| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oppchomfval | Structured version Visualization version GIF version | ||
| Description: Hom-sets of the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.) (Proof shortened by AV, 14-Oct-2024.) |
| Ref | Expression |
|---|---|
| oppchom.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| oppchom.o | ⊢ 𝑂 = (oppCat‘𝐶) |
| Ref | Expression |
|---|---|
| oppchomfval | ⊢ tpos 𝐻 = (Hom ‘𝑂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | homid 17311 | . . . 4 ⊢ Hom = Slot (Hom ‘ndx) | |
| 2 | slotsbhcdif 17314 | . . . . 5 ⊢ ((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) | |
| 3 | 2 | simp3i 1141 | . . . 4 ⊢ (Hom ‘ndx) ≠ (comp‘ndx) |
| 4 | 1, 3 | setsnid 17114 | . . 3 ⊢ (Hom ‘(𝐶 sSet 〈(Hom ‘ndx), tpos 𝐻〉)) = (Hom ‘((𝐶 sSet 〈(Hom ‘ndx), tpos 𝐻〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝐶)(1st ‘𝑢)))〉)) |
| 5 | oppchom.h | . . . . . 6 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 6 | 5 | fvexi 6831 | . . . . 5 ⊢ 𝐻 ∈ V |
| 7 | 6 | tposex 8185 | . . . 4 ⊢ tpos 𝐻 ∈ V |
| 8 | 1 | setsid 17113 | . . . 4 ⊢ ((𝐶 ∈ V ∧ tpos 𝐻 ∈ V) → tpos 𝐻 = (Hom ‘(𝐶 sSet 〈(Hom ‘ndx), tpos 𝐻〉))) |
| 9 | 7, 8 | mpan2 691 | . . 3 ⊢ (𝐶 ∈ V → tpos 𝐻 = (Hom ‘(𝐶 sSet 〈(Hom ‘ndx), tpos 𝐻〉))) |
| 10 | eqid 2731 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 11 | eqid 2731 | . . . . 5 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 12 | oppchom.o | . . . . 5 ⊢ 𝑂 = (oppCat‘𝐶) | |
| 13 | 10, 5, 11, 12 | oppcval 17614 | . . . 4 ⊢ (𝐶 ∈ V → 𝑂 = ((𝐶 sSet 〈(Hom ‘ndx), tpos 𝐻〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝐶)(1st ‘𝑢)))〉)) |
| 14 | 13 | fveq2d 6821 | . . 3 ⊢ (𝐶 ∈ V → (Hom ‘𝑂) = (Hom ‘((𝐶 sSet 〈(Hom ‘ndx), tpos 𝐻〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝐶)(1st ‘𝑢)))〉))) |
| 15 | 4, 9, 14 | 3eqtr4a 2792 | . 2 ⊢ (𝐶 ∈ V → tpos 𝐻 = (Hom ‘𝑂)) |
| 16 | tpos0 8181 | . . 3 ⊢ tpos ∅ = ∅ | |
| 17 | fvprc 6809 | . . . . 5 ⊢ (¬ 𝐶 ∈ V → (Hom ‘𝐶) = ∅) | |
| 18 | 5, 17 | eqtrid 2778 | . . . 4 ⊢ (¬ 𝐶 ∈ V → 𝐻 = ∅) |
| 19 | 18 | tposeqd 8154 | . . 3 ⊢ (¬ 𝐶 ∈ V → tpos 𝐻 = tpos ∅) |
| 20 | fvprc 6809 | . . . . . 6 ⊢ (¬ 𝐶 ∈ V → (oppCat‘𝐶) = ∅) | |
| 21 | 12, 20 | eqtrid 2778 | . . . . 5 ⊢ (¬ 𝐶 ∈ V → 𝑂 = ∅) |
| 22 | 21 | fveq2d 6821 | . . . 4 ⊢ (¬ 𝐶 ∈ V → (Hom ‘𝑂) = (Hom ‘∅)) |
| 23 | 1 | str0 17095 | . . . 4 ⊢ ∅ = (Hom ‘∅) |
| 24 | 22, 23 | eqtr4di 2784 | . . 3 ⊢ (¬ 𝐶 ∈ V → (Hom ‘𝑂) = ∅) |
| 25 | 16, 19, 24 | 3eqtr4a 2792 | . 2 ⊢ (¬ 𝐶 ∈ V → tpos 𝐻 = (Hom ‘𝑂)) |
| 26 | 15, 25 | pm2.61i 182 | 1 ⊢ tpos 𝐻 = (Hom ‘𝑂) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ∅c0 4278 〈cop 4577 × cxp 5609 ‘cfv 6476 (class class class)co 7341 ∈ cmpo 7343 1st c1st 7914 2nd c2nd 7915 tpos ctpos 8150 sSet csts 17069 ndxcnx 17099 Basecbs 17115 Hom chom 17167 compcco 17168 oppCatcoppc 17612 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-tpos 8151 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-hom 17180 df-cco 17181 df-oppc 17613 |
| This theorem is referenced by: oppchom 17616 |
| Copyright terms: Public domain | W3C validator |