Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp2i | Structured version Visualization version GIF version |
Description: Infer a conjunct from a triple conjunction. (Contributed by NM, 19-Apr-2005.) |
Ref | Expression |
---|---|
3simp1i.1 | ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) |
Ref | Expression |
---|---|
simp2i | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simp1i.1 | . 2 ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) | |
2 | simp2 1136 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜓 |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: hartogslem2 9290 harwdom 9338 divalglem6 16118 strleun 16869 oppcbas 17439 sratset 20463 srads 20466 tngvsca 23818 birthdaylem3 26114 birthday 26115 divsqrsum 26142 harmonicbnd 26164 lgslem4 26459 lgscllem 26463 lgsdir2lem2 26485 mulog2sum 26696 vmalogdivsum2 26697 siilem2 29223 h2hva 29345 h2hsm 29346 hhssabloi 29633 elunop2 30384 zlmds 31921 zlmtset 31923 wallispilem3 43590 wallispilem4 43591 prstcbas 46327 |
Copyright terms: Public domain | W3C validator |