MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  siilem2 Structured version   Visualization version   GIF version

Theorem siilem2 29794
Description: Lemma for sii 29796. (Contributed by NM, 24-Nov-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
siii.1 𝑋 = (BaseSet‘𝑈)
siii.6 𝑁 = (normCV𝑈)
siii.7 𝑃 = (·𝑖OLD𝑈)
siii.9 𝑈 ∈ CPreHilOLD
siii.a 𝐴𝑋
siii.b 𝐵𝑋
siii2.3 𝑀 = ( −𝑣𝑈)
siii2.4 𝑆 = ( ·𝑠OLD𝑈)
Assertion
Ref Expression
siilem2 ((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))) → ((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) → (√‘((𝐴𝑃𝐵) · (𝐶 · ((𝑁𝐵)↑2)))) ≤ ((𝑁𝐴) · (𝑁𝐵))))

Proof of Theorem siilem2
StepHypRef Expression
1 oveq1 7364 . . . 4 (𝐶 = if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → (𝐶 · ((𝑁𝐵)↑2)) = (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · ((𝑁𝐵)↑2)))
21eqeq2d 2747 . . 3 (𝐶 = if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → ((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) ↔ (𝐵𝑃𝐴) = (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · ((𝑁𝐵)↑2))))
31oveq2d 7373 . . . . 5 (𝐶 = if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → ((𝐴𝑃𝐵) · (𝐶 · ((𝑁𝐵)↑2))) = ((𝐴𝑃𝐵) · (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · ((𝑁𝐵)↑2))))
43fveq2d 6846 . . . 4 (𝐶 = if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → (√‘((𝐴𝑃𝐵) · (𝐶 · ((𝑁𝐵)↑2)))) = (√‘((𝐴𝑃𝐵) · (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · ((𝑁𝐵)↑2)))))
54breq1d 5115 . . 3 (𝐶 = if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → ((√‘((𝐴𝑃𝐵) · (𝐶 · ((𝑁𝐵)↑2)))) ≤ ((𝑁𝐴) · (𝑁𝐵)) ↔ (√‘((𝐴𝑃𝐵) · (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · ((𝑁𝐵)↑2)))) ≤ ((𝑁𝐴) · (𝑁𝐵))))
62, 5imbi12d 344 . 2 (𝐶 = if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → (((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) → (√‘((𝐴𝑃𝐵) · (𝐶 · ((𝑁𝐵)↑2)))) ≤ ((𝑁𝐴) · (𝑁𝐵))) ↔ ((𝐵𝑃𝐴) = (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · ((𝑁𝐵)↑2)) → (√‘((𝐴𝑃𝐵) · (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · ((𝑁𝐵)↑2)))) ≤ ((𝑁𝐴) · (𝑁𝐵)))))
7 siii.1 . . 3 𝑋 = (BaseSet‘𝑈)
8 siii.6 . . 3 𝑁 = (normCV𝑈)
9 siii.7 . . 3 𝑃 = (·𝑖OLD𝑈)
10 siii.9 . . 3 𝑈 ∈ CPreHilOLD
11 siii.a . . 3 𝐴𝑋
12 siii.b . . 3 𝐵𝑋
13 siii2.3 . . 3 𝑀 = ( −𝑣𝑈)
14 siii2.4 . . 3 𝑆 = ( ·𝑠OLD𝑈)
15 eleq1 2825 . . . . . 6 (𝐶 = if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → (𝐶 ∈ ℂ ↔ if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) ∈ ℂ))
16 oveq1 7364 . . . . . . 7 (𝐶 = if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → (𝐶 · (𝐴𝑃𝐵)) = (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · (𝐴𝑃𝐵)))
1716eleq1d 2822 . . . . . 6 (𝐶 = if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → ((𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ↔ (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · (𝐴𝑃𝐵)) ∈ ℝ))
1816breq2d 5117 . . . . . 6 (𝐶 = if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → (0 ≤ (𝐶 · (𝐴𝑃𝐵)) ↔ 0 ≤ (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · (𝐴𝑃𝐵))))
1915, 17, 183anbi123d 1436 . . . . 5 (𝐶 = if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → ((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))) ↔ (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) ∈ ℂ ∧ (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · (𝐴𝑃𝐵)))))
20 eleq1 2825 . . . . . 6 (0 = if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → (0 ∈ ℂ ↔ if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) ∈ ℂ))
21 oveq1 7364 . . . . . . 7 (0 = if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → (0 · (𝐴𝑃𝐵)) = (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · (𝐴𝑃𝐵)))
2221eleq1d 2822 . . . . . 6 (0 = if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → ((0 · (𝐴𝑃𝐵)) ∈ ℝ ↔ (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · (𝐴𝑃𝐵)) ∈ ℝ))
2321breq2d 5117 . . . . . 6 (0 = if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → (0 ≤ (0 · (𝐴𝑃𝐵)) ↔ 0 ≤ (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · (𝐴𝑃𝐵))))
2420, 22, 233anbi123d 1436 . . . . 5 (0 = if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) → ((0 ∈ ℂ ∧ (0 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (0 · (𝐴𝑃𝐵))) ↔ (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) ∈ ℂ ∧ (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · (𝐴𝑃𝐵)))))
25 0cn 11147 . . . . . 6 0 ∈ ℂ
2610phnvi 29758 . . . . . . . . 9 𝑈 ∈ NrmCVec
277, 9dipcl 29654 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) ∈ ℂ)
2826, 11, 12, 27mp3an 1461 . . . . . . . 8 (𝐴𝑃𝐵) ∈ ℂ
2928mul02i 11344 . . . . . . 7 (0 · (𝐴𝑃𝐵)) = 0
30 0re 11157 . . . . . . 7 0 ∈ ℝ
3129, 30eqeltri 2834 . . . . . 6 (0 · (𝐴𝑃𝐵)) ∈ ℝ
32 0le0 12254 . . . . . . 7 0 ≤ 0
3332, 29breqtrri 5132 . . . . . 6 0 ≤ (0 · (𝐴𝑃𝐵))
3425, 31, 333pm3.2i 1339 . . . . 5 (0 ∈ ℂ ∧ (0 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (0 · (𝐴𝑃𝐵)))
3519, 24, 34elimhyp 4551 . . . 4 (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) ∈ ℂ ∧ (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · (𝐴𝑃𝐵)))
3635simp1i 1139 . . 3 if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) ∈ ℂ
3735simp2i 1140 . . 3 (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · (𝐴𝑃𝐵)) ∈ ℝ
3835simp3i 1141 . . 3 0 ≤ (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · (𝐴𝑃𝐵))
397, 8, 9, 10, 11, 12, 13, 14, 36, 37, 38siilem1 29793 . 2 ((𝐵𝑃𝐴) = (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · ((𝑁𝐵)↑2)) → (√‘((𝐴𝑃𝐵) · (if((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))), 𝐶, 0) · ((𝑁𝐵)↑2)))) ≤ ((𝑁𝐴) · (𝑁𝐵)))
406, 39dedth 4544 1 ((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))) → ((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) → (√‘((𝐴𝑃𝐵) · (𝐶 · ((𝑁𝐵)↑2)))) ≤ ((𝑁𝐴) · (𝑁𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1541  wcel 2106  ifcif 4486   class class class wbr 5105  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051   · cmul 11056  cle 11190  2c2 12208  cexp 13967  csqrt 15118  NrmCVeccnv 29526  BaseSetcba 29528   ·𝑠OLD cns 29529  𝑣 cnsb 29531  normCVcnmcv 29532  ·𝑖OLDcdip 29642  CPreHilOLDccphlo 29754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-icc 13271  df-fz 13425  df-fzo 13568  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-sum 15571  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-cn 22578  df-cnp 22579  df-t1 22665  df-haus 22666  df-tx 22913  df-hmeo 23106  df-xms 23673  df-ms 23674  df-tms 23675  df-grpo 29435  df-gid 29436  df-ginv 29437  df-gdiv 29438  df-ablo 29487  df-vc 29501  df-nv 29534  df-va 29537  df-ba 29538  df-sm 29539  df-0v 29540  df-vs 29541  df-nmcv 29542  df-ims 29543  df-dip 29643  df-ph 29755
This theorem is referenced by:  siii  29795
  Copyright terms: Public domain W3C validator