MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp2i Structured version   Visualization version   GIF version

Theorem simp2i 1140
Description: Infer a conjunct from a triple conjunction. (Contributed by NM, 19-Apr-2005.)
Hypothesis
Ref Expression
3simp1i.1 (𝜑𝜓𝜒)
Assertion
Ref Expression
simp2i 𝜓

Proof of Theorem simp2i
StepHypRef Expression
1 3simp1i.1 . 2 (𝜑𝜓𝜒)
2 simp2 1137 . 2 ((𝜑𝜓𝜒) → 𝜓)
31, 2ax-mp 5 1 𝜓
Colors of variables: wff setvar class
Syntax hints:  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  hartogslem2  9429  harwdom  9477  divalglem6  16306  strleun  17065  oppcbas  17621  sratset  21115  srads  21117  tngvsca  24559  birthdaylem3  26888  birthday  26889  divsqrsum  26917  harmonicbnd  26939  lgslem4  27236  lgscllem  27240  lgsdir2lem2  27262  mulog2sum  27473  vmalogdivsum2  27474  siilem2  30827  h2hva  30949  h2hsm  30950  hhssabloi  31237  elunop2  31988  1fldgenq  33283  zlmds  33970  zlmtset  33971  wallispilem3  46104  wallispilem4  46105  prstcbas  49585  cnelsubclem  49634
  Copyright terms: Public domain W3C validator