MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp2i Structured version   Visualization version   GIF version

Theorem simp2i 1140
Description: Infer a conjunct from a triple conjunction. (Contributed by NM, 19-Apr-2005.)
Hypothesis
Ref Expression
3simp1i.1 (𝜑𝜓𝜒)
Assertion
Ref Expression
simp2i 𝜓

Proof of Theorem simp2i
StepHypRef Expression
1 3simp1i.1 . 2 (𝜑𝜓𝜒)
2 simp2 1137 . 2 ((𝜑𝜓𝜒) → 𝜓)
31, 2ax-mp 5 1 𝜓
Colors of variables: wff setvar class
Syntax hints:  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  hartogslem2  9496  harwdom  9544  divalglem6  16368  strleun  17127  oppcbas  17679  sratset  21090  srads  21092  tngvsca  24534  birthdaylem3  26863  birthday  26864  divsqrsum  26892  harmonicbnd  26914  lgslem4  27211  lgscllem  27215  lgsdir2lem2  27237  mulog2sum  27448  vmalogdivsum2  27449  siilem2  30781  h2hva  30903  h2hsm  30904  hhssabloi  31191  elunop2  31942  1fldgenq  33272  zlmds  33952  zlmtset  33953  wallispilem3  46065  wallispilem4  46066  prstcbas  49543  cnelsubclem  49592
  Copyright terms: Public domain W3C validator