| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oppchomfval | Structured version Visualization version GIF version | ||
| Description: Hom-sets of the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.) (Proof shortened by AV, 14-Oct-2024.) |
| Ref | Expression |
|---|---|
| oppchom.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| oppchom.o | ⊢ 𝑂 = (oppCat‘𝐶) |
| Ref | Expression |
|---|---|
| oppchomfval | ⊢ tpos 𝐻 = (Hom ‘𝑂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | homid 17323 | . . . 4 ⊢ Hom = Slot (Hom ‘ndx) | |
| 2 | slotsbhcdif 17326 | . . . . 5 ⊢ ((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) | |
| 3 | 2 | simp3i 1141 | . . . 4 ⊢ (Hom ‘ndx) ≠ (comp‘ndx) |
| 4 | 1, 3 | setsnid 17126 | . . 3 ⊢ (Hom ‘(𝐶 sSet 〈(Hom ‘ndx), tpos 𝐻〉)) = (Hom ‘((𝐶 sSet 〈(Hom ‘ndx), tpos 𝐻〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝐶)(1st ‘𝑢)))〉)) |
| 5 | oppchom.h | . . . . . 6 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 6 | 5 | fvexi 6845 | . . . . 5 ⊢ 𝐻 ∈ V |
| 7 | 6 | tposex 8199 | . . . 4 ⊢ tpos 𝐻 ∈ V |
| 8 | 1 | setsid 17125 | . . . 4 ⊢ ((𝐶 ∈ V ∧ tpos 𝐻 ∈ V) → tpos 𝐻 = (Hom ‘(𝐶 sSet 〈(Hom ‘ndx), tpos 𝐻〉))) |
| 9 | 7, 8 | mpan2 691 | . . 3 ⊢ (𝐶 ∈ V → tpos 𝐻 = (Hom ‘(𝐶 sSet 〈(Hom ‘ndx), tpos 𝐻〉))) |
| 10 | eqid 2733 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 11 | eqid 2733 | . . . . 5 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 12 | oppchom.o | . . . . 5 ⊢ 𝑂 = (oppCat‘𝐶) | |
| 13 | 10, 5, 11, 12 | oppcval 17627 | . . . 4 ⊢ (𝐶 ∈ V → 𝑂 = ((𝐶 sSet 〈(Hom ‘ndx), tpos 𝐻〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝐶)(1st ‘𝑢)))〉)) |
| 14 | 13 | fveq2d 6835 | . . 3 ⊢ (𝐶 ∈ V → (Hom ‘𝑂) = (Hom ‘((𝐶 sSet 〈(Hom ‘ndx), tpos 𝐻〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝐶)(1st ‘𝑢)))〉))) |
| 15 | 4, 9, 14 | 3eqtr4a 2794 | . 2 ⊢ (𝐶 ∈ V → tpos 𝐻 = (Hom ‘𝑂)) |
| 16 | tpos0 8195 | . . 3 ⊢ tpos ∅ = ∅ | |
| 17 | fvprc 6823 | . . . . 5 ⊢ (¬ 𝐶 ∈ V → (Hom ‘𝐶) = ∅) | |
| 18 | 5, 17 | eqtrid 2780 | . . . 4 ⊢ (¬ 𝐶 ∈ V → 𝐻 = ∅) |
| 19 | 18 | tposeqd 8168 | . . 3 ⊢ (¬ 𝐶 ∈ V → tpos 𝐻 = tpos ∅) |
| 20 | fvprc 6823 | . . . . . 6 ⊢ (¬ 𝐶 ∈ V → (oppCat‘𝐶) = ∅) | |
| 21 | 12, 20 | eqtrid 2780 | . . . . 5 ⊢ (¬ 𝐶 ∈ V → 𝑂 = ∅) |
| 22 | 21 | fveq2d 6835 | . . . 4 ⊢ (¬ 𝐶 ∈ V → (Hom ‘𝑂) = (Hom ‘∅)) |
| 23 | 1 | str0 17107 | . . . 4 ⊢ ∅ = (Hom ‘∅) |
| 24 | 22, 23 | eqtr4di 2786 | . . 3 ⊢ (¬ 𝐶 ∈ V → (Hom ‘𝑂) = ∅) |
| 25 | 16, 19, 24 | 3eqtr4a 2794 | . 2 ⊢ (¬ 𝐶 ∈ V → tpos 𝐻 = (Hom ‘𝑂)) |
| 26 | 15, 25 | pm2.61i 182 | 1 ⊢ tpos 𝐻 = (Hom ‘𝑂) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 Vcvv 3437 ∅c0 4282 〈cop 4583 × cxp 5619 ‘cfv 6489 (class class class)co 7355 ∈ cmpo 7357 1st c1st 7928 2nd c2nd 7929 tpos ctpos 8164 sSet csts 17081 ndxcnx 17111 Basecbs 17127 Hom chom 17179 compcco 17180 oppCatcoppc 17625 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-tpos 8165 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-z 12480 df-dec 12599 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-hom 17192 df-cco 17193 df-oppc 17626 |
| This theorem is referenced by: oppchom 17629 |
| Copyright terms: Public domain | W3C validator |