Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oppchomfval | Structured version Visualization version GIF version |
Description: Hom-sets of the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.) (Proof shortened by AV, 14-Oct-2024.) |
Ref | Expression |
---|---|
oppchom.h | ⊢ 𝐻 = (Hom ‘𝐶) |
oppchom.o | ⊢ 𝑂 = (oppCat‘𝐶) |
Ref | Expression |
---|---|
oppchomfval | ⊢ tpos 𝐻 = (Hom ‘𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | homid 17224 | . . . 4 ⊢ Hom = Slot (Hom ‘ndx) | |
2 | slotsbhcdif 17227 | . . . . 5 ⊢ ((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) | |
3 | 2 | simp3i 1141 | . . . 4 ⊢ (Hom ‘ndx) ≠ (comp‘ndx) |
4 | 1, 3 | setsnid 17012 | . . 3 ⊢ (Hom ‘(𝐶 sSet 〈(Hom ‘ndx), tpos 𝐻〉)) = (Hom ‘((𝐶 sSet 〈(Hom ‘ndx), tpos 𝐻〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝐶)(1st ‘𝑢)))〉)) |
5 | oppchom.h | . . . . . 6 ⊢ 𝐻 = (Hom ‘𝐶) | |
6 | 5 | fvexi 6848 | . . . . 5 ⊢ 𝐻 ∈ V |
7 | 6 | tposex 8155 | . . . 4 ⊢ tpos 𝐻 ∈ V |
8 | 1 | setsid 17011 | . . . 4 ⊢ ((𝐶 ∈ V ∧ tpos 𝐻 ∈ V) → tpos 𝐻 = (Hom ‘(𝐶 sSet 〈(Hom ‘ndx), tpos 𝐻〉))) |
9 | 7, 8 | mpan2 689 | . . 3 ⊢ (𝐶 ∈ V → tpos 𝐻 = (Hom ‘(𝐶 sSet 〈(Hom ‘ndx), tpos 𝐻〉))) |
10 | eqid 2737 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
11 | eqid 2737 | . . . . 5 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
12 | oppchom.o | . . . . 5 ⊢ 𝑂 = (oppCat‘𝐶) | |
13 | 10, 5, 11, 12 | oppcval 17524 | . . . 4 ⊢ (𝐶 ∈ V → 𝑂 = ((𝐶 sSet 〈(Hom ‘ndx), tpos 𝐻〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝐶)(1st ‘𝑢)))〉)) |
14 | 13 | fveq2d 6838 | . . 3 ⊢ (𝐶 ∈ V → (Hom ‘𝑂) = (Hom ‘((𝐶 sSet 〈(Hom ‘ndx), tpos 𝐻〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝐶)(1st ‘𝑢)))〉))) |
15 | 4, 9, 14 | 3eqtr4a 2803 | . 2 ⊢ (𝐶 ∈ V → tpos 𝐻 = (Hom ‘𝑂)) |
16 | tpos0 8151 | . . 3 ⊢ tpos ∅ = ∅ | |
17 | fvprc 6826 | . . . . 5 ⊢ (¬ 𝐶 ∈ V → (Hom ‘𝐶) = ∅) | |
18 | 5, 17 | eqtrid 2789 | . . . 4 ⊢ (¬ 𝐶 ∈ V → 𝐻 = ∅) |
19 | 18 | tposeqd 8124 | . . 3 ⊢ (¬ 𝐶 ∈ V → tpos 𝐻 = tpos ∅) |
20 | fvprc 6826 | . . . . . 6 ⊢ (¬ 𝐶 ∈ V → (oppCat‘𝐶) = ∅) | |
21 | 12, 20 | eqtrid 2789 | . . . . 5 ⊢ (¬ 𝐶 ∈ V → 𝑂 = ∅) |
22 | 21 | fveq2d 6838 | . . . 4 ⊢ (¬ 𝐶 ∈ V → (Hom ‘𝑂) = (Hom ‘∅)) |
23 | 1 | str0 16992 | . . . 4 ⊢ ∅ = (Hom ‘∅) |
24 | 22, 23 | eqtr4di 2795 | . . 3 ⊢ (¬ 𝐶 ∈ V → (Hom ‘𝑂) = ∅) |
25 | 16, 19, 24 | 3eqtr4a 2803 | . 2 ⊢ (¬ 𝐶 ∈ V → tpos 𝐻 = (Hom ‘𝑂)) |
26 | 15, 25 | pm2.61i 182 | 1 ⊢ tpos 𝐻 = (Hom ‘𝑂) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2106 ≠ wne 2941 Vcvv 3443 ∅c0 4277 〈cop 4587 × cxp 5625 ‘cfv 6488 (class class class)co 7346 ∈ cmpo 7348 1st c1st 7906 2nd c2nd 7907 tpos ctpos 8120 sSet csts 16966 ndxcnx 16996 Basecbs 17014 Hom chom 17075 compcco 17076 oppCatcoppc 17522 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5251 ax-nul 5258 ax-pow 5315 ax-pr 5379 ax-un 7659 ax-cnex 11037 ax-resscn 11038 ax-1cn 11039 ax-icn 11040 ax-addcl 11041 ax-addrcl 11042 ax-mulcl 11043 ax-mulrcl 11044 ax-mulcom 11045 ax-addass 11046 ax-mulass 11047 ax-distr 11048 ax-i2m1 11049 ax-1ne0 11050 ax-1rid 11051 ax-rnegex 11052 ax-rrecex 11053 ax-cnre 11054 ax-pre-lttri 11055 ax-pre-lttrn 11056 ax-pre-ltadd 11057 ax-pre-mulgt0 11058 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3735 df-csb 3851 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3924 df-nul 4278 df-if 4482 df-pw 4557 df-sn 4582 df-pr 4584 df-op 4588 df-uni 4861 df-iun 4951 df-br 5101 df-opab 5163 df-mpt 5184 df-tr 5218 df-id 5525 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5582 df-we 5584 df-xp 5633 df-rel 5634 df-cnv 5635 df-co 5636 df-dm 5637 df-rn 5638 df-res 5639 df-ima 5640 df-pred 6246 df-ord 6313 df-on 6314 df-lim 6315 df-suc 6316 df-iota 6440 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7302 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7790 df-2nd 7909 df-tpos 8121 df-frecs 8176 df-wrecs 8207 df-recs 8281 df-rdg 8320 df-er 8578 df-en 8814 df-dom 8815 df-sdom 8816 df-pnf 11121 df-mnf 11122 df-xr 11123 df-ltxr 11124 df-le 11125 df-sub 11317 df-neg 11318 df-nn 12084 df-2 12146 df-3 12147 df-4 12148 df-5 12149 df-6 12150 df-7 12151 df-8 12152 df-9 12153 df-n0 12344 df-z 12430 df-dec 12548 df-sets 16967 df-slot 16985 df-ndx 16997 df-base 17015 df-hom 17088 df-cco 17089 df-oppc 17523 |
This theorem is referenced by: oppchom 17527 |
Copyright terms: Public domain | W3C validator |