| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp2i | Structured version Visualization version GIF version | ||
| Description: Infer a conjunct from a triple conjunction. (Contributed by NM, 19-Apr-2005.) |
| Ref | Expression |
|---|---|
| 3simp1i.1 | ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) |
| Ref | Expression |
|---|---|
| simp2i | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1i.1 | . 2 ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) | |
| 2 | simp2 1137 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜓 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: hartogslem2 9557 harwdom 9605 divalglem6 16417 strleun 17176 oppcbas 17730 sratset 21141 srads 21143 tngvsca 24585 birthdaylem3 26915 birthday 26916 divsqrsum 26944 harmonicbnd 26966 lgslem4 27263 lgscllem 27267 lgsdir2lem2 27289 mulog2sum 27500 vmalogdivsum2 27501 siilem2 30833 h2hva 30955 h2hsm 30956 hhssabloi 31243 elunop2 31994 1fldgenq 33316 zlmds 33993 zlmtset 33994 wallispilem3 46096 wallispilem4 46097 prstcbas 49431 cnelsubclem 49480 |
| Copyright terms: Public domain | W3C validator |