Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp2i | Structured version Visualization version GIF version |
Description: Infer a conjunct from a triple conjunction. (Contributed by NM, 19-Apr-2005.) |
Ref | Expression |
---|---|
3simp1i.1 | ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) |
Ref | Expression |
---|---|
simp2i | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simp1i.1 | . 2 ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) | |
2 | simp2 1137 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜓 |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1089 |
This theorem is referenced by: hartogslem2 9350 harwdom 9398 divalglem6 16156 strleun 16907 oppcbas 17477 sratset 20501 srads 20504 tngvsca 23856 birthdaylem3 26152 birthday 26153 divsqrsum 26180 harmonicbnd 26202 lgslem4 26497 lgscllem 26501 lgsdir2lem2 26523 mulog2sum 26734 vmalogdivsum2 26735 siilem2 29263 h2hva 29385 h2hsm 29386 hhssabloi 29673 elunop2 30424 zlmds 31961 zlmtset 31963 wallispilem3 43837 wallispilem4 43838 prstcbas 46592 |
Copyright terms: Public domain | W3C validator |