MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp2i Structured version   Visualization version   GIF version

Theorem simp2i 1140
Description: Infer a conjunct from a triple conjunction. (Contributed by NM, 19-Apr-2005.)
Hypothesis
Ref Expression
3simp1i.1 (𝜑𝜓𝜒)
Assertion
Ref Expression
simp2i 𝜓

Proof of Theorem simp2i
StepHypRef Expression
1 3simp1i.1 . 2 (𝜑𝜓𝜒)
2 simp2 1137 . 2 ((𝜑𝜓𝜒) → 𝜓)
31, 2ax-mp 5 1 𝜓
Colors of variables: wff setvar class
Syntax hints:  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089
This theorem is referenced by:  hartogslem2  9612  harwdom  9660  divalglem6  16446  strleun  17204  oppcbas  17777  sratset  21211  srads  21214  tngvsca  24685  birthdaylem3  27014  birthday  27015  divsqrsum  27043  harmonicbnd  27065  lgslem4  27362  lgscllem  27366  lgsdir2lem2  27388  mulog2sum  27599  vmalogdivsum2  27600  siilem2  30884  h2hva  31006  h2hsm  31007  hhssabloi  31294  elunop2  32045  1fldgenq  33289  zlmds  33908  zlmtset  33910  wallispilem3  45988  wallispilem4  45989  prstcbas  48734
  Copyright terms: Public domain W3C validator