![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp2i | Structured version Visualization version GIF version |
Description: Infer a conjunct from a triple conjunction. (Contributed by NM, 19-Apr-2005.) |
Ref | Expression |
---|---|
3simp1i.1 | ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) |
Ref | Expression |
---|---|
simp2i | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simp1i.1 | . 2 ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) | |
2 | simp2 1137 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜓 |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: hartogslem2 9612 harwdom 9660 divalglem6 16446 strleun 17204 oppcbas 17777 sratset 21211 srads 21214 tngvsca 24685 birthdaylem3 27014 birthday 27015 divsqrsum 27043 harmonicbnd 27065 lgslem4 27362 lgscllem 27366 lgsdir2lem2 27388 mulog2sum 27599 vmalogdivsum2 27600 siilem2 30884 h2hva 31006 h2hsm 31007 hhssabloi 31294 elunop2 32045 1fldgenq 33289 zlmds 33908 zlmtset 33910 wallispilem3 45988 wallispilem4 45989 prstcbas 48734 |
Copyright terms: Public domain | W3C validator |