| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oppchomfval | Structured version Visualization version GIF version | ||
| Description: Hom-sets of the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.) (Proof shortened by AV, 14-Oct-2024.) |
| Ref | Expression |
|---|---|
| oppchom.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| oppchom.o | ⊢ 𝑂 = (oppCat‘𝐶) |
| Ref | Expression |
|---|---|
| oppchomfval | ⊢ tpos 𝐻 = (Hom ‘𝑂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | homid 17351 | . . . 4 ⊢ Hom = Slot (Hom ‘ndx) | |
| 2 | slotsbhcdif 17354 | . . . . 5 ⊢ ((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) | |
| 3 | 2 | simp3i 1141 | . . . 4 ⊢ (Hom ‘ndx) ≠ (comp‘ndx) |
| 4 | 1, 3 | setsnid 17154 | . . 3 ⊢ (Hom ‘(𝐶 sSet 〈(Hom ‘ndx), tpos 𝐻〉)) = (Hom ‘((𝐶 sSet 〈(Hom ‘ndx), tpos 𝐻〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝐶)(1st ‘𝑢)))〉)) |
| 5 | oppchom.h | . . . . . 6 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 6 | 5 | fvexi 6854 | . . . . 5 ⊢ 𝐻 ∈ V |
| 7 | 6 | tposex 8216 | . . . 4 ⊢ tpos 𝐻 ∈ V |
| 8 | 1 | setsid 17153 | . . . 4 ⊢ ((𝐶 ∈ V ∧ tpos 𝐻 ∈ V) → tpos 𝐻 = (Hom ‘(𝐶 sSet 〈(Hom ‘ndx), tpos 𝐻〉))) |
| 9 | 7, 8 | mpan2 691 | . . 3 ⊢ (𝐶 ∈ V → tpos 𝐻 = (Hom ‘(𝐶 sSet 〈(Hom ‘ndx), tpos 𝐻〉))) |
| 10 | eqid 2729 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 11 | eqid 2729 | . . . . 5 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 12 | oppchom.o | . . . . 5 ⊢ 𝑂 = (oppCat‘𝐶) | |
| 13 | 10, 5, 11, 12 | oppcval 17650 | . . . 4 ⊢ (𝐶 ∈ V → 𝑂 = ((𝐶 sSet 〈(Hom ‘ndx), tpos 𝐻〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝐶)(1st ‘𝑢)))〉)) |
| 14 | 13 | fveq2d 6844 | . . 3 ⊢ (𝐶 ∈ V → (Hom ‘𝑂) = (Hom ‘((𝐶 sSet 〈(Hom ‘ndx), tpos 𝐻〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝐶)(1st ‘𝑢)))〉))) |
| 15 | 4, 9, 14 | 3eqtr4a 2790 | . 2 ⊢ (𝐶 ∈ V → tpos 𝐻 = (Hom ‘𝑂)) |
| 16 | tpos0 8212 | . . 3 ⊢ tpos ∅ = ∅ | |
| 17 | fvprc 6832 | . . . . 5 ⊢ (¬ 𝐶 ∈ V → (Hom ‘𝐶) = ∅) | |
| 18 | 5, 17 | eqtrid 2776 | . . . 4 ⊢ (¬ 𝐶 ∈ V → 𝐻 = ∅) |
| 19 | 18 | tposeqd 8185 | . . 3 ⊢ (¬ 𝐶 ∈ V → tpos 𝐻 = tpos ∅) |
| 20 | fvprc 6832 | . . . . . 6 ⊢ (¬ 𝐶 ∈ V → (oppCat‘𝐶) = ∅) | |
| 21 | 12, 20 | eqtrid 2776 | . . . . 5 ⊢ (¬ 𝐶 ∈ V → 𝑂 = ∅) |
| 22 | 21 | fveq2d 6844 | . . . 4 ⊢ (¬ 𝐶 ∈ V → (Hom ‘𝑂) = (Hom ‘∅)) |
| 23 | 1 | str0 17135 | . . . 4 ⊢ ∅ = (Hom ‘∅) |
| 24 | 22, 23 | eqtr4di 2782 | . . 3 ⊢ (¬ 𝐶 ∈ V → (Hom ‘𝑂) = ∅) |
| 25 | 16, 19, 24 | 3eqtr4a 2790 | . 2 ⊢ (¬ 𝐶 ∈ V → tpos 𝐻 = (Hom ‘𝑂)) |
| 26 | 15, 25 | pm2.61i 182 | 1 ⊢ tpos 𝐻 = (Hom ‘𝑂) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3444 ∅c0 4292 〈cop 4591 × cxp 5629 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 1st c1st 7945 2nd c2nd 7946 tpos ctpos 8181 sSet csts 17109 ndxcnx 17139 Basecbs 17155 Hom chom 17207 compcco 17208 oppCatcoppc 17648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-hom 17220 df-cco 17221 df-oppc 17649 |
| This theorem is referenced by: oppchom 17652 |
| Copyright terms: Public domain | W3C validator |