![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oppchomfval | Structured version Visualization version GIF version |
Description: Hom-sets of the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.) (Proof shortened by AV, 14-Oct-2024.) |
Ref | Expression |
---|---|
oppchom.h | ⊢ 𝐻 = (Hom ‘𝐶) |
oppchom.o | ⊢ 𝑂 = (oppCat‘𝐶) |
Ref | Expression |
---|---|
oppchomfval | ⊢ tpos 𝐻 = (Hom ‘𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | homid 17356 | . . . 4 ⊢ Hom = Slot (Hom ‘ndx) | |
2 | slotsbhcdif 17359 | . . . . 5 ⊢ ((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) | |
3 | 2 | simp3i 1141 | . . . 4 ⊢ (Hom ‘ndx) ≠ (comp‘ndx) |
4 | 1, 3 | setsnid 17141 | . . 3 ⊢ (Hom ‘(𝐶 sSet ⟨(Hom ‘ndx), tpos 𝐻⟩)) = (Hom ‘((𝐶 sSet ⟨(Hom ‘ndx), tpos 𝐻⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (⟨𝑧, (2nd ‘𝑢)⟩(comp‘𝐶)(1st ‘𝑢)))⟩)) |
5 | oppchom.h | . . . . . 6 ⊢ 𝐻 = (Hom ‘𝐶) | |
6 | 5 | fvexi 6905 | . . . . 5 ⊢ 𝐻 ∈ V |
7 | 6 | tposex 8244 | . . . 4 ⊢ tpos 𝐻 ∈ V |
8 | 1 | setsid 17140 | . . . 4 ⊢ ((𝐶 ∈ V ∧ tpos 𝐻 ∈ V) → tpos 𝐻 = (Hom ‘(𝐶 sSet ⟨(Hom ‘ndx), tpos 𝐻⟩))) |
9 | 7, 8 | mpan2 689 | . . 3 ⊢ (𝐶 ∈ V → tpos 𝐻 = (Hom ‘(𝐶 sSet ⟨(Hom ‘ndx), tpos 𝐻⟩))) |
10 | eqid 2732 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
11 | eqid 2732 | . . . . 5 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
12 | oppchom.o | . . . . 5 ⊢ 𝑂 = (oppCat‘𝐶) | |
13 | 10, 5, 11, 12 | oppcval 17656 | . . . 4 ⊢ (𝐶 ∈ V → 𝑂 = ((𝐶 sSet ⟨(Hom ‘ndx), tpos 𝐻⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (⟨𝑧, (2nd ‘𝑢)⟩(comp‘𝐶)(1st ‘𝑢)))⟩)) |
14 | 13 | fveq2d 6895 | . . 3 ⊢ (𝐶 ∈ V → (Hom ‘𝑂) = (Hom ‘((𝐶 sSet ⟨(Hom ‘ndx), tpos 𝐻⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (⟨𝑧, (2nd ‘𝑢)⟩(comp‘𝐶)(1st ‘𝑢)))⟩))) |
15 | 4, 9, 14 | 3eqtr4a 2798 | . 2 ⊢ (𝐶 ∈ V → tpos 𝐻 = (Hom ‘𝑂)) |
16 | tpos0 8240 | . . 3 ⊢ tpos ∅ = ∅ | |
17 | fvprc 6883 | . . . . 5 ⊢ (¬ 𝐶 ∈ V → (Hom ‘𝐶) = ∅) | |
18 | 5, 17 | eqtrid 2784 | . . . 4 ⊢ (¬ 𝐶 ∈ V → 𝐻 = ∅) |
19 | 18 | tposeqd 8213 | . . 3 ⊢ (¬ 𝐶 ∈ V → tpos 𝐻 = tpos ∅) |
20 | fvprc 6883 | . . . . . 6 ⊢ (¬ 𝐶 ∈ V → (oppCat‘𝐶) = ∅) | |
21 | 12, 20 | eqtrid 2784 | . . . . 5 ⊢ (¬ 𝐶 ∈ V → 𝑂 = ∅) |
22 | 21 | fveq2d 6895 | . . . 4 ⊢ (¬ 𝐶 ∈ V → (Hom ‘𝑂) = (Hom ‘∅)) |
23 | 1 | str0 17121 | . . . 4 ⊢ ∅ = (Hom ‘∅) |
24 | 22, 23 | eqtr4di 2790 | . . 3 ⊢ (¬ 𝐶 ∈ V → (Hom ‘𝑂) = ∅) |
25 | 16, 19, 24 | 3eqtr4a 2798 | . 2 ⊢ (¬ 𝐶 ∈ V → tpos 𝐻 = (Hom ‘𝑂)) |
26 | 15, 25 | pm2.61i 182 | 1 ⊢ tpos 𝐻 = (Hom ‘𝑂) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 Vcvv 3474 ∅c0 4322 ⟨cop 4634 × cxp 5674 ‘cfv 6543 (class class class)co 7408 ∈ cmpo 7410 1st c1st 7972 2nd c2nd 7973 tpos ctpos 8209 sSet csts 17095 ndxcnx 17125 Basecbs 17143 Hom chom 17207 compcco 17208 oppCatcoppc 17654 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-2nd 7975 df-tpos 8210 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-dec 12677 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-hom 17220 df-cco 17221 df-oppc 17655 |
This theorem is referenced by: oppchom 17659 |
Copyright terms: Public domain | W3C validator |