|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > oppchomfval | Structured version Visualization version GIF version | ||
| Description: Hom-sets of the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.) (Proof shortened by AV, 14-Oct-2024.) | 
| Ref | Expression | 
|---|---|
| oppchom.h | ⊢ 𝐻 = (Hom ‘𝐶) | 
| oppchom.o | ⊢ 𝑂 = (oppCat‘𝐶) | 
| Ref | Expression | 
|---|---|
| oppchomfval | ⊢ tpos 𝐻 = (Hom ‘𝑂) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | homid 17456 | . . . 4 ⊢ Hom = Slot (Hom ‘ndx) | |
| 2 | slotsbhcdif 17459 | . . . . 5 ⊢ ((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) | |
| 3 | 2 | simp3i 1142 | . . . 4 ⊢ (Hom ‘ndx) ≠ (comp‘ndx) | 
| 4 | 1, 3 | setsnid 17245 | . . 3 ⊢ (Hom ‘(𝐶 sSet 〈(Hom ‘ndx), tpos 𝐻〉)) = (Hom ‘((𝐶 sSet 〈(Hom ‘ndx), tpos 𝐻〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝐶)(1st ‘𝑢)))〉)) | 
| 5 | oppchom.h | . . . . . 6 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 6 | 5 | fvexi 6920 | . . . . 5 ⊢ 𝐻 ∈ V | 
| 7 | 6 | tposex 8285 | . . . 4 ⊢ tpos 𝐻 ∈ V | 
| 8 | 1 | setsid 17244 | . . . 4 ⊢ ((𝐶 ∈ V ∧ tpos 𝐻 ∈ V) → tpos 𝐻 = (Hom ‘(𝐶 sSet 〈(Hom ‘ndx), tpos 𝐻〉))) | 
| 9 | 7, 8 | mpan2 691 | . . 3 ⊢ (𝐶 ∈ V → tpos 𝐻 = (Hom ‘(𝐶 sSet 〈(Hom ‘ndx), tpos 𝐻〉))) | 
| 10 | eqid 2737 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 11 | eqid 2737 | . . . . 5 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 12 | oppchom.o | . . . . 5 ⊢ 𝑂 = (oppCat‘𝐶) | |
| 13 | 10, 5, 11, 12 | oppcval 17756 | . . . 4 ⊢ (𝐶 ∈ V → 𝑂 = ((𝐶 sSet 〈(Hom ‘ndx), tpos 𝐻〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝐶)(1st ‘𝑢)))〉)) | 
| 14 | 13 | fveq2d 6910 | . . 3 ⊢ (𝐶 ∈ V → (Hom ‘𝑂) = (Hom ‘((𝐶 sSet 〈(Hom ‘ndx), tpos 𝐻〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝐶)(1st ‘𝑢)))〉))) | 
| 15 | 4, 9, 14 | 3eqtr4a 2803 | . 2 ⊢ (𝐶 ∈ V → tpos 𝐻 = (Hom ‘𝑂)) | 
| 16 | tpos0 8281 | . . 3 ⊢ tpos ∅ = ∅ | |
| 17 | fvprc 6898 | . . . . 5 ⊢ (¬ 𝐶 ∈ V → (Hom ‘𝐶) = ∅) | |
| 18 | 5, 17 | eqtrid 2789 | . . . 4 ⊢ (¬ 𝐶 ∈ V → 𝐻 = ∅) | 
| 19 | 18 | tposeqd 8254 | . . 3 ⊢ (¬ 𝐶 ∈ V → tpos 𝐻 = tpos ∅) | 
| 20 | fvprc 6898 | . . . . . 6 ⊢ (¬ 𝐶 ∈ V → (oppCat‘𝐶) = ∅) | |
| 21 | 12, 20 | eqtrid 2789 | . . . . 5 ⊢ (¬ 𝐶 ∈ V → 𝑂 = ∅) | 
| 22 | 21 | fveq2d 6910 | . . . 4 ⊢ (¬ 𝐶 ∈ V → (Hom ‘𝑂) = (Hom ‘∅)) | 
| 23 | 1 | str0 17226 | . . . 4 ⊢ ∅ = (Hom ‘∅) | 
| 24 | 22, 23 | eqtr4di 2795 | . . 3 ⊢ (¬ 𝐶 ∈ V → (Hom ‘𝑂) = ∅) | 
| 25 | 16, 19, 24 | 3eqtr4a 2803 | . 2 ⊢ (¬ 𝐶 ∈ V → tpos 𝐻 = (Hom ‘𝑂)) | 
| 26 | 15, 25 | pm2.61i 182 | 1 ⊢ tpos 𝐻 = (Hom ‘𝑂) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 Vcvv 3480 ∅c0 4333 〈cop 4632 × cxp 5683 ‘cfv 6561 (class class class)co 7431 ∈ cmpo 7433 1st c1st 8012 2nd c2nd 8013 tpos ctpos 8250 sSet csts 17200 ndxcnx 17230 Basecbs 17247 Hom chom 17308 compcco 17309 oppCatcoppc 17754 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-tpos 8251 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-hom 17321 df-cco 17322 df-oppc 17755 | 
| This theorem is referenced by: oppchom 17758 | 
| Copyright terms: Public domain | W3C validator |