MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulog2sumlem1 Structured version   Visualization version   GIF version

Theorem mulog2sumlem1 27596
Description: Asymptotic formula for Σ𝑛𝑥, log(𝑥 / 𝑛) / 𝑛 = (1 / 2)log↑2(𝑥) + γ · log𝑥𝐿 + 𝑂(log𝑥 / 𝑥), with explicit constants. Equation 10.2.7 of [Shapiro], p. 407. (Contributed by Mario Carneiro, 18-May-2016.)
Hypotheses
Ref Expression
logdivsum.1 𝐹 = (𝑦 ∈ ℝ+ ↦ (Σ𝑖 ∈ (1...(⌊‘𝑦))((log‘𝑖) / 𝑖) − (((log‘𝑦)↑2) / 2)))
mulog2sumlem.1 (𝜑𝐹𝑟 𝐿)
mulog2sumlem1.2 (𝜑𝐴 ∈ ℝ+)
mulog2sumlem1.3 (𝜑 → e ≤ 𝐴)
Assertion
Ref Expression
mulog2sumlem1 (𝜑 → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘(𝐴 / 𝑚)) / 𝑚) − ((((log‘𝐴)↑2) / 2) + ((γ · (log‘𝐴)) − 𝐿)))) ≤ (2 · ((log‘𝐴) / 𝐴)))
Distinct variable groups:   𝑖,𝑚,𝑦,𝐴   𝜑,𝑚
Allowed substitution hints:   𝜑(𝑦,𝑖)   𝐹(𝑦,𝑖,𝑚)   𝐿(𝑦,𝑖,𝑚)

Proof of Theorem mulog2sumlem1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fzfid 14024 . . . . . 6 (𝜑 → (1...(⌊‘𝐴)) ∈ Fin)
2 mulog2sumlem1.2 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ+)
3 elfznn 13613 . . . . . . . . . 10 (𝑚 ∈ (1...(⌊‘𝐴)) → 𝑚 ∈ ℕ)
43nnrpd 13097 . . . . . . . . 9 (𝑚 ∈ (1...(⌊‘𝐴)) → 𝑚 ∈ ℝ+)
5 rpdivcl 13082 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝑚 ∈ ℝ+) → (𝐴 / 𝑚) ∈ ℝ+)
62, 4, 5syl2an 595 . . . . . . . 8 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → (𝐴 / 𝑚) ∈ ℝ+)
76relogcld 26683 . . . . . . 7 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → (log‘(𝐴 / 𝑚)) ∈ ℝ)
83adantl 481 . . . . . . 7 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → 𝑚 ∈ ℕ)
97, 8nndivred 12347 . . . . . 6 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → ((log‘(𝐴 / 𝑚)) / 𝑚) ∈ ℝ)
101, 9fsumrecl 15782 . . . . 5 (𝜑 → Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘(𝐴 / 𝑚)) / 𝑚) ∈ ℝ)
112relogcld 26683 . . . . . . . 8 (𝜑 → (log‘𝐴) ∈ ℝ)
1211resqcld 14175 . . . . . . 7 (𝜑 → ((log‘𝐴)↑2) ∈ ℝ)
1312rehalfcld 12540 . . . . . 6 (𝜑 → (((log‘𝐴)↑2) / 2) ∈ ℝ)
14 emre 27067 . . . . . . . 8 γ ∈ ℝ
15 remulcl 11269 . . . . . . . 8 ((γ ∈ ℝ ∧ (log‘𝐴) ∈ ℝ) → (γ · (log‘𝐴)) ∈ ℝ)
1614, 11, 15sylancr 586 . . . . . . 7 (𝜑 → (γ · (log‘𝐴)) ∈ ℝ)
17 rpsup 13917 . . . . . . . . 9 sup(ℝ+, ℝ*, < ) = +∞
1817a1i 11 . . . . . . . 8 (𝜑 → sup(ℝ+, ℝ*, < ) = +∞)
19 logdivsum.1 . . . . . . . . . . . . 13 𝐹 = (𝑦 ∈ ℝ+ ↦ (Σ𝑖 ∈ (1...(⌊‘𝑦))((log‘𝑖) / 𝑖) − (((log‘𝑦)↑2) / 2)))
2019logdivsum 27595 . . . . . . . . . . . 12 (𝐹:ℝ+⟶ℝ ∧ 𝐹 ∈ dom ⇝𝑟 ∧ ((𝐹𝑟 𝐿𝐴 ∈ ℝ+ ∧ e ≤ 𝐴) → (abs‘((𝐹𝐴) − 𝐿)) ≤ ((log‘𝐴) / 𝐴)))
2120simp1i 1139 . . . . . . . . . . 11 𝐹:ℝ+⟶ℝ
2221a1i 11 . . . . . . . . . 10 (𝜑𝐹:ℝ+⟶ℝ)
2322feqmptd 6990 . . . . . . . . 9 (𝜑𝐹 = (𝑥 ∈ ℝ+ ↦ (𝐹𝑥)))
24 mulog2sumlem.1 . . . . . . . . 9 (𝜑𝐹𝑟 𝐿)
2523, 24eqbrtrrd 5190 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ+ ↦ (𝐹𝑥)) ⇝𝑟 𝐿)
2621ffvelcdmi 7117 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (𝐹𝑥) ∈ ℝ)
2726adantl 481 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (𝐹𝑥) ∈ ℝ)
2818, 25, 27rlimrecl 15626 . . . . . . 7 (𝜑𝐿 ∈ ℝ)
2916, 28resubcld 11718 . . . . . 6 (𝜑 → ((γ · (log‘𝐴)) − 𝐿) ∈ ℝ)
3013, 29readdcld 11319 . . . . 5 (𝜑 → ((((log‘𝐴)↑2) / 2) + ((γ · (log‘𝐴)) − 𝐿)) ∈ ℝ)
3110, 30resubcld 11718 . . . 4 (𝜑 → (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘(𝐴 / 𝑚)) / 𝑚) − ((((log‘𝐴)↑2) / 2) + ((γ · (log‘𝐴)) − 𝐿))) ∈ ℝ)
3231recnd 11318 . . 3 (𝜑 → (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘(𝐴 / 𝑚)) / 𝑚) − ((((log‘𝐴)↑2) / 2) + ((γ · (log‘𝐴)) − 𝐿))) ∈ ℂ)
3332abscld 15485 . 2 (𝜑 → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘(𝐴 / 𝑚)) / 𝑚) − ((((log‘𝐴)↑2) / 2) + ((γ · (log‘𝐴)) − 𝐿)))) ∈ ℝ)
34 rerpdivcl 13087 . . . . . . . 8 (((log‘𝐴) ∈ ℝ ∧ 𝑚 ∈ ℝ+) → ((log‘𝐴) / 𝑚) ∈ ℝ)
3511, 4, 34syl2an 595 . . . . . . 7 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → ((log‘𝐴) / 𝑚) ∈ ℝ)
3635recnd 11318 . . . . . 6 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → ((log‘𝐴) / 𝑚) ∈ ℂ)
371, 36fsumcl 15781 . . . . 5 (𝜑 → Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) ∈ ℂ)
3811recnd 11318 . . . . . 6 (𝜑 → (log‘𝐴) ∈ ℂ)
39 readdcl 11267 . . . . . . . 8 (((log‘𝐴) ∈ ℝ ∧ γ ∈ ℝ) → ((log‘𝐴) + γ) ∈ ℝ)
4011, 14, 39sylancl 585 . . . . . . 7 (𝜑 → ((log‘𝐴) + γ) ∈ ℝ)
4140recnd 11318 . . . . . 6 (𝜑 → ((log‘𝐴) + γ) ∈ ℂ)
4238, 41mulcld 11310 . . . . 5 (𝜑 → ((log‘𝐴) · ((log‘𝐴) + γ)) ∈ ℂ)
4337, 42subcld 11647 . . . 4 (𝜑 → (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ))) ∈ ℂ)
4443abscld 15485 . . 3 (𝜑 → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ)))) ∈ ℝ)
458nnrpd 13097 . . . . . . . . 9 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → 𝑚 ∈ ℝ+)
4645relogcld 26683 . . . . . . . 8 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → (log‘𝑚) ∈ ℝ)
4746, 8nndivred 12347 . . . . . . 7 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → ((log‘𝑚) / 𝑚) ∈ ℝ)
4847recnd 11318 . . . . . 6 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → ((log‘𝑚) / 𝑚) ∈ ℂ)
491, 48fsumcl 15781 . . . . 5 (𝜑 → Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) ∈ ℂ)
5013recnd 11318 . . . . . 6 (𝜑 → (((log‘𝐴)↑2) / 2) ∈ ℂ)
5128recnd 11318 . . . . . 6 (𝜑𝐿 ∈ ℂ)
5250, 51addcld 11309 . . . . 5 (𝜑 → ((((log‘𝐴)↑2) / 2) + 𝐿) ∈ ℂ)
5349, 52subcld 11647 . . . 4 (𝜑 → (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿)) ∈ ℂ)
5453abscld 15485 . . 3 (𝜑 → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿))) ∈ ℝ)
5544, 54readdcld 11319 . 2 (𝜑 → ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ)))) + (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿)))) ∈ ℝ)
56 2re 12367 . . 3 2 ∈ ℝ
5711, 2rerpdivcld 13130 . . 3 (𝜑 → ((log‘𝐴) / 𝐴) ∈ ℝ)
58 remulcl 11269 . . 3 ((2 ∈ ℝ ∧ ((log‘𝐴) / 𝐴) ∈ ℝ) → (2 · ((log‘𝐴) / 𝐴)) ∈ ℝ)
5956, 57, 58sylancr 586 . 2 (𝜑 → (2 · ((log‘𝐴) / 𝐴)) ∈ ℝ)
60 relogdiv 26653 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+𝑚 ∈ ℝ+) → (log‘(𝐴 / 𝑚)) = ((log‘𝐴) − (log‘𝑚)))
612, 4, 60syl2an 595 . . . . . . . . . 10 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → (log‘(𝐴 / 𝑚)) = ((log‘𝐴) − (log‘𝑚)))
6261oveq1d 7463 . . . . . . . . 9 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → ((log‘(𝐴 / 𝑚)) / 𝑚) = (((log‘𝐴) − (log‘𝑚)) / 𝑚))
6338adantr 480 . . . . . . . . . 10 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → (log‘𝐴) ∈ ℂ)
6446recnd 11318 . . . . . . . . . 10 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → (log‘𝑚) ∈ ℂ)
6545rpcnne0d 13108 . . . . . . . . . 10 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0))
66 divsubdir 11988 . . . . . . . . . 10 (((log‘𝐴) ∈ ℂ ∧ (log‘𝑚) ∈ ℂ ∧ (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0)) → (((log‘𝐴) − (log‘𝑚)) / 𝑚) = (((log‘𝐴) / 𝑚) − ((log‘𝑚) / 𝑚)))
6763, 64, 65, 66syl3anc 1371 . . . . . . . . 9 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → (((log‘𝐴) − (log‘𝑚)) / 𝑚) = (((log‘𝐴) / 𝑚) − ((log‘𝑚) / 𝑚)))
6862, 67eqtrd 2780 . . . . . . . 8 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → ((log‘(𝐴 / 𝑚)) / 𝑚) = (((log‘𝐴) / 𝑚) − ((log‘𝑚) / 𝑚)))
6968sumeq2dv 15750 . . . . . . 7 (𝜑 → Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘(𝐴 / 𝑚)) / 𝑚) = Σ𝑚 ∈ (1...(⌊‘𝐴))(((log‘𝐴) / 𝑚) − ((log‘𝑚) / 𝑚)))
701, 36, 48fsumsub 15836 . . . . . . 7 (𝜑 → Σ𝑚 ∈ (1...(⌊‘𝐴))(((log‘𝐴) / 𝑚) − ((log‘𝑚) / 𝑚)) = (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚)))
7169, 70eqtrd 2780 . . . . . 6 (𝜑 → Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘(𝐴 / 𝑚)) / 𝑚) = (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚)))
72 remulcl 11269 . . . . . . . . . . . . 13 (((log‘𝐴) ∈ ℝ ∧ γ ∈ ℝ) → ((log‘𝐴) · γ) ∈ ℝ)
7311, 14, 72sylancl 585 . . . . . . . . . . . 12 (𝜑 → ((log‘𝐴) · γ) ∈ ℝ)
7413, 73readdcld 11319 . . . . . . . . . . 11 (𝜑 → ((((log‘𝐴)↑2) / 2) + ((log‘𝐴) · γ)) ∈ ℝ)
7574recnd 11318 . . . . . . . . . 10 (𝜑 → ((((log‘𝐴)↑2) / 2) + ((log‘𝐴) · γ)) ∈ ℂ)
7675, 50pncand 11648 . . . . . . . . 9 (𝜑 → ((((((log‘𝐴)↑2) / 2) + ((log‘𝐴) · γ)) + (((log‘𝐴)↑2) / 2)) − (((log‘𝐴)↑2) / 2)) = ((((log‘𝐴)↑2) / 2) + ((log‘𝐴) · γ)))
7714recni 11304 . . . . . . . . . . . . 13 γ ∈ ℂ
7877a1i 11 . . . . . . . . . . . 12 (𝜑 → γ ∈ ℂ)
7938, 38, 78adddid 11314 . . . . . . . . . . 11 (𝜑 → ((log‘𝐴) · ((log‘𝐴) + γ)) = (((log‘𝐴) · (log‘𝐴)) + ((log‘𝐴) · γ)))
8012recnd 11318 . . . . . . . . . . . . . 14 (𝜑 → ((log‘𝐴)↑2) ∈ ℂ)
81802halvesd 12539 . . . . . . . . . . . . 13 (𝜑 → ((((log‘𝐴)↑2) / 2) + (((log‘𝐴)↑2) / 2)) = ((log‘𝐴)↑2))
8238sqvald 14193 . . . . . . . . . . . . 13 (𝜑 → ((log‘𝐴)↑2) = ((log‘𝐴) · (log‘𝐴)))
8381, 82eqtrd 2780 . . . . . . . . . . . 12 (𝜑 → ((((log‘𝐴)↑2) / 2) + (((log‘𝐴)↑2) / 2)) = ((log‘𝐴) · (log‘𝐴)))
8483oveq1d 7463 . . . . . . . . . . 11 (𝜑 → (((((log‘𝐴)↑2) / 2) + (((log‘𝐴)↑2) / 2)) + ((log‘𝐴) · γ)) = (((log‘𝐴) · (log‘𝐴)) + ((log‘𝐴) · γ)))
8573recnd 11318 . . . . . . . . . . . 12 (𝜑 → ((log‘𝐴) · γ) ∈ ℂ)
8650, 50, 85add32d 11517 . . . . . . . . . . 11 (𝜑 → (((((log‘𝐴)↑2) / 2) + (((log‘𝐴)↑2) / 2)) + ((log‘𝐴) · γ)) = (((((log‘𝐴)↑2) / 2) + ((log‘𝐴) · γ)) + (((log‘𝐴)↑2) / 2)))
8779, 84, 863eqtr2d 2786 . . . . . . . . . 10 (𝜑 → ((log‘𝐴) · ((log‘𝐴) + γ)) = (((((log‘𝐴)↑2) / 2) + ((log‘𝐴) · γ)) + (((log‘𝐴)↑2) / 2)))
8887oveq1d 7463 . . . . . . . . 9 (𝜑 → (((log‘𝐴) · ((log‘𝐴) + γ)) − (((log‘𝐴)↑2) / 2)) = ((((((log‘𝐴)↑2) / 2) + ((log‘𝐴) · γ)) + (((log‘𝐴)↑2) / 2)) − (((log‘𝐴)↑2) / 2)))
89 mulcom 11270 . . . . . . . . . . 11 ((γ ∈ ℂ ∧ (log‘𝐴) ∈ ℂ) → (γ · (log‘𝐴)) = ((log‘𝐴) · γ))
9077, 38, 89sylancr 586 . . . . . . . . . 10 (𝜑 → (γ · (log‘𝐴)) = ((log‘𝐴) · γ))
9190oveq2d 7464 . . . . . . . . 9 (𝜑 → ((((log‘𝐴)↑2) / 2) + (γ · (log‘𝐴))) = ((((log‘𝐴)↑2) / 2) + ((log‘𝐴) · γ)))
9276, 88, 913eqtr4rd 2791 . . . . . . . 8 (𝜑 → ((((log‘𝐴)↑2) / 2) + (γ · (log‘𝐴))) = (((log‘𝐴) · ((log‘𝐴) + γ)) − (((log‘𝐴)↑2) / 2)))
9392oveq1d 7463 . . . . . . 7 (𝜑 → (((((log‘𝐴)↑2) / 2) + (γ · (log‘𝐴))) − 𝐿) = ((((log‘𝐴) · ((log‘𝐴) + γ)) − (((log‘𝐴)↑2) / 2)) − 𝐿))
9490, 85eqeltrd 2844 . . . . . . . 8 (𝜑 → (γ · (log‘𝐴)) ∈ ℂ)
9550, 94, 51addsubassd 11667 . . . . . . 7 (𝜑 → (((((log‘𝐴)↑2) / 2) + (γ · (log‘𝐴))) − 𝐿) = ((((log‘𝐴)↑2) / 2) + ((γ · (log‘𝐴)) − 𝐿)))
9642, 50, 51subsub4d 11678 . . . . . . 7 (𝜑 → ((((log‘𝐴) · ((log‘𝐴) + γ)) − (((log‘𝐴)↑2) / 2)) − 𝐿) = (((log‘𝐴) · ((log‘𝐴) + γ)) − ((((log‘𝐴)↑2) / 2) + 𝐿)))
9793, 95, 963eqtr3d 2788 . . . . . 6 (𝜑 → ((((log‘𝐴)↑2) / 2) + ((γ · (log‘𝐴)) − 𝐿)) = (((log‘𝐴) · ((log‘𝐴) + γ)) − ((((log‘𝐴)↑2) / 2) + 𝐿)))
9871, 97oveq12d 7466 . . . . 5 (𝜑 → (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘(𝐴 / 𝑚)) / 𝑚) − ((((log‘𝐴)↑2) / 2) + ((γ · (log‘𝐴)) − 𝐿))) = ((Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚)) − (((log‘𝐴) · ((log‘𝐴) + γ)) − ((((log‘𝐴)↑2) / 2) + 𝐿))))
9937, 49, 42, 52sub4d 11696 . . . . 5 (𝜑 → ((Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚)) − (((log‘𝐴) · ((log‘𝐴) + γ)) − ((((log‘𝐴)↑2) / 2) + 𝐿))) = ((Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ))) − (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿))))
10098, 99eqtrd 2780 . . . 4 (𝜑 → (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘(𝐴 / 𝑚)) / 𝑚) − ((((log‘𝐴)↑2) / 2) + ((γ · (log‘𝐴)) − 𝐿))) = ((Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ))) − (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿))))
101100fveq2d 6924 . . 3 (𝜑 → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘(𝐴 / 𝑚)) / 𝑚) − ((((log‘𝐴)↑2) / 2) + ((γ · (log‘𝐴)) − 𝐿)))) = (abs‘((Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ))) − (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿)))))
10243, 53abs2dif2d 15507 . . 3 (𝜑 → (abs‘((Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ))) − (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿)))) ≤ ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ)))) + (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿)))))
103101, 102eqbrtrd 5188 . 2 (𝜑 → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘(𝐴 / 𝑚)) / 𝑚) − ((((log‘𝐴)↑2) / 2) + ((γ · (log‘𝐴)) − 𝐿)))) ≤ ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ)))) + (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿)))))
104 harmonicbnd4 27072 . . . . . . 7 (𝐴 ∈ ℝ+ → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ))) ≤ (1 / 𝐴))
1052, 104syl 17 . . . . . 6 (𝜑 → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ))) ≤ (1 / 𝐴))
1068nnrecred 12344 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → (1 / 𝑚) ∈ ℝ)
1071, 106fsumrecl 15782 . . . . . . . . . 10 (𝜑 → Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) ∈ ℝ)
108107, 40resubcld 11718 . . . . . . . . 9 (𝜑 → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ)) ∈ ℝ)
109108recnd 11318 . . . . . . . 8 (𝜑 → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ)) ∈ ℂ)
110109abscld 15485 . . . . . . 7 (𝜑 → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ))) ∈ ℝ)
1112rprecred 13110 . . . . . . 7 (𝜑 → (1 / 𝐴) ∈ ℝ)
112 0red 11293 . . . . . . . 8 (𝜑 → 0 ∈ ℝ)
113 1red 11291 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
114 0lt1 11812 . . . . . . . . 9 0 < 1
115114a1i 11 . . . . . . . 8 (𝜑 → 0 < 1)
116 loge 26646 . . . . . . . . 9 (log‘e) = 1
117 mulog2sumlem1.3 . . . . . . . . . 10 (𝜑 → e ≤ 𝐴)
118 epr 16256 . . . . . . . . . . 11 e ∈ ℝ+
119 logleb 26663 . . . . . . . . . . 11 ((e ∈ ℝ+𝐴 ∈ ℝ+) → (e ≤ 𝐴 ↔ (log‘e) ≤ (log‘𝐴)))
120118, 2, 119sylancr 586 . . . . . . . . . 10 (𝜑 → (e ≤ 𝐴 ↔ (log‘e) ≤ (log‘𝐴)))
121117, 120mpbid 232 . . . . . . . . 9 (𝜑 → (log‘e) ≤ (log‘𝐴))
122116, 121eqbrtrrid 5202 . . . . . . . 8 (𝜑 → 1 ≤ (log‘𝐴))
123112, 113, 11, 115, 122ltletrd 11450 . . . . . . 7 (𝜑 → 0 < (log‘𝐴))
124 lemul2 12147 . . . . . . 7 (((abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ))) ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ ∧ ((log‘𝐴) ∈ ℝ ∧ 0 < (log‘𝐴))) → ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ))) ≤ (1 / 𝐴) ↔ ((log‘𝐴) · (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ)))) ≤ ((log‘𝐴) · (1 / 𝐴))))
125110, 111, 11, 123, 124syl112anc 1374 . . . . . 6 (𝜑 → ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ))) ≤ (1 / 𝐴) ↔ ((log‘𝐴) · (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ)))) ≤ ((log‘𝐴) · (1 / 𝐴))))
126105, 125mpbid 232 . . . . 5 (𝜑 → ((log‘𝐴) · (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ)))) ≤ ((log‘𝐴) · (1 / 𝐴)))
12745rpcnd 13101 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → 𝑚 ∈ ℂ)
12845rpne0d 13104 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → 𝑚 ≠ 0)
12963, 127, 128divrecd 12073 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → ((log‘𝐴) / 𝑚) = ((log‘𝐴) · (1 / 𝑚)))
130129sumeq2dv 15750 . . . . . . . . . 10 (𝜑 → Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) = Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) · (1 / 𝑚)))
131106recnd 11318 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → (1 / 𝑚) ∈ ℂ)
1321, 38, 131fsummulc2 15832 . . . . . . . . . 10 (𝜑 → ((log‘𝐴) · Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚)) = Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) · (1 / 𝑚)))
133130, 132eqtr4d 2783 . . . . . . . . 9 (𝜑 → Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) = ((log‘𝐴) · Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚)))
134133oveq1d 7463 . . . . . . . 8 (𝜑 → (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ))) = (((log‘𝐴) · Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚)) − ((log‘𝐴) · ((log‘𝐴) + γ))))
1351, 131fsumcl 15781 . . . . . . . . 9 (𝜑 → Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) ∈ ℂ)
13638, 135, 41subdid 11746 . . . . . . . 8 (𝜑 → ((log‘𝐴) · (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ))) = (((log‘𝐴) · Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚)) − ((log‘𝐴) · ((log‘𝐴) + γ))))
137134, 136eqtr4d 2783 . . . . . . 7 (𝜑 → (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ))) = ((log‘𝐴) · (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ))))
138137fveq2d 6924 . . . . . 6 (𝜑 → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ)))) = (abs‘((log‘𝐴) · (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ)))))
139135, 41subcld 11647 . . . . . . 7 (𝜑 → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ)) ∈ ℂ)
14038, 139absmuld 15503 . . . . . 6 (𝜑 → (abs‘((log‘𝐴) · (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ)))) = ((abs‘(log‘𝐴)) · (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ)))))
141112, 11, 123ltled 11438 . . . . . . . 8 (𝜑 → 0 ≤ (log‘𝐴))
14211, 141absidd 15471 . . . . . . 7 (𝜑 → (abs‘(log‘𝐴)) = (log‘𝐴))
143142oveq1d 7463 . . . . . 6 (𝜑 → ((abs‘(log‘𝐴)) · (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ)))) = ((log‘𝐴) · (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ)))))
144138, 140, 1433eqtrd 2784 . . . . 5 (𝜑 → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ)))) = ((log‘𝐴) · (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ)))))
1452rpcnd 13101 . . . . . 6 (𝜑𝐴 ∈ ℂ)
1462rpne0d 13104 . . . . . 6 (𝜑𝐴 ≠ 0)
14738, 145, 146divrecd 12073 . . . . 5 (𝜑 → ((log‘𝐴) / 𝐴) = ((log‘𝐴) · (1 / 𝐴)))
148126, 144, 1473brtr4d 5198 . . . 4 (𝜑 → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ)))) ≤ ((log‘𝐴) / 𝐴))
149 fveq2 6920 . . . . . . . . . . . . . 14 (𝑖 = 𝑚 → (log‘𝑖) = (log‘𝑚))
150 id 22 . . . . . . . . . . . . . 14 (𝑖 = 𝑚𝑖 = 𝑚)
151149, 150oveq12d 7466 . . . . . . . . . . . . 13 (𝑖 = 𝑚 → ((log‘𝑖) / 𝑖) = ((log‘𝑚) / 𝑚))
152151cbvsumv 15744 . . . . . . . . . . . 12 Σ𝑖 ∈ (1...(⌊‘𝑦))((log‘𝑖) / 𝑖) = Σ𝑚 ∈ (1...(⌊‘𝑦))((log‘𝑚) / 𝑚)
153 fveq2 6920 . . . . . . . . . . . . . 14 (𝑦 = 𝐴 → (⌊‘𝑦) = (⌊‘𝐴))
154153oveq2d 7464 . . . . . . . . . . . . 13 (𝑦 = 𝐴 → (1...(⌊‘𝑦)) = (1...(⌊‘𝐴)))
155154sumeq1d 15748 . . . . . . . . . . . 12 (𝑦 = 𝐴 → Σ𝑚 ∈ (1...(⌊‘𝑦))((log‘𝑚) / 𝑚) = Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚))
156152, 155eqtrid 2792 . . . . . . . . . . 11 (𝑦 = 𝐴 → Σ𝑖 ∈ (1...(⌊‘𝑦))((log‘𝑖) / 𝑖) = Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚))
157 fveq2 6920 . . . . . . . . . . . . 13 (𝑦 = 𝐴 → (log‘𝑦) = (log‘𝐴))
158157oveq1d 7463 . . . . . . . . . . . 12 (𝑦 = 𝐴 → ((log‘𝑦)↑2) = ((log‘𝐴)↑2))
159158oveq1d 7463 . . . . . . . . . . 11 (𝑦 = 𝐴 → (((log‘𝑦)↑2) / 2) = (((log‘𝐴)↑2) / 2))
160156, 159oveq12d 7466 . . . . . . . . . 10 (𝑦 = 𝐴 → (Σ𝑖 ∈ (1...(⌊‘𝑦))((log‘𝑖) / 𝑖) − (((log‘𝑦)↑2) / 2)) = (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − (((log‘𝐴)↑2) / 2)))
161 ovex 7481 . . . . . . . . . 10 𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − (((log‘𝐴)↑2) / 2)) ∈ V
162160, 19, 161fvmpt 7029 . . . . . . . . 9 (𝐴 ∈ ℝ+ → (𝐹𝐴) = (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − (((log‘𝐴)↑2) / 2)))
1632, 162syl 17 . . . . . . . 8 (𝜑 → (𝐹𝐴) = (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − (((log‘𝐴)↑2) / 2)))
164163oveq1d 7463 . . . . . . 7 (𝜑 → ((𝐹𝐴) − 𝐿) = ((Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − (((log‘𝐴)↑2) / 2)) − 𝐿))
16549, 50, 51subsub4d 11678 . . . . . . 7 (𝜑 → ((Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − (((log‘𝐴)↑2) / 2)) − 𝐿) = (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿)))
166164, 165eqtrd 2780 . . . . . 6 (𝜑 → ((𝐹𝐴) − 𝐿) = (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿)))
167166fveq2d 6924 . . . . 5 (𝜑 → (abs‘((𝐹𝐴) − 𝐿)) = (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿))))
16820simp3i 1141 . . . . . 6 ((𝐹𝑟 𝐿𝐴 ∈ ℝ+ ∧ e ≤ 𝐴) → (abs‘((𝐹𝐴) − 𝐿)) ≤ ((log‘𝐴) / 𝐴))
16924, 2, 117, 168syl3anc 1371 . . . . 5 (𝜑 → (abs‘((𝐹𝐴) − 𝐿)) ≤ ((log‘𝐴) / 𝐴))
170167, 169eqbrtrrd 5190 . . . 4 (𝜑 → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿))) ≤ ((log‘𝐴) / 𝐴))
17144, 54, 57, 57, 148, 170le2addd 11909 . . 3 (𝜑 → ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ)))) + (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿)))) ≤ (((log‘𝐴) / 𝐴) + ((log‘𝐴) / 𝐴)))
17257recnd 11318 . . . 4 (𝜑 → ((log‘𝐴) / 𝐴) ∈ ℂ)
1731722timesd 12536 . . 3 (𝜑 → (2 · ((log‘𝐴) / 𝐴)) = (((log‘𝐴) / 𝐴) + ((log‘𝐴) / 𝐴)))
174171, 173breqtrrd 5194 . 2 (𝜑 → ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ)))) + (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿)))) ≤ (2 · ((log‘𝐴) / 𝐴)))
17533, 55, 59, 103, 174letrd 11447 1 (𝜑 → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘(𝐴 / 𝑚)) / 𝑚) − ((((log‘𝐴)↑2) / 2) + ((γ · (log‘𝐴)) − 𝐿)))) ≤ (2 · ((log‘𝐴) / 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166  cmpt 5249  dom cdm 5700  wf 6569  cfv 6573  (class class class)co 7448  supcsup 9509  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  +∞cpnf 11321  *cxr 11323   < clt 11324  cle 11325  cmin 11520   / cdiv 11947  cn 12293  2c2 12348  +crp 13057  ...cfz 13567  cfl 13841  cexp 14112  abscabs 15283  𝑟 crli 15531  Σcsu 15734  eceu 16110  logclog 26614  γcem 27053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-xnn0 12626  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-e 16116  df-sin 16117  df-cos 16118  df-tan 16119  df-pi 16120  df-dvds 16303  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-cmp 23416  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922  df-ulm 26438  df-log 26616  df-cxp 26617  df-atan 26928  df-em 27054
This theorem is referenced by:  mulog2sumlem2  27597
  Copyright terms: Public domain W3C validator