| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp2i | Structured version Visualization version GIF version | ||
| Description: Infer a conjunct from a triple conjunction. (Contributed by NM, 19-Apr-2005.) |
| Ref | Expression |
|---|---|
| 3simp1i.1 | ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) |
| Ref | Expression |
|---|---|
| simp2i | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1i.1 | . 2 ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) | |
| 2 | simp2 1137 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜓 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: hartogslem2 9496 harwdom 9544 divalglem6 16368 strleun 17127 oppcbas 17679 sratset 21090 srads 21092 tngvsca 24534 birthdaylem3 26863 birthday 26864 divsqrsum 26892 harmonicbnd 26914 lgslem4 27211 lgscllem 27215 lgsdir2lem2 27237 mulog2sum 27448 vmalogdivsum2 27449 siilem2 30781 h2hva 30903 h2hsm 30904 hhssabloi 31191 elunop2 31942 1fldgenq 33272 zlmds 33952 zlmtset 33953 wallispilem3 46065 wallispilem4 46066 prstcbas 49543 cnelsubclem 49592 |
| Copyright terms: Public domain | W3C validator |