴𝑃𝐵) · (𝐶 · ((𝑁𝐵)↑2)))) ≤ ((𝑁𝐴) · (𝑁𝐵)) ↔ (√‘((𝐴𝑃𝐵) · (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · ((𝑁𝐵)↑2)))) ≤ ((𝑁𝐴) · (𝑁𝐵))))
62, 5imbi12d 337 . 2 (𝐶 = if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → (((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) → (√‘((𝐴𝑃𝐵) · (𝐶 · ((𝑁𝐵)↑2)))) ≤ ((𝑁𝐴) · (𝑁𝐵))) ↔ ((𝐵𝑃𝐴) = (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · ((𝑁𝐵)↑2)) → (√‘((𝐴𝑃𝐵) · (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · ((𝑁𝐵)↑2)))) ≤ ((𝑁𝐴) · (𝑁𝐵)))))
7 siii.1 . . 3 𝑋 = (BaseSet‘𝑈)
8 siii.6 . . 3 𝑁 = (normCV𝑈)
9 siii.7 . . 3 𝑃 = (·𝑖OLD𝑈)
10 siii.9 . . 3 𝑈 ∈ CPreHilOLD
11 siii.a . . 3 𝐴𝑋
12 siii.b . . 3 𝐵𝑋
13 siii2.3 . . 3 𝑀 = ( −𝑣𝑈)
14 siii2.4 . . 3 𝑆 = ( ·𝑠OLD𝑈)
15 eleq1 2854 . . . . . 6 (𝐶 = if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → (𝐶 ∈ ℂ ↔ if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) ∈ ℂ))
16 oveq1 6983 . . . . . . 7 (𝐶 = if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → (𝐶 · (𝐴𝑃𝐵)) = (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · (𝐴𝑃𝐵)))
1716eleq1d 2851 . . . . . 6 (𝐶 = if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → ((𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ↔ (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · (𝐴𝑃𝐵)) ∈ ℝ))
1816breq2d 4941 . . . . . 6 (𝐶 = if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → (0 ≤ (𝐶 · (𝐴𝑃𝐵)) ↔ 0 ≤ (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · (𝐴𝑃𝐵))))
1915, 17, 183anbi123d 1415 . . . . 5 (𝐶 = if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → ((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))) ↔ (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) ∈ ℂ ∧ (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · (𝐴𝑃𝐵)))))
20 eleq1 2854 . . . . . 6 (0 = if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → (0 ∈ ℂ ↔ if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) ∈ ℂ))
21 oveq1 6983 . . . . . . 7 (0 = if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → (0 · (𝐴𝑃𝐵)) = (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · (𝐴𝑃𝐵)))
2221eleq1d 2851 . . . . . 6 (0 = if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → ((0 · (𝐴𝑃𝐵)) ∈ ℝ ↔ (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · (𝐴𝑃𝐵)) ∈ ℝ))
2321breq2d 4941 . . . . . 6 (0 = if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → (0 ≤ (0 · (𝐴𝑃𝐵)) ↔ 0 ≤ (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · (𝐴𝑃𝐵))))
2420, 22, 233anbi123d 1415 . . . . 5 (0 = if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → ((0 ∈ ℂ ∧ (0 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (0 · (𝐴𝑃𝐵))) ↔ (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) ∈ ℂ ∧ (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · (𝐴𝑃𝐵)))))
25 0cn 10431 . . . . . 6 0 ∈ ℂ
2610phnvi 28370 . . . . . . . . 9 𝑈 ∈ NrmCVec
277, 9dipcl 28266 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) ∈ ℂ)
2826, 11, 12, 27mp3an 1440 . . . . . . . 8 (𝐴𝑃𝐵) ∈ ℂ
2928mul02i 10629 . . . . . . 7 (0 · (𝐴𝑃𝐵)) = 0
30 0re 10441 . . . . . . 7 0 ∈ ℝ
3129, 30eqeltri 2863 . . . . . 6 (0 · (𝐴𝑃𝐵)) ∈ ℝ
32 0le0 11548 . . . . . . 7 0 ≤ 0
3332, 29breqtrri 4956 . . . . . 6 0 ≤ (0 · (𝐴𝑃𝐵))
3425, 31, 333pm3.2i 1319 . . . . 5 (0 ∈ ℂ ∧ (0 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (0 · (𝐴𝑃𝐵)))
3519, 24, 34elimhyp 4413 . . . 4 (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) ∈ ℂ ∧ (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · (𝐴𝑃𝐵)))
3635simp1i 1119 . . 3 if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) ∈ ℂ
3735simp2i 1120 . . 3 (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · (𝐴𝑃𝐵)) ∈ ℝ
3835simp3i 1121 . . 3 0 ≤ (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · (𝐴𝑃𝐵))
397, 8, 9, 10, 11, 12, 13, 14, 36, 37, 38siilem1 28405 . 2 ((𝐵𝑃𝐴) = (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · ((𝑁𝐵)↑2)) → (√‘((𝐴𝑃𝐵) · (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · ((𝑁𝐵)↑2)))) ≤ ((𝑁𝐴) · (𝑁𝐵)))
406, 39dedth 4406 1 ((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))) → ((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) → (√‘((𝐴𝑃𝐵) · (𝐶 · ((𝑁𝐵)↑2)))) ≤ ((𝑁𝐴) · (𝑁𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1068   = wceq 1507  wcel 2050  ifcif 4350   class class class wbr 4929  cfv 6188  (class class class)co 6976  cc 10333  cr 10334  0cc0 10335   · cmul 10340  cle 10475  2c2 11495  cexp 13244  csqrt 14453  NrmCVeccnv 28138  BaseSetcba 28140   ·𝑠OLD cns 28141  𝑣 cnsb 28143  normCVcnmcv 28144  ·𝑖OLDcdip 28254  CPreHilOLDccphlo 28366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2751  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-inf2 8898  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412  ax-pre-sup 10413  ax-addf 10414  ax-mulf 10415
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3418  df-sbc 3683  df-csb 3788  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-pss 3846  df-nul 4180  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-int 4750  df-iun 4794  df-iin 4795  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-se 5367  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-isom 6197  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-of 7227  df-om 7397  df-1st 7501  df-2nd 7502  df-supp 7634  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-1o 7905  df-2o 7906  df-oadd 7909  df-er 8089  df-map 8208  df-ixp 8260  df-en 8307  df-dom 8308  df-sdom 8309  df-fin 8310  df-fsupp 8629  df-fi 8670  df-sup 8701  df-inf 8702  df-oi 8769  df-card 9162  df-cda 9388  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-div 11099  df-nn 11440  df-2 11503  df-3 11504  df-4 11505  df-5 11506  df-6 11507  df-7 11508  df-8 11509  df-9 11510  df-n0 11708  df-z 11794  df-dec 11912  df-uz 12059  df-q 12163  df-rp 12205  df-xneg 12324  df-xadd 12325  df-xmul 12326  df-ioo 12558  df-icc 12561  df-fz 12709  df-fzo 12850  df-seq 13185  df-exp 13245  df-hash 13506  df-cj 14319  df-re 14320  df-im 14321  df-sqrt 14455  df-abs 14456  df-clim 14706  df-sum 14904  df-struct 16341  df-ndx 16342  df-slot 16343  df-base 16345  df-sets 16346  df-ress 16347  df-plusg 16434  df-mulr 16435  df-starv 16436  df-sca 16437  df-vsca 16438  df-ip 16439  df-tset 16440  df-ple 16441  df-ds 16443  df-unif 16444  df-hom 16445  df-cco 16446  df-rest 16552  df-topn 16553  df-0g 16571  df-gsum 16572  df-topgen 16573  df-pt 16574  df-prds 16577  df-xrs 16631  df-qtop 16636  df-imas 16637  df-xps 16639  df-mre 16715  df-mrc 16716  df-acs 16718  df-mgm 17710  df-sgrp 17752  df-mnd 17763  df-submnd 17804  df-mulg 18012  df-cntz 18218  df-cmn 18668  df-psmet 20239  df-xmet 20240  df-met 20241  df-bl 20242  df-mopn 20243  df-cnfld 20248  df-top 21206  df-topon 21223  df-topsp 21245  df-bases 21258  df-cld 21331  df-ntr 21332  df-cls 21333  df-cn 21539  df-cnp 21540  df-t1 21626  df-haus 21627  df-tx 21874  df-hmeo 22067  df-xms 22633  df-ms 22634  df-tms 22635  df-grpo 28047  df-gid 28048  df-ginv 28049  df-gdiv 28050  df-ablo 28099  df-vc 28113  df-nv 28146  df-va 28149  df-ba 28150  df-sm 28151  df-0v 28152  df-vs 28153  df-nmcv 28154  df-ims 28155  df-dip 28255  df-ph 28367
This theorem is referenced by:  siii  28407
  Copyright terms: Public domain W3C validator