MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp2i Structured version   Visualization version   GIF version

Theorem simp2i 1138
Description: Infer a conjunct from a triple conjunction. (Contributed by NM, 19-Apr-2005.)
Hypothesis
Ref Expression
3simp1i.1 (𝜑𝜓𝜒)
Assertion
Ref Expression
simp2i 𝜓

Proof of Theorem simp2i
StepHypRef Expression
1 3simp1i.1 . 2 (𝜑𝜓𝜒)
2 simp2 1135 . 2 ((𝜑𝜓𝜒) → 𝜓)
31, 2ax-mp 5 1 𝜓
Colors of variables: wff setvar class
Syntax hints:  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  hartogslem2  9263  harwdom  9311  divalglem6  16088  strleun  16839  oppcbas  17409  sratset  20433  srads  20436  tngvsca  23788  birthdaylem3  26084  birthday  26085  divsqrsum  26112  harmonicbnd  26134  lgslem4  26429  lgscllem  26433  lgsdir2lem2  26455  mulog2sum  26666  vmalogdivsum2  26667  siilem2  29193  h2hva  29315  h2hsm  29316  hhssabloi  29603  elunop2  30354  zlmds  31891  zlmtset  31893  wallispilem3  43562  wallispilem4  43563  prstcbas  46300
  Copyright terms: Public domain W3C validator