MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp2i Structured version   Visualization version   GIF version

Theorem simp2i 1140
Description: Infer a conjunct from a triple conjunction. (Contributed by NM, 19-Apr-2005.)
Hypothesis
Ref Expression
3simp1i.1 (𝜑𝜓𝜒)
Assertion
Ref Expression
simp2i 𝜓

Proof of Theorem simp2i
StepHypRef Expression
1 3simp1i.1 . 2 (𝜑𝜓𝜒)
2 simp2 1137 . 2 ((𝜑𝜓𝜒) → 𝜓)
31, 2ax-mp 5 1 𝜓
Colors of variables: wff setvar class
Syntax hints:  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  hartogslem2  9436  harwdom  9484  divalglem6  16311  strleun  17070  oppcbas  17626  sratset  21119  srads  21121  tngvsca  24562  birthdaylem3  26891  birthday  26892  divsqrsum  26920  harmonicbnd  26942  lgslem4  27239  lgscllem  27243  lgsdir2lem2  27265  mulog2sum  27476  vmalogdivsum2  27477  siilem2  30834  h2hva  30956  h2hsm  30957  hhssabloi  31244  elunop2  31995  1fldgenq  33295  zlmds  33996  zlmtset  33997  wallispilem3  46189  wallispilem4  46190  prstcbas  49679  cnelsubclem  49728
  Copyright terms: Public domain W3C validator