![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp2i | Structured version Visualization version GIF version |
Description: Infer a conjunct from a triple conjunction. (Contributed by NM, 19-Apr-2005.) |
Ref | Expression |
---|---|
3simp1i.1 | ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) |
Ref | Expression |
---|---|
simp2i | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simp1i.1 | . 2 ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) | |
2 | simp2 1136 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜓 |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1088 |
This theorem is referenced by: hartogslem2 9544 harwdom 9592 divalglem6 16348 strleun 17097 oppcbas 17670 sratset 21037 srads 21040 tngvsca 24480 birthdaylem3 26799 birthday 26800 divsqrsum 26827 harmonicbnd 26849 lgslem4 27146 lgscllem 27150 lgsdir2lem2 27172 mulog2sum 27383 vmalogdivsum2 27384 siilem2 30538 h2hva 30660 h2hsm 30661 hhssabloi 30948 elunop2 31699 1fldgenq 32848 zlmds 33406 zlmtset 33408 wallispilem3 45242 wallispilem4 45243 prstcbas 47849 |
Copyright terms: Public domain | W3C validator |