| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp2i | Structured version Visualization version GIF version | ||
| Description: Infer a conjunct from a triple conjunction. (Contributed by NM, 19-Apr-2005.) |
| Ref | Expression |
|---|---|
| 3simp1i.1 | ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) |
| Ref | Expression |
|---|---|
| simp2i | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1i.1 | . 2 ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) | |
| 2 | simp2 1137 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜓 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: hartogslem2 9454 harwdom 9502 divalglem6 16327 strleun 17086 oppcbas 17642 sratset 21105 srads 21107 tngvsca 24550 birthdaylem3 26879 birthday 26880 divsqrsum 26908 harmonicbnd 26930 lgslem4 27227 lgscllem 27231 lgsdir2lem2 27253 mulog2sum 27464 vmalogdivsum2 27465 siilem2 30814 h2hva 30936 h2hsm 30937 hhssabloi 31224 elunop2 31975 1fldgenq 33271 zlmds 33928 zlmtset 33929 wallispilem3 46049 wallispilem4 46050 prstcbas 49540 cnelsubclem 49589 |
| Copyright terms: Public domain | W3C validator |