| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp2i | Structured version Visualization version GIF version | ||
| Description: Infer a conjunct from a triple conjunction. (Contributed by NM, 19-Apr-2005.) |
| Ref | Expression |
|---|---|
| 3simp1i.1 | ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) |
| Ref | Expression |
|---|---|
| simp2i | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1i.1 | . 2 ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) | |
| 2 | simp2 1137 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜓 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: hartogslem2 9429 harwdom 9477 divalglem6 16306 strleun 17065 oppcbas 17621 sratset 21115 srads 21117 tngvsca 24559 birthdaylem3 26888 birthday 26889 divsqrsum 26917 harmonicbnd 26939 lgslem4 27236 lgscllem 27240 lgsdir2lem2 27262 mulog2sum 27473 vmalogdivsum2 27474 siilem2 30827 h2hva 30949 h2hsm 30950 hhssabloi 31237 elunop2 31988 1fldgenq 33283 zlmds 33970 zlmtset 33971 wallispilem3 46104 wallispilem4 46105 prstcbas 49585 cnelsubclem 49634 |
| Copyright terms: Public domain | W3C validator |