Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp2i | Structured version Visualization version GIF version |
Description: Infer a conjunct from a triple conjunction. (Contributed by NM, 19-Apr-2005.) |
Ref | Expression |
---|---|
3simp1i.1 | ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) |
Ref | Expression |
---|---|
simp2i | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simp1i.1 | . 2 ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) | |
2 | simp2 1135 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜓 |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: hartogslem2 9263 harwdom 9311 divalglem6 16088 strleun 16839 oppcbas 17409 sratset 20433 srads 20436 tngvsca 23788 birthdaylem3 26084 birthday 26085 divsqrsum 26112 harmonicbnd 26134 lgslem4 26429 lgscllem 26433 lgsdir2lem2 26455 mulog2sum 26666 vmalogdivsum2 26667 siilem2 29193 h2hva 29315 h2hsm 29316 hhssabloi 29603 elunop2 30354 zlmds 31891 zlmtset 31893 wallispilem3 43562 wallispilem4 43563 prstcbas 46300 |
Copyright terms: Public domain | W3C validator |