| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp2i | Structured version Visualization version GIF version | ||
| Description: Infer a conjunct from a triple conjunction. (Contributed by NM, 19-Apr-2005.) |
| Ref | Expression |
|---|---|
| 3simp1i.1 | ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) |
| Ref | Expression |
|---|---|
| simp2i | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1i.1 | . 2 ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) | |
| 2 | simp2 1137 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜓 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: hartogslem2 9436 harwdom 9484 divalglem6 16311 strleun 17070 oppcbas 17626 sratset 21119 srads 21121 tngvsca 24562 birthdaylem3 26891 birthday 26892 divsqrsum 26920 harmonicbnd 26942 lgslem4 27239 lgscllem 27243 lgsdir2lem2 27265 mulog2sum 27476 vmalogdivsum2 27477 siilem2 30834 h2hva 30956 h2hsm 30957 hhssabloi 31244 elunop2 31995 1fldgenq 33295 zlmds 33996 zlmtset 33997 wallispilem3 46189 wallispilem4 46190 prstcbas 49679 cnelsubclem 49728 |
| Copyright terms: Public domain | W3C validator |