| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp2i | Structured version Visualization version GIF version | ||
| Description: Infer a conjunct from a triple conjunction. (Contributed by NM, 19-Apr-2005.) |
| Ref | Expression |
|---|---|
| 3simp1i.1 | ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) |
| Ref | Expression |
|---|---|
| simp2i | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1i.1 | . 2 ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) | |
| 2 | simp2 1137 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜓 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: hartogslem2 9503 harwdom 9551 divalglem6 16375 strleun 17134 oppcbas 17686 sratset 21097 srads 21099 tngvsca 24541 birthdaylem3 26870 birthday 26871 divsqrsum 26899 harmonicbnd 26921 lgslem4 27218 lgscllem 27222 lgsdir2lem2 27244 mulog2sum 27455 vmalogdivsum2 27456 siilem2 30788 h2hva 30910 h2hsm 30911 hhssabloi 31198 elunop2 31949 1fldgenq 33279 zlmds 33959 zlmtset 33960 wallispilem3 46072 wallispilem4 46073 prstcbas 49547 cnelsubclem 49596 |
| Copyright terms: Public domain | W3C validator |