![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp2i | Structured version Visualization version GIF version |
Description: Infer a conjunct from a triple conjunction. (Contributed by NM, 19-Apr-2005.) |
Ref | Expression |
---|---|
3simp1i.1 | ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) |
Ref | Expression |
---|---|
simp2i | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simp1i.1 | . 2 ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) | |
2 | simp2 1136 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜓 |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: hartogslem2 9581 harwdom 9629 divalglem6 16432 strleun 17191 oppcbas 17764 sratset 21206 srads 21209 tngvsca 24680 birthdaylem3 27011 birthday 27012 divsqrsum 27040 harmonicbnd 27062 lgslem4 27359 lgscllem 27363 lgsdir2lem2 27385 mulog2sum 27596 vmalogdivsum2 27597 siilem2 30881 h2hva 31003 h2hsm 31004 hhssabloi 31291 elunop2 32042 1fldgenq 33304 zlmds 33923 zlmtset 33925 wallispilem3 46023 wallispilem4 46024 prstcbas 48868 |
Copyright terms: Public domain | W3C validator |