MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  siilem2 Structured version   Visualization version   GIF version

Theorem siilem2 30796
Description: Lemma for sii 30798. (Contributed by NM, 24-Nov-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
siii.1 𝑋 = (BaseSet‘𝑈)
siii.6 𝑁 = (normCV𝑈)
siii.7 𝑃 = (·𝑖OLD𝑈)
siii.9 𝑈 ∈ CPreHilOLD
siii.a 𝐴𝑋
siii.b 𝐵𝑋
siii2.3 𝑀 = ( −𝑣𝑈)
siii2.4 𝑆 = ( ·𝑠OLD𝑈)
Assertion
Ref Expression
siilem2 ((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))) → ((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) → (√‘((𝐴𝑃𝐵) · (𝐶 · ((𝑁𝐵)↑2)))) ≤ ((𝑁𝐴) · (𝑁𝐵))))

Proof of Theorem siilem2
StepHypRef Expression
1 oveq1 7356 . . . 4 (𝐶 = if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → (𝐶 · ((𝑁𝐵)↑2)) = (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · ((𝑁𝐵)↑2)))
21eqeq2d 2740 . . 3 (𝐶 = if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → ((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) ↔ (𝐵𝑃𝐴) = (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · ((𝑁𝐵)↑2))))
31oveq2d 7365 . . . . 5 (𝐶 = if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → ((𝐴𝑃𝐵) · (𝐶 · ((𝑁𝐵)↑2))) = ((𝐴𝑃𝐵) · (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · ((𝑁𝐵)↑2))))
43fveq2d 6826 . . . 4 (𝐶 = if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → (√‘((𝐴𝑃𝐵) · (𝐶 · ((𝑁𝐵)↑2)))) = (√‘((𝐴𝑃𝐵) · (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · ((𝑁𝐵)↑2)))))
54breq1d 5102 . . 3 (𝐶 = if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → ((√‘((𝐴𝑃𝐵) · (𝐶 · ((𝑁𝐵)↑2)))) ≤ ((𝑁𝐴) · (𝑁𝐵)) ↔ (√‘((𝐴𝑃𝐵) · (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · ((𝑁𝐵)↑2)))) ≤ ((𝑁𝐴) · (𝑁𝐵))))
62, 5imbi12d 344 . 2 (𝐶 = if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → (((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) → (√‘((𝐴𝑃𝐵) · (𝐶 · ((𝑁𝐵)↑2)))) ≤ ((𝑁𝐴) · (𝑁𝐵))) ↔ ((𝐵𝑃𝐴) = (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · ((𝑁𝐵)↑2)) → (√‘((𝐴𝑃𝐵) · (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · ((𝑁𝐵)↑2)))) ≤ ((𝑁𝐴) · (𝑁𝐵)))))
7 siii.1 . . 3 𝑋 = (BaseSet‘𝑈)
8 siii.6 . . 3 𝑁 = (normCV𝑈)
9 siii.7 . . 3 𝑃 = (·𝑖OLD𝑈)
10 siii.9 . . 3 𝑈 ∈ CPreHilOLD
11 siii.a . . 3 𝐴𝑋
12 siii.b . . 3 𝐵𝑋
13 siii2.3 . . 3 𝑀 = ( −𝑣𝑈)
14 siii2.4 . . 3 𝑆 = ( ·𝑠OLD𝑈)
15 eleq1 2816 . . . . . 6 (𝐶 = if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → (𝐶 ∈ ℂ ↔ if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) ∈ ℂ))
16 oveq1 7356 . . . . . . 7 (𝐶 = if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → (𝐶 · (𝐴𝑃𝐵)) = (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · (𝐴𝑃𝐵)))
1716eleq1d 2813 . . . . . 6 (𝐶 = if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → ((𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ↔ (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · (𝐴𝑃𝐵)) ∈ ℝ))
1816breq2d 5104 . . . . . 6 (𝐶 = if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → (0 ≤ (𝐶 · (𝐴𝑃𝐵)) ↔ 0 ≤ (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · (𝐴𝑃𝐵))))
1915, 17, 183anbi123d 1438 . . . . 5 (𝐶 = if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → ((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))) ↔ (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) ∈ ℂ ∧ (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · (𝐴𝑃𝐵)))))
20 eleq1 2816 . . . . . 6 (0 = if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → (0 ∈ ℂ ↔ if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) ∈ ℂ))
21 oveq1 7356 . . . . . . 7 (0 = if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → (0 · (𝐴𝑃𝐵)) = (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · (𝐴𝑃𝐵)))
2221eleq1d 2813 . . . . . 6 (0 = if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → ((0 · (𝐴𝑃𝐵)) ∈ ℝ ↔ (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · (𝐴𝑃𝐵)) ∈ ℝ))
2321breq2d 5104 . . . . . 6 (0 = if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → (0 ≤ (0 · (𝐴𝑃𝐵)) ↔ 0 ≤ (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · (𝐴𝑃𝐵))))
2420, 22, 233anbi123d 1438 . . . . 5 (0 = if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → ((0 ∈ ℂ ∧ (0 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (0 · (𝐴𝑃𝐵))) ↔ (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) ∈ ℂ ∧ (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · (𝐴𝑃𝐵)))))
25 0cn 11107 . . . . . 6 0 ∈ ℂ
2610phnvi 30760 . . . . . . . . 9 𝑈 ∈ NrmCVec
277, 9dipcl 30656 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) ∈ ℂ)
2826, 11, 12, 27mp3an 1463 . . . . . . . 8 (𝐴𝑃𝐵) ∈ ℂ
2928mul02i 11305 . . . . . . 7 (0 · (𝐴𝑃𝐵)) = 0
30 0re 11117 . . . . . . 7 0 ∈ ℝ
3129, 30eqeltri 2824 . . . . . 6 (0 · (𝐴𝑃𝐵)) ∈ ℝ
32 0le0 12229 . . . . . . 7 0 ≤ 0
3332, 29breqtrri 5119 . . . . . 6 0 ≤ (0 · (𝐴𝑃𝐵))
3425, 31, 333pm3.2i 1340 . . . . 5 (0 ∈ ℂ ∧ (0 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (0 · (𝐴𝑃𝐵)))
3519, 24, 34elimhyp 4542 . . . 4 (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) ∈ ℂ ∧ (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · (𝐴𝑃𝐵)))
3635simp1i 1139 . . 3 if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) ∈ ℂ
3735simp2i 1140 . . 3 (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · (𝐴𝑃𝐵)) ∈ ℝ
3835simp3i 1141 . . 3 0 ≤ (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · (𝐴𝑃𝐵))
397, 8, 9, 10, 11, 12, 13, 14, 36, 37, 38siilem1 30795 . 2 ((𝐵𝑃𝐴) = (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · ((𝑁𝐵)↑2)) → (√‘((𝐴𝑃𝐵) · (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · ((𝑁𝐵)↑2)))) ≤ ((𝑁𝐴) · (𝑁𝐵)))
406, 39dedth 4535 1 ((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))) → ((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) → (√‘((𝐴𝑃𝐵) · (𝐶 · ((𝑁𝐵)↑2)))) ≤ ((𝑁𝐴) · (𝑁𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  ifcif 4476   class class class wbr 5092  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009   · cmul 11014  cle 11150  2c2 12183  cexp 13968  csqrt 15140  NrmCVeccnv 30528  BaseSetcba 30530   ·𝑠OLD cns 30531  𝑣 cnsb 30533  normCVcnmcv 30534  ·𝑖OLDcdip 30644  CPreHilOLDccphlo 30756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088  ax-mulf 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-icc 13255  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-cn 23112  df-cnp 23113  df-t1 23199  df-haus 23200  df-tx 23447  df-hmeo 23640  df-xms 24206  df-ms 24207  df-tms 24208  df-grpo 30437  df-gid 30438  df-ginv 30439  df-gdiv 30440  df-ablo 30489  df-vc 30503  df-nv 30536  df-va 30539  df-ba 30540  df-sm 30541  df-0v 30542  df-vs 30543  df-nmcv 30544  df-ims 30545  df-dip 30645  df-ph 30757
This theorem is referenced by:  siii  30797
  Copyright terms: Public domain W3C validator