Proof of Theorem siilem2
Step | Hyp | Ref
| Expression |
1 | | oveq1 7282 |
. . . 4
⊢ (𝐶 = if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → (𝐶 · ((𝑁‘𝐵)↑2)) = (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · ((𝑁‘𝐵)↑2))) |
2 | 1 | eqeq2d 2749 |
. . 3
⊢ (𝐶 = if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → ((𝐵𝑃𝐴) = (𝐶 · ((𝑁‘𝐵)↑2)) ↔ (𝐵𝑃𝐴) = (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · ((𝑁‘𝐵)↑2)))) |
3 | 1 | oveq2d 7291 |
. . . . 5
⊢ (𝐶 = if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → ((𝐴𝑃𝐵) · (𝐶 · ((𝑁‘𝐵)↑2))) = ((𝐴𝑃𝐵) · (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · ((𝑁‘𝐵)↑2)))) |
4 | 3 | fveq2d 6778 |
. . . 4
⊢ (𝐶 = if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → (√‘((𝐴𝑃𝐵) · (𝐶 · ((𝑁‘𝐵)↑2)))) = (√‘((𝐴𝑃𝐵) · (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · ((𝑁‘𝐵)↑2))))) |
5 | 4 | breq1d 5084 |
. . 3
⊢ (𝐶 = if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → ((√‘((𝐴𝑃𝐵) · (𝐶 · ((𝑁‘𝐵)↑2)))) ≤ ((𝑁‘𝐴) · (𝑁‘𝐵)) ↔ (√‘((𝐴𝑃𝐵) · (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · ((𝑁‘𝐵)↑2)))) ≤ ((𝑁‘𝐴) · (𝑁‘𝐵)))) |
6 | 2, 5 | imbi12d 345 |
. 2
⊢ (𝐶 = if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → (((𝐵𝑃𝐴) = (𝐶 · ((𝑁‘𝐵)↑2)) → (√‘((𝐴𝑃𝐵) · (𝐶 · ((𝑁‘𝐵)↑2)))) ≤ ((𝑁‘𝐴) · (𝑁‘𝐵))) ↔ ((𝐵𝑃𝐴) = (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · ((𝑁‘𝐵)↑2)) → (√‘((𝐴𝑃𝐵) · (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · ((𝑁‘𝐵)↑2)))) ≤ ((𝑁‘𝐴) · (𝑁‘𝐵))))) |
7 | | siii.1 |
. . 3
⊢ 𝑋 = (BaseSet‘𝑈) |
8 | | siii.6 |
. . 3
⊢ 𝑁 =
(normCV‘𝑈) |
9 | | siii.7 |
. . 3
⊢ 𝑃 =
(·𝑖OLD‘𝑈) |
10 | | siii.9 |
. . 3
⊢ 𝑈 ∈
CPreHilOLD |
11 | | siii.a |
. . 3
⊢ 𝐴 ∈ 𝑋 |
12 | | siii.b |
. . 3
⊢ 𝐵 ∈ 𝑋 |
13 | | siii2.3 |
. . 3
⊢ 𝑀 = ( −𝑣
‘𝑈) |
14 | | siii2.4 |
. . 3
⊢ 𝑆 = (
·𝑠OLD ‘𝑈) |
15 | | eleq1 2826 |
. . . . . 6
⊢ (𝐶 = if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → (𝐶 ∈ ℂ ↔ if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) ∈ ℂ)) |
16 | | oveq1 7282 |
. . . . . . 7
⊢ (𝐶 = if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → (𝐶 · (𝐴𝑃𝐵)) = (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · (𝐴𝑃𝐵))) |
17 | 16 | eleq1d 2823 |
. . . . . 6
⊢ (𝐶 = if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → ((𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ↔ (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · (𝐴𝑃𝐵)) ∈ ℝ)) |
18 | 16 | breq2d 5086 |
. . . . . 6
⊢ (𝐶 = if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → (0 ≤ (𝐶 · (𝐴𝑃𝐵)) ↔ 0 ≤ (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · (𝐴𝑃𝐵)))) |
19 | 15, 17, 18 | 3anbi123d 1435 |
. . . . 5
⊢ (𝐶 = if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → ((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))) ↔ (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) ∈ ℂ ∧ (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · (𝐴𝑃𝐵))))) |
20 | | eleq1 2826 |
. . . . . 6
⊢ (0 =
if((𝐶 ∈ ℂ ∧
(𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → (0 ∈ ℂ ↔
if((𝐶 ∈ ℂ ∧
(𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) ∈ ℂ)) |
21 | | oveq1 7282 |
. . . . . . 7
⊢ (0 =
if((𝐶 ∈ ℂ ∧
(𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → (0 · (𝐴𝑃𝐵)) = (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · (𝐴𝑃𝐵))) |
22 | 21 | eleq1d 2823 |
. . . . . 6
⊢ (0 =
if((𝐶 ∈ ℂ ∧
(𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → ((0 · (𝐴𝑃𝐵)) ∈ ℝ ↔ (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · (𝐴𝑃𝐵)) ∈ ℝ)) |
23 | 21 | breq2d 5086 |
. . . . . 6
⊢ (0 =
if((𝐶 ∈ ℂ ∧
(𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → (0 ≤ (0 · (𝐴𝑃𝐵)) ↔ 0 ≤ (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · (𝐴𝑃𝐵)))) |
24 | 20, 22, 23 | 3anbi123d 1435 |
. . . . 5
⊢ (0 =
if((𝐶 ∈ ℂ ∧
(𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → ((0 ∈ ℂ ∧ (0
· (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (0 ·
(𝐴𝑃𝐵))) ↔ (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) ∈ ℂ ∧ (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · (𝐴𝑃𝐵))))) |
25 | | 0cn 10967 |
. . . . . 6
⊢ 0 ∈
ℂ |
26 | 10 | phnvi 29178 |
. . . . . . . . 9
⊢ 𝑈 ∈ NrmCVec |
27 | 7, 9 | dipcl 29074 |
. . . . . . . . 9
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑃𝐵) ∈ ℂ) |
28 | 26, 11, 12, 27 | mp3an 1460 |
. . . . . . . 8
⊢ (𝐴𝑃𝐵) ∈ ℂ |
29 | 28 | mul02i 11164 |
. . . . . . 7
⊢ (0
· (𝐴𝑃𝐵)) = 0 |
30 | | 0re 10977 |
. . . . . . 7
⊢ 0 ∈
ℝ |
31 | 29, 30 | eqeltri 2835 |
. . . . . 6
⊢ (0
· (𝐴𝑃𝐵)) ∈ ℝ |
32 | | 0le0 12074 |
. . . . . . 7
⊢ 0 ≤
0 |
33 | 32, 29 | breqtrri 5101 |
. . . . . 6
⊢ 0 ≤ (0
· (𝐴𝑃𝐵)) |
34 | 25, 31, 33 | 3pm3.2i 1338 |
. . . . 5
⊢ (0 ∈
ℂ ∧ (0 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (0 ·
(𝐴𝑃𝐵))) |
35 | 19, 24, 34 | elimhyp 4524 |
. . . 4
⊢
(if((𝐶 ∈
ℂ ∧ (𝐶 ·
(𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) ∈ ℂ ∧ (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · (𝐴𝑃𝐵))) |
36 | 35 | simp1i 1138 |
. . 3
⊢ if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) ∈ ℂ |
37 | 35 | simp2i 1139 |
. . 3
⊢
(if((𝐶 ∈
ℂ ∧ (𝐶 ·
(𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · (𝐴𝑃𝐵)) ∈ ℝ |
38 | 35 | simp3i 1140 |
. . 3
⊢ 0 ≤
(if((𝐶 ∈ ℂ ∧
(𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · (𝐴𝑃𝐵)) |
39 | 7, 8, 9, 10, 11, 12, 13, 14, 36, 37, 38 | siilem1 29213 |
. 2
⊢ ((𝐵𝑃𝐴) = (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · ((𝑁‘𝐵)↑2)) → (√‘((𝐴𝑃𝐵) · (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · ((𝑁‘𝐵)↑2)))) ≤ ((𝑁‘𝐴) · (𝑁‘𝐵))) |
40 | 6, 39 | dedth 4517 |
1
⊢ ((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))) → ((𝐵𝑃𝐴) = (𝐶 · ((𝑁‘𝐵)↑2)) → (√‘((𝐴𝑃𝐵) · (𝐶 · ((𝑁‘𝐵)↑2)))) ≤ ((𝑁‘𝐴) · (𝑁‘𝐵)))) |