MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulog2sumlem1 Structured version   Visualization version   GIF version

Theorem mulog2sumlem1 27461
Description: Asymptotic formula for Σ𝑛𝑥, log(𝑥 / 𝑛) / 𝑛 = (1 / 2)log↑2(𝑥) + γ · log𝑥𝐿 + 𝑂(log𝑥 / 𝑥), with explicit constants. Equation 10.2.7 of [Shapiro], p. 407. (Contributed by Mario Carneiro, 18-May-2016.)
Hypotheses
Ref Expression
logdivsum.1 𝐹 = (𝑦 ∈ ℝ+ ↦ (Σ𝑖 ∈ (1...(⌊‘𝑦))((log‘𝑖) / 𝑖) − (((log‘𝑦)↑2) / 2)))
mulog2sumlem.1 (𝜑𝐹𝑟 𝐿)
mulog2sumlem1.2 (𝜑𝐴 ∈ ℝ+)
mulog2sumlem1.3 (𝜑 → e ≤ 𝐴)
Assertion
Ref Expression
mulog2sumlem1 (𝜑 → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘(𝐴 / 𝑚)) / 𝑚) − ((((log‘𝐴)↑2) / 2) + ((γ · (log‘𝐴)) − 𝐿)))) ≤ (2 · ((log‘𝐴) / 𝐴)))
Distinct variable groups:   𝑖,𝑚,𝑦,𝐴   𝜑,𝑚
Allowed substitution hints:   𝜑(𝑦,𝑖)   𝐹(𝑦,𝑖,𝑚)   𝐿(𝑦,𝑖,𝑚)

Proof of Theorem mulog2sumlem1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fzfid 13898 . . . . . 6 (𝜑 → (1...(⌊‘𝐴)) ∈ Fin)
2 mulog2sumlem1.2 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ+)
3 elfznn 13474 . . . . . . . . . 10 (𝑚 ∈ (1...(⌊‘𝐴)) → 𝑚 ∈ ℕ)
43nnrpd 12953 . . . . . . . . 9 (𝑚 ∈ (1...(⌊‘𝐴)) → 𝑚 ∈ ℝ+)
5 rpdivcl 12938 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝑚 ∈ ℝ+) → (𝐴 / 𝑚) ∈ ℝ+)
62, 4, 5syl2an 596 . . . . . . . 8 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → (𝐴 / 𝑚) ∈ ℝ+)
76relogcld 26548 . . . . . . 7 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → (log‘(𝐴 / 𝑚)) ∈ ℝ)
83adantl 481 . . . . . . 7 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → 𝑚 ∈ ℕ)
97, 8nndivred 12200 . . . . . 6 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → ((log‘(𝐴 / 𝑚)) / 𝑚) ∈ ℝ)
101, 9fsumrecl 15659 . . . . 5 (𝜑 → Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘(𝐴 / 𝑚)) / 𝑚) ∈ ℝ)
112relogcld 26548 . . . . . . . 8 (𝜑 → (log‘𝐴) ∈ ℝ)
1211resqcld 14050 . . . . . . 7 (𝜑 → ((log‘𝐴)↑2) ∈ ℝ)
1312rehalfcld 12389 . . . . . 6 (𝜑 → (((log‘𝐴)↑2) / 2) ∈ ℝ)
14 emre 26932 . . . . . . . 8 γ ∈ ℝ
15 remulcl 11113 . . . . . . . 8 ((γ ∈ ℝ ∧ (log‘𝐴) ∈ ℝ) → (γ · (log‘𝐴)) ∈ ℝ)
1614, 11, 15sylancr 587 . . . . . . 7 (𝜑 → (γ · (log‘𝐴)) ∈ ℝ)
17 rpsup 13788 . . . . . . . . 9 sup(ℝ+, ℝ*, < ) = +∞
1817a1i 11 . . . . . . . 8 (𝜑 → sup(ℝ+, ℝ*, < ) = +∞)
19 logdivsum.1 . . . . . . . . . . . . 13 𝐹 = (𝑦 ∈ ℝ+ ↦ (Σ𝑖 ∈ (1...(⌊‘𝑦))((log‘𝑖) / 𝑖) − (((log‘𝑦)↑2) / 2)))
2019logdivsum 27460 . . . . . . . . . . . 12 (𝐹:ℝ+⟶ℝ ∧ 𝐹 ∈ dom ⇝𝑟 ∧ ((𝐹𝑟 𝐿𝐴 ∈ ℝ+ ∧ e ≤ 𝐴) → (abs‘((𝐹𝐴) − 𝐿)) ≤ ((log‘𝐴) / 𝐴)))
2120simp1i 1139 . . . . . . . . . . 11 𝐹:ℝ+⟶ℝ
2221a1i 11 . . . . . . . . . 10 (𝜑𝐹:ℝ+⟶ℝ)
2322feqmptd 6895 . . . . . . . . 9 (𝜑𝐹 = (𝑥 ∈ ℝ+ ↦ (𝐹𝑥)))
24 mulog2sumlem.1 . . . . . . . . 9 (𝜑𝐹𝑟 𝐿)
2523, 24eqbrtrrd 5119 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ+ ↦ (𝐹𝑥)) ⇝𝑟 𝐿)
2621ffvelcdmi 7021 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (𝐹𝑥) ∈ ℝ)
2726adantl 481 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (𝐹𝑥) ∈ ℝ)
2818, 25, 27rlimrecl 15505 . . . . . . 7 (𝜑𝐿 ∈ ℝ)
2916, 28resubcld 11566 . . . . . 6 (𝜑 → ((γ · (log‘𝐴)) − 𝐿) ∈ ℝ)
3013, 29readdcld 11163 . . . . 5 (𝜑 → ((((log‘𝐴)↑2) / 2) + ((γ · (log‘𝐴)) − 𝐿)) ∈ ℝ)
3110, 30resubcld 11566 . . . 4 (𝜑 → (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘(𝐴 / 𝑚)) / 𝑚) − ((((log‘𝐴)↑2) / 2) + ((γ · (log‘𝐴)) − 𝐿))) ∈ ℝ)
3231recnd 11162 . . 3 (𝜑 → (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘(𝐴 / 𝑚)) / 𝑚) − ((((log‘𝐴)↑2) / 2) + ((γ · (log‘𝐴)) − 𝐿))) ∈ ℂ)
3332abscld 15364 . 2 (𝜑 → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘(𝐴 / 𝑚)) / 𝑚) − ((((log‘𝐴)↑2) / 2) + ((γ · (log‘𝐴)) − 𝐿)))) ∈ ℝ)
34 rerpdivcl 12943 . . . . . . . 8 (((log‘𝐴) ∈ ℝ ∧ 𝑚 ∈ ℝ+) → ((log‘𝐴) / 𝑚) ∈ ℝ)
3511, 4, 34syl2an 596 . . . . . . 7 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → ((log‘𝐴) / 𝑚) ∈ ℝ)
3635recnd 11162 . . . . . 6 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → ((log‘𝐴) / 𝑚) ∈ ℂ)
371, 36fsumcl 15658 . . . . 5 (𝜑 → Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) ∈ ℂ)
3811recnd 11162 . . . . . 6 (𝜑 → (log‘𝐴) ∈ ℂ)
39 readdcl 11111 . . . . . . . 8 (((log‘𝐴) ∈ ℝ ∧ γ ∈ ℝ) → ((log‘𝐴) + γ) ∈ ℝ)
4011, 14, 39sylancl 586 . . . . . . 7 (𝜑 → ((log‘𝐴) + γ) ∈ ℝ)
4140recnd 11162 . . . . . 6 (𝜑 → ((log‘𝐴) + γ) ∈ ℂ)
4238, 41mulcld 11154 . . . . 5 (𝜑 → ((log‘𝐴) · ((log‘𝐴) + γ)) ∈ ℂ)
4337, 42subcld 11493 . . . 4 (𝜑 → (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ))) ∈ ℂ)
4443abscld 15364 . . 3 (𝜑 → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ)))) ∈ ℝ)
458nnrpd 12953 . . . . . . . . 9 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → 𝑚 ∈ ℝ+)
4645relogcld 26548 . . . . . . . 8 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → (log‘𝑚) ∈ ℝ)
4746, 8nndivred 12200 . . . . . . 7 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → ((log‘𝑚) / 𝑚) ∈ ℝ)
4847recnd 11162 . . . . . 6 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → ((log‘𝑚) / 𝑚) ∈ ℂ)
491, 48fsumcl 15658 . . . . 5 (𝜑 → Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) ∈ ℂ)
5013recnd 11162 . . . . . 6 (𝜑 → (((log‘𝐴)↑2) / 2) ∈ ℂ)
5128recnd 11162 . . . . . 6 (𝜑𝐿 ∈ ℂ)
5250, 51addcld 11153 . . . . 5 (𝜑 → ((((log‘𝐴)↑2) / 2) + 𝐿) ∈ ℂ)
5349, 52subcld 11493 . . . 4 (𝜑 → (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿)) ∈ ℂ)
5453abscld 15364 . . 3 (𝜑 → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿))) ∈ ℝ)
5544, 54readdcld 11163 . 2 (𝜑 → ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ)))) + (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿)))) ∈ ℝ)
56 2re 12220 . . 3 2 ∈ ℝ
5711, 2rerpdivcld 12986 . . 3 (𝜑 → ((log‘𝐴) / 𝐴) ∈ ℝ)
58 remulcl 11113 . . 3 ((2 ∈ ℝ ∧ ((log‘𝐴) / 𝐴) ∈ ℝ) → (2 · ((log‘𝐴) / 𝐴)) ∈ ℝ)
5956, 57, 58sylancr 587 . 2 (𝜑 → (2 · ((log‘𝐴) / 𝐴)) ∈ ℝ)
60 relogdiv 26518 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+𝑚 ∈ ℝ+) → (log‘(𝐴 / 𝑚)) = ((log‘𝐴) − (log‘𝑚)))
612, 4, 60syl2an 596 . . . . . . . . . 10 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → (log‘(𝐴 / 𝑚)) = ((log‘𝐴) − (log‘𝑚)))
6261oveq1d 7368 . . . . . . . . 9 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → ((log‘(𝐴 / 𝑚)) / 𝑚) = (((log‘𝐴) − (log‘𝑚)) / 𝑚))
6338adantr 480 . . . . . . . . . 10 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → (log‘𝐴) ∈ ℂ)
6446recnd 11162 . . . . . . . . . 10 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → (log‘𝑚) ∈ ℂ)
6545rpcnne0d 12964 . . . . . . . . . 10 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0))
66 divsubdir 11836 . . . . . . . . . 10 (((log‘𝐴) ∈ ℂ ∧ (log‘𝑚) ∈ ℂ ∧ (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0)) → (((log‘𝐴) − (log‘𝑚)) / 𝑚) = (((log‘𝐴) / 𝑚) − ((log‘𝑚) / 𝑚)))
6763, 64, 65, 66syl3anc 1373 . . . . . . . . 9 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → (((log‘𝐴) − (log‘𝑚)) / 𝑚) = (((log‘𝐴) / 𝑚) − ((log‘𝑚) / 𝑚)))
6862, 67eqtrd 2764 . . . . . . . 8 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → ((log‘(𝐴 / 𝑚)) / 𝑚) = (((log‘𝐴) / 𝑚) − ((log‘𝑚) / 𝑚)))
6968sumeq2dv 15627 . . . . . . 7 (𝜑 → Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘(𝐴 / 𝑚)) / 𝑚) = Σ𝑚 ∈ (1...(⌊‘𝐴))(((log‘𝐴) / 𝑚) − ((log‘𝑚) / 𝑚)))
701, 36, 48fsumsub 15713 . . . . . . 7 (𝜑 → Σ𝑚 ∈ (1...(⌊‘𝐴))(((log‘𝐴) / 𝑚) − ((log‘𝑚) / 𝑚)) = (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚)))
7169, 70eqtrd 2764 . . . . . 6 (𝜑 → Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘(𝐴 / 𝑚)) / 𝑚) = (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚)))
72 remulcl 11113 . . . . . . . . . . . . 13 (((log‘𝐴) ∈ ℝ ∧ γ ∈ ℝ) → ((log‘𝐴) · γ) ∈ ℝ)
7311, 14, 72sylancl 586 . . . . . . . . . . . 12 (𝜑 → ((log‘𝐴) · γ) ∈ ℝ)
7413, 73readdcld 11163 . . . . . . . . . . 11 (𝜑 → ((((log‘𝐴)↑2) / 2) + ((log‘𝐴) · γ)) ∈ ℝ)
7574recnd 11162 . . . . . . . . . 10 (𝜑 → ((((log‘𝐴)↑2) / 2) + ((log‘𝐴) · γ)) ∈ ℂ)
7675, 50pncand 11494 . . . . . . . . 9 (𝜑 → ((((((log‘𝐴)↑2) / 2) + ((log‘𝐴) · γ)) + (((log‘𝐴)↑2) / 2)) − (((log‘𝐴)↑2) / 2)) = ((((log‘𝐴)↑2) / 2) + ((log‘𝐴) · γ)))
7714recni 11148 . . . . . . . . . . . . 13 γ ∈ ℂ
7877a1i 11 . . . . . . . . . . . 12 (𝜑 → γ ∈ ℂ)
7938, 38, 78adddid 11158 . . . . . . . . . . 11 (𝜑 → ((log‘𝐴) · ((log‘𝐴) + γ)) = (((log‘𝐴) · (log‘𝐴)) + ((log‘𝐴) · γ)))
8012recnd 11162 . . . . . . . . . . . . . 14 (𝜑 → ((log‘𝐴)↑2) ∈ ℂ)
81802halvesd 12388 . . . . . . . . . . . . 13 (𝜑 → ((((log‘𝐴)↑2) / 2) + (((log‘𝐴)↑2) / 2)) = ((log‘𝐴)↑2))
8238sqvald 14068 . . . . . . . . . . . . 13 (𝜑 → ((log‘𝐴)↑2) = ((log‘𝐴) · (log‘𝐴)))
8381, 82eqtrd 2764 . . . . . . . . . . . 12 (𝜑 → ((((log‘𝐴)↑2) / 2) + (((log‘𝐴)↑2) / 2)) = ((log‘𝐴) · (log‘𝐴)))
8483oveq1d 7368 . . . . . . . . . . 11 (𝜑 → (((((log‘𝐴)↑2) / 2) + (((log‘𝐴)↑2) / 2)) + ((log‘𝐴) · γ)) = (((log‘𝐴) · (log‘𝐴)) + ((log‘𝐴) · γ)))
8573recnd 11162 . . . . . . . . . . . 12 (𝜑 → ((log‘𝐴) · γ) ∈ ℂ)
8650, 50, 85add32d 11362 . . . . . . . . . . 11 (𝜑 → (((((log‘𝐴)↑2) / 2) + (((log‘𝐴)↑2) / 2)) + ((log‘𝐴) · γ)) = (((((log‘𝐴)↑2) / 2) + ((log‘𝐴) · γ)) + (((log‘𝐴)↑2) / 2)))
8779, 84, 863eqtr2d 2770 . . . . . . . . . 10 (𝜑 → ((log‘𝐴) · ((log‘𝐴) + γ)) = (((((log‘𝐴)↑2) / 2) + ((log‘𝐴) · γ)) + (((log‘𝐴)↑2) / 2)))
8887oveq1d 7368 . . . . . . . . 9 (𝜑 → (((log‘𝐴) · ((log‘𝐴) + γ)) − (((log‘𝐴)↑2) / 2)) = ((((((log‘𝐴)↑2) / 2) + ((log‘𝐴) · γ)) + (((log‘𝐴)↑2) / 2)) − (((log‘𝐴)↑2) / 2)))
89 mulcom 11114 . . . . . . . . . . 11 ((γ ∈ ℂ ∧ (log‘𝐴) ∈ ℂ) → (γ · (log‘𝐴)) = ((log‘𝐴) · γ))
9077, 38, 89sylancr 587 . . . . . . . . . 10 (𝜑 → (γ · (log‘𝐴)) = ((log‘𝐴) · γ))
9190oveq2d 7369 . . . . . . . . 9 (𝜑 → ((((log‘𝐴)↑2) / 2) + (γ · (log‘𝐴))) = ((((log‘𝐴)↑2) / 2) + ((log‘𝐴) · γ)))
9276, 88, 913eqtr4rd 2775 . . . . . . . 8 (𝜑 → ((((log‘𝐴)↑2) / 2) + (γ · (log‘𝐴))) = (((log‘𝐴) · ((log‘𝐴) + γ)) − (((log‘𝐴)↑2) / 2)))
9392oveq1d 7368 . . . . . . 7 (𝜑 → (((((log‘𝐴)↑2) / 2) + (γ · (log‘𝐴))) − 𝐿) = ((((log‘𝐴) · ((log‘𝐴) + γ)) − (((log‘𝐴)↑2) / 2)) − 𝐿))
9490, 85eqeltrd 2828 . . . . . . . 8 (𝜑 → (γ · (log‘𝐴)) ∈ ℂ)
9550, 94, 51addsubassd 11513 . . . . . . 7 (𝜑 → (((((log‘𝐴)↑2) / 2) + (γ · (log‘𝐴))) − 𝐿) = ((((log‘𝐴)↑2) / 2) + ((γ · (log‘𝐴)) − 𝐿)))
9642, 50, 51subsub4d 11524 . . . . . . 7 (𝜑 → ((((log‘𝐴) · ((log‘𝐴) + γ)) − (((log‘𝐴)↑2) / 2)) − 𝐿) = (((log‘𝐴) · ((log‘𝐴) + γ)) − ((((log‘𝐴)↑2) / 2) + 𝐿)))
9793, 95, 963eqtr3d 2772 . . . . . 6 (𝜑 → ((((log‘𝐴)↑2) / 2) + ((γ · (log‘𝐴)) − 𝐿)) = (((log‘𝐴) · ((log‘𝐴) + γ)) − ((((log‘𝐴)↑2) / 2) + 𝐿)))
9871, 97oveq12d 7371 . . . . 5 (𝜑 → (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘(𝐴 / 𝑚)) / 𝑚) − ((((log‘𝐴)↑2) / 2) + ((γ · (log‘𝐴)) − 𝐿))) = ((Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚)) − (((log‘𝐴) · ((log‘𝐴) + γ)) − ((((log‘𝐴)↑2) / 2) + 𝐿))))
9937, 49, 42, 52sub4d 11542 . . . . 5 (𝜑 → ((Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚)) − (((log‘𝐴) · ((log‘𝐴) + γ)) − ((((log‘𝐴)↑2) / 2) + 𝐿))) = ((Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ))) − (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿))))
10098, 99eqtrd 2764 . . . 4 (𝜑 → (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘(𝐴 / 𝑚)) / 𝑚) − ((((log‘𝐴)↑2) / 2) + ((γ · (log‘𝐴)) − 𝐿))) = ((Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ))) − (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿))))
101100fveq2d 6830 . . 3 (𝜑 → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘(𝐴 / 𝑚)) / 𝑚) − ((((log‘𝐴)↑2) / 2) + ((γ · (log‘𝐴)) − 𝐿)))) = (abs‘((Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ))) − (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿)))))
10243, 53abs2dif2d 15386 . . 3 (𝜑 → (abs‘((Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ))) − (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿)))) ≤ ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ)))) + (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿)))))
103101, 102eqbrtrd 5117 . 2 (𝜑 → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘(𝐴 / 𝑚)) / 𝑚) − ((((log‘𝐴)↑2) / 2) + ((γ · (log‘𝐴)) − 𝐿)))) ≤ ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ)))) + (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿)))))
104 harmonicbnd4 26937 . . . . . . 7 (𝐴 ∈ ℝ+ → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ))) ≤ (1 / 𝐴))
1052, 104syl 17 . . . . . 6 (𝜑 → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ))) ≤ (1 / 𝐴))
1068nnrecred 12197 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → (1 / 𝑚) ∈ ℝ)
1071, 106fsumrecl 15659 . . . . . . . . . 10 (𝜑 → Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) ∈ ℝ)
108107, 40resubcld 11566 . . . . . . . . 9 (𝜑 → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ)) ∈ ℝ)
109108recnd 11162 . . . . . . . 8 (𝜑 → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ)) ∈ ℂ)
110109abscld 15364 . . . . . . 7 (𝜑 → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ))) ∈ ℝ)
1112rprecred 12966 . . . . . . 7 (𝜑 → (1 / 𝐴) ∈ ℝ)
112 0red 11137 . . . . . . . 8 (𝜑 → 0 ∈ ℝ)
113 1red 11135 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
114 0lt1 11660 . . . . . . . . 9 0 < 1
115114a1i 11 . . . . . . . 8 (𝜑 → 0 < 1)
116 loge 26511 . . . . . . . . 9 (log‘e) = 1
117 mulog2sumlem1.3 . . . . . . . . . 10 (𝜑 → e ≤ 𝐴)
118 epr 16135 . . . . . . . . . . 11 e ∈ ℝ+
119 logleb 26528 . . . . . . . . . . 11 ((e ∈ ℝ+𝐴 ∈ ℝ+) → (e ≤ 𝐴 ↔ (log‘e) ≤ (log‘𝐴)))
120118, 2, 119sylancr 587 . . . . . . . . . 10 (𝜑 → (e ≤ 𝐴 ↔ (log‘e) ≤ (log‘𝐴)))
121117, 120mpbid 232 . . . . . . . . 9 (𝜑 → (log‘e) ≤ (log‘𝐴))
122116, 121eqbrtrrid 5131 . . . . . . . 8 (𝜑 → 1 ≤ (log‘𝐴))
123112, 113, 11, 115, 122ltletrd 11294 . . . . . . 7 (𝜑 → 0 < (log‘𝐴))
124 lemul2 11995 . . . . . . 7 (((abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ))) ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ ∧ ((log‘𝐴) ∈ ℝ ∧ 0 < (log‘𝐴))) → ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ))) ≤ (1 / 𝐴) ↔ ((log‘𝐴) · (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ)))) ≤ ((log‘𝐴) · (1 / 𝐴))))
125110, 111, 11, 123, 124syl112anc 1376 . . . . . 6 (𝜑 → ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ))) ≤ (1 / 𝐴) ↔ ((log‘𝐴) · (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ)))) ≤ ((log‘𝐴) · (1 / 𝐴))))
126105, 125mpbid 232 . . . . 5 (𝜑 → ((log‘𝐴) · (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ)))) ≤ ((log‘𝐴) · (1 / 𝐴)))
12745rpcnd 12957 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → 𝑚 ∈ ℂ)
12845rpne0d 12960 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → 𝑚 ≠ 0)
12963, 127, 128divrecd 11921 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → ((log‘𝐴) / 𝑚) = ((log‘𝐴) · (1 / 𝑚)))
130129sumeq2dv 15627 . . . . . . . . . 10 (𝜑 → Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) = Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) · (1 / 𝑚)))
131106recnd 11162 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → (1 / 𝑚) ∈ ℂ)
1321, 38, 131fsummulc2 15709 . . . . . . . . . 10 (𝜑 → ((log‘𝐴) · Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚)) = Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) · (1 / 𝑚)))
133130, 132eqtr4d 2767 . . . . . . . . 9 (𝜑 → Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) = ((log‘𝐴) · Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚)))
134133oveq1d 7368 . . . . . . . 8 (𝜑 → (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ))) = (((log‘𝐴) · Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚)) − ((log‘𝐴) · ((log‘𝐴) + γ))))
1351, 131fsumcl 15658 . . . . . . . . 9 (𝜑 → Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) ∈ ℂ)
13638, 135, 41subdid 11594 . . . . . . . 8 (𝜑 → ((log‘𝐴) · (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ))) = (((log‘𝐴) · Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚)) − ((log‘𝐴) · ((log‘𝐴) + γ))))
137134, 136eqtr4d 2767 . . . . . . 7 (𝜑 → (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ))) = ((log‘𝐴) · (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ))))
138137fveq2d 6830 . . . . . 6 (𝜑 → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ)))) = (abs‘((log‘𝐴) · (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ)))))
139135, 41subcld 11493 . . . . . . 7 (𝜑 → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ)) ∈ ℂ)
14038, 139absmuld 15382 . . . . . 6 (𝜑 → (abs‘((log‘𝐴) · (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ)))) = ((abs‘(log‘𝐴)) · (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ)))))
141112, 11, 123ltled 11282 . . . . . . . 8 (𝜑 → 0 ≤ (log‘𝐴))
14211, 141absidd 15348 . . . . . . 7 (𝜑 → (abs‘(log‘𝐴)) = (log‘𝐴))
143142oveq1d 7368 . . . . . 6 (𝜑 → ((abs‘(log‘𝐴)) · (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ)))) = ((log‘𝐴) · (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ)))))
144138, 140, 1433eqtrd 2768 . . . . 5 (𝜑 → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ)))) = ((log‘𝐴) · (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ)))))
1452rpcnd 12957 . . . . . 6 (𝜑𝐴 ∈ ℂ)
1462rpne0d 12960 . . . . . 6 (𝜑𝐴 ≠ 0)
14738, 145, 146divrecd 11921 . . . . 5 (𝜑 → ((log‘𝐴) / 𝐴) = ((log‘𝐴) · (1 / 𝐴)))
148126, 144, 1473brtr4d 5127 . . . 4 (𝜑 → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ)))) ≤ ((log‘𝐴) / 𝐴))
149 fveq2 6826 . . . . . . . . . . . . . 14 (𝑖 = 𝑚 → (log‘𝑖) = (log‘𝑚))
150 id 22 . . . . . . . . . . . . . 14 (𝑖 = 𝑚𝑖 = 𝑚)
151149, 150oveq12d 7371 . . . . . . . . . . . . 13 (𝑖 = 𝑚 → ((log‘𝑖) / 𝑖) = ((log‘𝑚) / 𝑚))
152151cbvsumv 15621 . . . . . . . . . . . 12 Σ𝑖 ∈ (1...(⌊‘𝑦))((log‘𝑖) / 𝑖) = Σ𝑚 ∈ (1...(⌊‘𝑦))((log‘𝑚) / 𝑚)
153 fveq2 6826 . . . . . . . . . . . . . 14 (𝑦 = 𝐴 → (⌊‘𝑦) = (⌊‘𝐴))
154153oveq2d 7369 . . . . . . . . . . . . 13 (𝑦 = 𝐴 → (1...(⌊‘𝑦)) = (1...(⌊‘𝐴)))
155154sumeq1d 15625 . . . . . . . . . . . 12 (𝑦 = 𝐴 → Σ𝑚 ∈ (1...(⌊‘𝑦))((log‘𝑚) / 𝑚) = Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚))
156152, 155eqtrid 2776 . . . . . . . . . . 11 (𝑦 = 𝐴 → Σ𝑖 ∈ (1...(⌊‘𝑦))((log‘𝑖) / 𝑖) = Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚))
157 fveq2 6826 . . . . . . . . . . . . 13 (𝑦 = 𝐴 → (log‘𝑦) = (log‘𝐴))
158157oveq1d 7368 . . . . . . . . . . . 12 (𝑦 = 𝐴 → ((log‘𝑦)↑2) = ((log‘𝐴)↑2))
159158oveq1d 7368 . . . . . . . . . . 11 (𝑦 = 𝐴 → (((log‘𝑦)↑2) / 2) = (((log‘𝐴)↑2) / 2))
160156, 159oveq12d 7371 . . . . . . . . . 10 (𝑦 = 𝐴 → (Σ𝑖 ∈ (1...(⌊‘𝑦))((log‘𝑖) / 𝑖) − (((log‘𝑦)↑2) / 2)) = (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − (((log‘𝐴)↑2) / 2)))
161 ovex 7386 . . . . . . . . . 10 𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − (((log‘𝐴)↑2) / 2)) ∈ V
162160, 19, 161fvmpt 6934 . . . . . . . . 9 (𝐴 ∈ ℝ+ → (𝐹𝐴) = (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − (((log‘𝐴)↑2) / 2)))
1632, 162syl 17 . . . . . . . 8 (𝜑 → (𝐹𝐴) = (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − (((log‘𝐴)↑2) / 2)))
164163oveq1d 7368 . . . . . . 7 (𝜑 → ((𝐹𝐴) − 𝐿) = ((Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − (((log‘𝐴)↑2) / 2)) − 𝐿))
16549, 50, 51subsub4d 11524 . . . . . . 7 (𝜑 → ((Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − (((log‘𝐴)↑2) / 2)) − 𝐿) = (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿)))
166164, 165eqtrd 2764 . . . . . 6 (𝜑 → ((𝐹𝐴) − 𝐿) = (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿)))
167166fveq2d 6830 . . . . 5 (𝜑 → (abs‘((𝐹𝐴) − 𝐿)) = (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿))))
16820simp3i 1141 . . . . . 6 ((𝐹𝑟 𝐿𝐴 ∈ ℝ+ ∧ e ≤ 𝐴) → (abs‘((𝐹𝐴) − 𝐿)) ≤ ((log‘𝐴) / 𝐴))
16924, 2, 117, 168syl3anc 1373 . . . . 5 (𝜑 → (abs‘((𝐹𝐴) − 𝐿)) ≤ ((log‘𝐴) / 𝐴))
170167, 169eqbrtrrd 5119 . . . 4 (𝜑 → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿))) ≤ ((log‘𝐴) / 𝐴))
17144, 54, 57, 57, 148, 170le2addd 11757 . . 3 (𝜑 → ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ)))) + (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿)))) ≤ (((log‘𝐴) / 𝐴) + ((log‘𝐴) / 𝐴)))
17257recnd 11162 . . . 4 (𝜑 → ((log‘𝐴) / 𝐴) ∈ ℂ)
1731722timesd 12385 . . 3 (𝜑 → (2 · ((log‘𝐴) / 𝐴)) = (((log‘𝐴) / 𝐴) + ((log‘𝐴) / 𝐴)))
174171, 173breqtrrd 5123 . 2 (𝜑 → ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ)))) + (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿)))) ≤ (2 · ((log‘𝐴) / 𝐴)))
17533, 55, 59, 103, 174letrd 11291 1 (𝜑 → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘(𝐴 / 𝑚)) / 𝑚) − ((((log‘𝐴)↑2) / 2) + ((γ · (log‘𝐴)) − 𝐿)))) ≤ (2 · ((log‘𝐴) / 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5095  cmpt 5176  dom cdm 5623  wf 6482  cfv 6486  (class class class)co 7353  supcsup 9349  cc 11026  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033  +∞cpnf 11165  *cxr 11167   < clt 11168  cle 11169  cmin 11365   / cdiv 11795  cn 12146  2c2 12201  +crp 12911  ...cfz 13428  cfl 13712  cexp 13986  abscabs 15159  𝑟 crli 15410  Σcsu 15611  eceu 15987  logclog 26479  γcem 26918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-xnn0 12476  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ioc 13271  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-fac 14199  df-bc 14228  df-hash 14256  df-shft 14992  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-limsup 15396  df-clim 15413  df-rlim 15414  df-sum 15612  df-ef 15992  df-e 15993  df-sin 15994  df-cos 15995  df-tan 15996  df-pi 15997  df-dvds 16182  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-lp 23039  df-perf 23040  df-cn 23130  df-cnp 23131  df-haus 23218  df-cmp 23290  df-tx 23465  df-hmeo 23658  df-fil 23749  df-fm 23841  df-flim 23842  df-flf 23843  df-xms 24224  df-ms 24225  df-tms 24226  df-cncf 24787  df-limc 25783  df-dv 25784  df-ulm 26302  df-log 26481  df-cxp 26482  df-atan 26793  df-em 26919
This theorem is referenced by:  mulog2sumlem2  27462
  Copyright terms: Public domain W3C validator