Step | Hyp | Ref
| Expression |
1 | | fzfid 13693 |
. . . . . 6
⊢ (𝜑 → (1...(⌊‘𝐴)) ∈ Fin) |
2 | | mulog2sumlem1.2 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈
ℝ+) |
3 | | elfznn 13285 |
. . . . . . . . . 10
⊢ (𝑚 ∈
(1...(⌊‘𝐴))
→ 𝑚 ∈
ℕ) |
4 | 3 | nnrpd 12770 |
. . . . . . . . 9
⊢ (𝑚 ∈
(1...(⌊‘𝐴))
→ 𝑚 ∈
ℝ+) |
5 | | rpdivcl 12755 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ+
∧ 𝑚 ∈
ℝ+) → (𝐴 / 𝑚) ∈
ℝ+) |
6 | 2, 4, 5 | syl2an 596 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → (𝐴 / 𝑚) ∈
ℝ+) |
7 | 6 | relogcld 25778 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → (log‘(𝐴 / 𝑚)) ∈ ℝ) |
8 | 3 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → 𝑚 ∈ ℕ) |
9 | 7, 8 | nndivred 12027 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → ((log‘(𝐴 / 𝑚)) / 𝑚) ∈ ℝ) |
10 | 1, 9 | fsumrecl 15446 |
. . . . 5
⊢ (𝜑 → Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘(𝐴 / 𝑚)) / 𝑚) ∈ ℝ) |
11 | 2 | relogcld 25778 |
. . . . . . . 8
⊢ (𝜑 → (log‘𝐴) ∈
ℝ) |
12 | 11 | resqcld 13965 |
. . . . . . 7
⊢ (𝜑 → ((log‘𝐴)↑2) ∈
ℝ) |
13 | 12 | rehalfcld 12220 |
. . . . . 6
⊢ (𝜑 → (((log‘𝐴)↑2) / 2) ∈
ℝ) |
14 | | emre 26155 |
. . . . . . . 8
⊢ γ
∈ ℝ |
15 | | remulcl 10956 |
. . . . . . . 8
⊢ ((γ
∈ ℝ ∧ (log‘𝐴) ∈ ℝ) → (γ ·
(log‘𝐴)) ∈
ℝ) |
16 | 14, 11, 15 | sylancr 587 |
. . . . . . 7
⊢ (𝜑 → (γ ·
(log‘𝐴)) ∈
ℝ) |
17 | | rpsup 13586 |
. . . . . . . . 9
⊢
sup(ℝ+, ℝ*, < ) =
+∞ |
18 | 17 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → sup(ℝ+,
ℝ*, < ) = +∞) |
19 | | logdivsum.1 |
. . . . . . . . . . . . 13
⊢ 𝐹 = (𝑦 ∈ ℝ+ ↦
(Σ𝑖 ∈
(1...(⌊‘𝑦))((log‘𝑖) / 𝑖) − (((log‘𝑦)↑2) / 2))) |
20 | 19 | logdivsum 26681 |
. . . . . . . . . . . 12
⊢ (𝐹:ℝ+⟶ℝ ∧
𝐹 ∈ dom
⇝𝑟 ∧ ((𝐹 ⇝𝑟 𝐿 ∧ 𝐴 ∈ ℝ+ ∧ e ≤
𝐴) →
(abs‘((𝐹‘𝐴) − 𝐿)) ≤ ((log‘𝐴) / 𝐴))) |
21 | 20 | simp1i 1138 |
. . . . . . . . . . 11
⊢ 𝐹:ℝ+⟶ℝ |
22 | 21 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:ℝ+⟶ℝ) |
23 | 22 | feqmptd 6837 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 = (𝑥 ∈ ℝ+ ↦ (𝐹‘𝑥))) |
24 | | mulog2sumlem.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ⇝𝑟 𝐿) |
25 | 23, 24 | eqbrtrrd 5098 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (𝐹‘𝑥)) ⇝𝑟 𝐿) |
26 | 21 | ffvelrni 6960 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ+
→ (𝐹‘𝑥) ∈
ℝ) |
27 | 26 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝐹‘𝑥) ∈ ℝ) |
28 | 18, 25, 27 | rlimrecl 15289 |
. . . . . . 7
⊢ (𝜑 → 𝐿 ∈ ℝ) |
29 | 16, 28 | resubcld 11403 |
. . . . . 6
⊢ (𝜑 → ((γ ·
(log‘𝐴)) −
𝐿) ∈
ℝ) |
30 | 13, 29 | readdcld 11004 |
. . . . 5
⊢ (𝜑 → ((((log‘𝐴)↑2) / 2) + ((γ
· (log‘𝐴))
− 𝐿)) ∈
ℝ) |
31 | 10, 30 | resubcld 11403 |
. . . 4
⊢ (𝜑 → (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘(𝐴 / 𝑚)) / 𝑚) − ((((log‘𝐴)↑2) / 2) + ((γ ·
(log‘𝐴)) −
𝐿))) ∈
ℝ) |
32 | 31 | recnd 11003 |
. . 3
⊢ (𝜑 → (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘(𝐴 / 𝑚)) / 𝑚) − ((((log‘𝐴)↑2) / 2) + ((γ ·
(log‘𝐴)) −
𝐿))) ∈
ℂ) |
33 | 32 | abscld 15148 |
. 2
⊢ (𝜑 → (abs‘(Σ𝑚 ∈
(1...(⌊‘𝐴))((log‘(𝐴 / 𝑚)) / 𝑚) − ((((log‘𝐴)↑2) / 2) + ((γ ·
(log‘𝐴)) −
𝐿)))) ∈
ℝ) |
34 | | rerpdivcl 12760 |
. . . . . . . 8
⊢
(((log‘𝐴)
∈ ℝ ∧ 𝑚
∈ ℝ+) → ((log‘𝐴) / 𝑚) ∈ ℝ) |
35 | 11, 4, 34 | syl2an 596 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → ((log‘𝐴) / 𝑚) ∈ ℝ) |
36 | 35 | recnd 11003 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → ((log‘𝐴) / 𝑚) ∈ ℂ) |
37 | 1, 36 | fsumcl 15445 |
. . . . 5
⊢ (𝜑 → Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) ∈ ℂ) |
38 | 11 | recnd 11003 |
. . . . . 6
⊢ (𝜑 → (log‘𝐴) ∈
ℂ) |
39 | | readdcl 10954 |
. . . . . . . 8
⊢
(((log‘𝐴)
∈ ℝ ∧ γ ∈ ℝ) → ((log‘𝐴) + γ) ∈
ℝ) |
40 | 11, 14, 39 | sylancl 586 |
. . . . . . 7
⊢ (𝜑 → ((log‘𝐴) + γ) ∈
ℝ) |
41 | 40 | recnd 11003 |
. . . . . 6
⊢ (𝜑 → ((log‘𝐴) + γ) ∈
ℂ) |
42 | 38, 41 | mulcld 10995 |
. . . . 5
⊢ (𝜑 → ((log‘𝐴) · ((log‘𝐴) + γ)) ∈
ℂ) |
43 | 37, 42 | subcld 11332 |
. . . 4
⊢ (𝜑 → (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ))) ∈
ℂ) |
44 | 43 | abscld 15148 |
. . 3
⊢ (𝜑 → (abs‘(Σ𝑚 ∈
(1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ)))) ∈
ℝ) |
45 | 8 | nnrpd 12770 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → 𝑚 ∈ ℝ+) |
46 | 45 | relogcld 25778 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → (log‘𝑚) ∈ ℝ) |
47 | 46, 8 | nndivred 12027 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → ((log‘𝑚) / 𝑚) ∈ ℝ) |
48 | 47 | recnd 11003 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → ((log‘𝑚) / 𝑚) ∈ ℂ) |
49 | 1, 48 | fsumcl 15445 |
. . . . 5
⊢ (𝜑 → Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) ∈ ℂ) |
50 | 13 | recnd 11003 |
. . . . . 6
⊢ (𝜑 → (((log‘𝐴)↑2) / 2) ∈
ℂ) |
51 | 28 | recnd 11003 |
. . . . . 6
⊢ (𝜑 → 𝐿 ∈ ℂ) |
52 | 50, 51 | addcld 10994 |
. . . . 5
⊢ (𝜑 → ((((log‘𝐴)↑2) / 2) + 𝐿) ∈
ℂ) |
53 | 49, 52 | subcld 11332 |
. . . 4
⊢ (𝜑 → (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿)) ∈ ℂ) |
54 | 53 | abscld 15148 |
. . 3
⊢ (𝜑 → (abs‘(Σ𝑚 ∈
(1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿))) ∈ ℝ) |
55 | 44, 54 | readdcld 11004 |
. 2
⊢ (𝜑 → ((abs‘(Σ𝑚 ∈
(1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ)))) + (abs‘(Σ𝑚 ∈
(1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿)))) ∈ ℝ) |
56 | | 2re 12047 |
. . 3
⊢ 2 ∈
ℝ |
57 | 11, 2 | rerpdivcld 12803 |
. . 3
⊢ (𝜑 → ((log‘𝐴) / 𝐴) ∈ ℝ) |
58 | | remulcl 10956 |
. . 3
⊢ ((2
∈ ℝ ∧ ((log‘𝐴) / 𝐴) ∈ ℝ) → (2 ·
((log‘𝐴) / 𝐴)) ∈
ℝ) |
59 | 56, 57, 58 | sylancr 587 |
. 2
⊢ (𝜑 → (2 ·
((log‘𝐴) / 𝐴)) ∈
ℝ) |
60 | | relogdiv 25748 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ+
∧ 𝑚 ∈
ℝ+) → (log‘(𝐴 / 𝑚)) = ((log‘𝐴) − (log‘𝑚))) |
61 | 2, 4, 60 | syl2an 596 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → (log‘(𝐴 / 𝑚)) = ((log‘𝐴) − (log‘𝑚))) |
62 | 61 | oveq1d 7290 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → ((log‘(𝐴 / 𝑚)) / 𝑚) = (((log‘𝐴) − (log‘𝑚)) / 𝑚)) |
63 | 38 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → (log‘𝐴) ∈ ℂ) |
64 | 46 | recnd 11003 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → (log‘𝑚) ∈ ℂ) |
65 | 45 | rpcnne0d 12781 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0)) |
66 | | divsubdir 11669 |
. . . . . . . . . 10
⊢
(((log‘𝐴)
∈ ℂ ∧ (log‘𝑚) ∈ ℂ ∧ (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0)) → (((log‘𝐴) − (log‘𝑚)) / 𝑚) = (((log‘𝐴) / 𝑚) − ((log‘𝑚) / 𝑚))) |
67 | 63, 64, 65, 66 | syl3anc 1370 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → (((log‘𝐴) − (log‘𝑚)) / 𝑚) = (((log‘𝐴) / 𝑚) − ((log‘𝑚) / 𝑚))) |
68 | 62, 67 | eqtrd 2778 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → ((log‘(𝐴 / 𝑚)) / 𝑚) = (((log‘𝐴) / 𝑚) − ((log‘𝑚) / 𝑚))) |
69 | 68 | sumeq2dv 15415 |
. . . . . . 7
⊢ (𝜑 → Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘(𝐴 / 𝑚)) / 𝑚) = Σ𝑚 ∈ (1...(⌊‘𝐴))(((log‘𝐴) / 𝑚) − ((log‘𝑚) / 𝑚))) |
70 | 1, 36, 48 | fsumsub 15500 |
. . . . . . 7
⊢ (𝜑 → Σ𝑚 ∈ (1...(⌊‘𝐴))(((log‘𝐴) / 𝑚) − ((log‘𝑚) / 𝑚)) = (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚))) |
71 | 69, 70 | eqtrd 2778 |
. . . . . 6
⊢ (𝜑 → Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘(𝐴 / 𝑚)) / 𝑚) = (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚))) |
72 | | remulcl 10956 |
. . . . . . . . . . . . 13
⊢
(((log‘𝐴)
∈ ℝ ∧ γ ∈ ℝ) → ((log‘𝐴) · γ) ∈
ℝ) |
73 | 11, 14, 72 | sylancl 586 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((log‘𝐴) · γ) ∈
ℝ) |
74 | 13, 73 | readdcld 11004 |
. . . . . . . . . . 11
⊢ (𝜑 → ((((log‘𝐴)↑2) / 2) +
((log‘𝐴) ·
γ)) ∈ ℝ) |
75 | 74 | recnd 11003 |
. . . . . . . . . 10
⊢ (𝜑 → ((((log‘𝐴)↑2) / 2) +
((log‘𝐴) ·
γ)) ∈ ℂ) |
76 | 75, 50 | pncand 11333 |
. . . . . . . . 9
⊢ (𝜑 → ((((((log‘𝐴)↑2) / 2) +
((log‘𝐴) ·
γ)) + (((log‘𝐴)↑2) / 2)) − (((log‘𝐴)↑2) / 2)) =
((((log‘𝐴)↑2) /
2) + ((log‘𝐴)
· γ))) |
77 | 14 | recni 10989 |
. . . . . . . . . . . . 13
⊢ γ
∈ ℂ |
78 | 77 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → γ ∈
ℂ) |
79 | 38, 38, 78 | adddid 10999 |
. . . . . . . . . . 11
⊢ (𝜑 → ((log‘𝐴) · ((log‘𝐴) + γ)) =
(((log‘𝐴) ·
(log‘𝐴)) +
((log‘𝐴) ·
γ))) |
80 | 12 | recnd 11003 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((log‘𝐴)↑2) ∈
ℂ) |
81 | 80 | 2halvesd 12219 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((((log‘𝐴)↑2) / 2) +
(((log‘𝐴)↑2) /
2)) = ((log‘𝐴)↑2)) |
82 | 38 | sqvald 13861 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((log‘𝐴)↑2) = ((log‘𝐴) · (log‘𝐴))) |
83 | 81, 82 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((((log‘𝐴)↑2) / 2) +
(((log‘𝐴)↑2) /
2)) = ((log‘𝐴)
· (log‘𝐴))) |
84 | 83 | oveq1d 7290 |
. . . . . . . . . . 11
⊢ (𝜑 → (((((log‘𝐴)↑2) / 2) +
(((log‘𝐴)↑2) /
2)) + ((log‘𝐴)
· γ)) = (((log‘𝐴) · (log‘𝐴)) + ((log‘𝐴) · γ))) |
85 | 73 | recnd 11003 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((log‘𝐴) · γ) ∈
ℂ) |
86 | 50, 50, 85 | add32d 11202 |
. . . . . . . . . . 11
⊢ (𝜑 → (((((log‘𝐴)↑2) / 2) +
(((log‘𝐴)↑2) /
2)) + ((log‘𝐴)
· γ)) = (((((log‘𝐴)↑2) / 2) + ((log‘𝐴) · γ)) +
(((log‘𝐴)↑2) /
2))) |
87 | 79, 84, 86 | 3eqtr2d 2784 |
. . . . . . . . . 10
⊢ (𝜑 → ((log‘𝐴) · ((log‘𝐴) + γ)) =
(((((log‘𝐴)↑2) /
2) + ((log‘𝐴)
· γ)) + (((log‘𝐴)↑2) / 2))) |
88 | 87 | oveq1d 7290 |
. . . . . . . . 9
⊢ (𝜑 → (((log‘𝐴) · ((log‘𝐴) + γ)) −
(((log‘𝐴)↑2) /
2)) = ((((((log‘𝐴)↑2) / 2) + ((log‘𝐴) · γ)) +
(((log‘𝐴)↑2) /
2)) − (((log‘𝐴)↑2) / 2))) |
89 | | mulcom 10957 |
. . . . . . . . . . 11
⊢ ((γ
∈ ℂ ∧ (log‘𝐴) ∈ ℂ) → (γ ·
(log‘𝐴)) =
((log‘𝐴) ·
γ)) |
90 | 77, 38, 89 | sylancr 587 |
. . . . . . . . . 10
⊢ (𝜑 → (γ ·
(log‘𝐴)) =
((log‘𝐴) ·
γ)) |
91 | 90 | oveq2d 7291 |
. . . . . . . . 9
⊢ (𝜑 → ((((log‘𝐴)↑2) / 2) + (γ
· (log‘𝐴))) =
((((log‘𝐴)↑2) /
2) + ((log‘𝐴)
· γ))) |
92 | 76, 88, 91 | 3eqtr4rd 2789 |
. . . . . . . 8
⊢ (𝜑 → ((((log‘𝐴)↑2) / 2) + (γ
· (log‘𝐴))) =
(((log‘𝐴) ·
((log‘𝐴) + γ))
− (((log‘𝐴)↑2) / 2))) |
93 | 92 | oveq1d 7290 |
. . . . . . 7
⊢ (𝜑 → (((((log‘𝐴)↑2) / 2) + (γ
· (log‘𝐴)))
− 𝐿) =
((((log‘𝐴) ·
((log‘𝐴) + γ))
− (((log‘𝐴)↑2) / 2)) − 𝐿)) |
94 | 90, 85 | eqeltrd 2839 |
. . . . . . . 8
⊢ (𝜑 → (γ ·
(log‘𝐴)) ∈
ℂ) |
95 | 50, 94, 51 | addsubassd 11352 |
. . . . . . 7
⊢ (𝜑 → (((((log‘𝐴)↑2) / 2) + (γ
· (log‘𝐴)))
− 𝐿) =
((((log‘𝐴)↑2) /
2) + ((γ · (log‘𝐴)) − 𝐿))) |
96 | 42, 50, 51 | subsub4d 11363 |
. . . . . . 7
⊢ (𝜑 → ((((log‘𝐴) · ((log‘𝐴) + γ)) −
(((log‘𝐴)↑2) /
2)) − 𝐿) =
(((log‘𝐴) ·
((log‘𝐴) + γ))
− ((((log‘𝐴)↑2) / 2) + 𝐿))) |
97 | 93, 95, 96 | 3eqtr3d 2786 |
. . . . . 6
⊢ (𝜑 → ((((log‘𝐴)↑2) / 2) + ((γ
· (log‘𝐴))
− 𝐿)) =
(((log‘𝐴) ·
((log‘𝐴) + γ))
− ((((log‘𝐴)↑2) / 2) + 𝐿))) |
98 | 71, 97 | oveq12d 7293 |
. . . . 5
⊢ (𝜑 → (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘(𝐴 / 𝑚)) / 𝑚) − ((((log‘𝐴)↑2) / 2) + ((γ ·
(log‘𝐴)) −
𝐿))) = ((Σ𝑚 ∈
(1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚)) − (((log‘𝐴) · ((log‘𝐴) + γ)) − ((((log‘𝐴)↑2) / 2) + 𝐿)))) |
99 | 37, 49, 42, 52 | sub4d 11381 |
. . . . 5
⊢ (𝜑 → ((Σ𝑚 ∈
(1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚)) − (((log‘𝐴) · ((log‘𝐴) + γ)) − ((((log‘𝐴)↑2) / 2) + 𝐿))) = ((Σ𝑚 ∈
(1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ))) − (Σ𝑚 ∈
(1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿)))) |
100 | 98, 99 | eqtrd 2778 |
. . . 4
⊢ (𝜑 → (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘(𝐴 / 𝑚)) / 𝑚) − ((((log‘𝐴)↑2) / 2) + ((γ ·
(log‘𝐴)) −
𝐿))) = ((Σ𝑚 ∈
(1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ))) − (Σ𝑚 ∈
(1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿)))) |
101 | 100 | fveq2d 6778 |
. . 3
⊢ (𝜑 → (abs‘(Σ𝑚 ∈
(1...(⌊‘𝐴))((log‘(𝐴 / 𝑚)) / 𝑚) − ((((log‘𝐴)↑2) / 2) + ((γ ·
(log‘𝐴)) −
𝐿)))) =
(abs‘((Σ𝑚
∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ))) − (Σ𝑚 ∈
(1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿))))) |
102 | 43, 53 | abs2dif2d 15170 |
. . 3
⊢ (𝜑 → (abs‘((Σ𝑚 ∈
(1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ))) − (Σ𝑚 ∈
(1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿)))) ≤ ((abs‘(Σ𝑚 ∈
(1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ)))) + (abs‘(Σ𝑚 ∈
(1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿))))) |
103 | 101, 102 | eqbrtrd 5096 |
. 2
⊢ (𝜑 → (abs‘(Σ𝑚 ∈
(1...(⌊‘𝐴))((log‘(𝐴 / 𝑚)) / 𝑚) − ((((log‘𝐴)↑2) / 2) + ((γ ·
(log‘𝐴)) −
𝐿)))) ≤
((abs‘(Σ𝑚
∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ)))) + (abs‘(Σ𝑚 ∈
(1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿))))) |
104 | | harmonicbnd4 26160 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ+
→ (abs‘(Σ𝑚
∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ))) ≤ (1 / 𝐴)) |
105 | 2, 104 | syl 17 |
. . . . . 6
⊢ (𝜑 → (abs‘(Σ𝑚 ∈
(1...(⌊‘𝐴))(1 /
𝑚) −
((log‘𝐴) + γ)))
≤ (1 / 𝐴)) |
106 | 8 | nnrecred 12024 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → (1 / 𝑚) ∈ ℝ) |
107 | 1, 106 | fsumrecl 15446 |
. . . . . . . . . 10
⊢ (𝜑 → Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) ∈ ℝ) |
108 | 107, 40 | resubcld 11403 |
. . . . . . . . 9
⊢ (𝜑 → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ)) ∈
ℝ) |
109 | 108 | recnd 11003 |
. . . . . . . 8
⊢ (𝜑 → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ)) ∈
ℂ) |
110 | 109 | abscld 15148 |
. . . . . . 7
⊢ (𝜑 → (abs‘(Σ𝑚 ∈
(1...(⌊‘𝐴))(1 /
𝑚) −
((log‘𝐴) + γ)))
∈ ℝ) |
111 | 2 | rprecred 12783 |
. . . . . . 7
⊢ (𝜑 → (1 / 𝐴) ∈ ℝ) |
112 | | 0red 10978 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈
ℝ) |
113 | | 1red 10976 |
. . . . . . . 8
⊢ (𝜑 → 1 ∈
ℝ) |
114 | | 0lt1 11497 |
. . . . . . . . 9
⊢ 0 <
1 |
115 | 114 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 0 < 1) |
116 | | loge 25742 |
. . . . . . . . 9
⊢
(log‘e) = 1 |
117 | | mulog2sumlem1.3 |
. . . . . . . . . 10
⊢ (𝜑 → e ≤ 𝐴) |
118 | | epr 15917 |
. . . . . . . . . . 11
⊢ e ∈
ℝ+ |
119 | | logleb 25758 |
. . . . . . . . . . 11
⊢ ((e
∈ ℝ+ ∧ 𝐴 ∈ ℝ+) → (e ≤
𝐴 ↔ (log‘e) ≤
(log‘𝐴))) |
120 | 118, 2, 119 | sylancr 587 |
. . . . . . . . . 10
⊢ (𝜑 → (e ≤ 𝐴 ↔ (log‘e) ≤ (log‘𝐴))) |
121 | 117, 120 | mpbid 231 |
. . . . . . . . 9
⊢ (𝜑 → (log‘e) ≤
(log‘𝐴)) |
122 | 116, 121 | eqbrtrrid 5110 |
. . . . . . . 8
⊢ (𝜑 → 1 ≤ (log‘𝐴)) |
123 | 112, 113,
11, 115, 122 | ltletrd 11135 |
. . . . . . 7
⊢ (𝜑 → 0 < (log‘𝐴)) |
124 | | lemul2 11828 |
. . . . . . 7
⊢
(((abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ))) ∈ ℝ ∧ (1 /
𝐴) ∈ ℝ ∧
((log‘𝐴) ∈
ℝ ∧ 0 < (log‘𝐴))) → ((abs‘(Σ𝑚 ∈
(1...(⌊‘𝐴))(1 /
𝑚) −
((log‘𝐴) + γ)))
≤ (1 / 𝐴) ↔
((log‘𝐴) ·
(abs‘(Σ𝑚 ∈
(1...(⌊‘𝐴))(1 /
𝑚) −
((log‘𝐴) +
γ)))) ≤ ((log‘𝐴) · (1 / 𝐴)))) |
125 | 110, 111,
11, 123, 124 | syl112anc 1373 |
. . . . . 6
⊢ (𝜑 → ((abs‘(Σ𝑚 ∈
(1...(⌊‘𝐴))(1 /
𝑚) −
((log‘𝐴) + γ)))
≤ (1 / 𝐴) ↔
((log‘𝐴) ·
(abs‘(Σ𝑚 ∈
(1...(⌊‘𝐴))(1 /
𝑚) −
((log‘𝐴) +
γ)))) ≤ ((log‘𝐴) · (1 / 𝐴)))) |
126 | 105, 125 | mpbid 231 |
. . . . 5
⊢ (𝜑 → ((log‘𝐴) ·
(abs‘(Σ𝑚 ∈
(1...(⌊‘𝐴))(1 /
𝑚) −
((log‘𝐴) +
γ)))) ≤ ((log‘𝐴) · (1 / 𝐴))) |
127 | 45 | rpcnd 12774 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → 𝑚 ∈ ℂ) |
128 | 45 | rpne0d 12777 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → 𝑚 ≠ 0) |
129 | 63, 127, 128 | divrecd 11754 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → ((log‘𝐴) / 𝑚) = ((log‘𝐴) · (1 / 𝑚))) |
130 | 129 | sumeq2dv 15415 |
. . . . . . . . . 10
⊢ (𝜑 → Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) = Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) · (1 / 𝑚))) |
131 | 106 | recnd 11003 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → (1 / 𝑚) ∈ ℂ) |
132 | 1, 38, 131 | fsummulc2 15496 |
. . . . . . . . . 10
⊢ (𝜑 → ((log‘𝐴) · Σ𝑚 ∈
(1...(⌊‘𝐴))(1 /
𝑚)) = Σ𝑚 ∈
(1...(⌊‘𝐴))((log‘𝐴) · (1 / 𝑚))) |
133 | 130, 132 | eqtr4d 2781 |
. . . . . . . . 9
⊢ (𝜑 → Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) = ((log‘𝐴) · Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚))) |
134 | 133 | oveq1d 7290 |
. . . . . . . 8
⊢ (𝜑 → (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ))) = (((log‘𝐴) · Σ𝑚 ∈
(1...(⌊‘𝐴))(1 /
𝑚)) −
((log‘𝐴) ·
((log‘𝐴) +
γ)))) |
135 | 1, 131 | fsumcl 15445 |
. . . . . . . . 9
⊢ (𝜑 → Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) ∈ ℂ) |
136 | 38, 135, 41 | subdid 11431 |
. . . . . . . 8
⊢ (𝜑 → ((log‘𝐴) · (Σ𝑚 ∈
(1...(⌊‘𝐴))(1 /
𝑚) −
((log‘𝐴) + γ)))
= (((log‘𝐴) ·
Σ𝑚 ∈
(1...(⌊‘𝐴))(1 /
𝑚)) −
((log‘𝐴) ·
((log‘𝐴) +
γ)))) |
137 | 134, 136 | eqtr4d 2781 |
. . . . . . 7
⊢ (𝜑 → (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ))) = ((log‘𝐴) · (Σ𝑚 ∈
(1...(⌊‘𝐴))(1 /
𝑚) −
((log‘𝐴) +
γ)))) |
138 | 137 | fveq2d 6778 |
. . . . . 6
⊢ (𝜑 → (abs‘(Σ𝑚 ∈
(1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ)))) =
(abs‘((log‘𝐴)
· (Σ𝑚 ∈
(1...(⌊‘𝐴))(1 /
𝑚) −
((log‘𝐴) +
γ))))) |
139 | 135, 41 | subcld 11332 |
. . . . . . 7
⊢ (𝜑 → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ)) ∈
ℂ) |
140 | 38, 139 | absmuld 15166 |
. . . . . 6
⊢ (𝜑 →
(abs‘((log‘𝐴)
· (Σ𝑚 ∈
(1...(⌊‘𝐴))(1 /
𝑚) −
((log‘𝐴) +
γ)))) = ((abs‘(log‘𝐴)) · (abs‘(Σ𝑚 ∈
(1...(⌊‘𝐴))(1 /
𝑚) −
((log‘𝐴) +
γ))))) |
141 | 112, 11, 123 | ltled 11123 |
. . . . . . . 8
⊢ (𝜑 → 0 ≤ (log‘𝐴)) |
142 | 11, 141 | absidd 15134 |
. . . . . . 7
⊢ (𝜑 →
(abs‘(log‘𝐴)) =
(log‘𝐴)) |
143 | 142 | oveq1d 7290 |
. . . . . 6
⊢ (𝜑 →
((abs‘(log‘𝐴))
· (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ)))) = ((log‘𝐴) ·
(abs‘(Σ𝑚 ∈
(1...(⌊‘𝐴))(1 /
𝑚) −
((log‘𝐴) +
γ))))) |
144 | 138, 140,
143 | 3eqtrd 2782 |
. . . . 5
⊢ (𝜑 → (abs‘(Σ𝑚 ∈
(1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ)))) = ((log‘𝐴) ·
(abs‘(Σ𝑚 ∈
(1...(⌊‘𝐴))(1 /
𝑚) −
((log‘𝐴) +
γ))))) |
145 | 2 | rpcnd 12774 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ ℂ) |
146 | 2 | rpne0d 12777 |
. . . . . 6
⊢ (𝜑 → 𝐴 ≠ 0) |
147 | 38, 145, 146 | divrecd 11754 |
. . . . 5
⊢ (𝜑 → ((log‘𝐴) / 𝐴) = ((log‘𝐴) · (1 / 𝐴))) |
148 | 126, 144,
147 | 3brtr4d 5106 |
. . . 4
⊢ (𝜑 → (abs‘(Σ𝑚 ∈
(1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ)))) ≤ ((log‘𝐴) / 𝐴)) |
149 | | fveq2 6774 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑚 → (log‘𝑖) = (log‘𝑚)) |
150 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑚 → 𝑖 = 𝑚) |
151 | 149, 150 | oveq12d 7293 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑚 → ((log‘𝑖) / 𝑖) = ((log‘𝑚) / 𝑚)) |
152 | 151 | cbvsumv 15408 |
. . . . . . . . . . . 12
⊢
Σ𝑖 ∈
(1...(⌊‘𝑦))((log‘𝑖) / 𝑖) = Σ𝑚 ∈ (1...(⌊‘𝑦))((log‘𝑚) / 𝑚) |
153 | | fveq2 6774 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝐴 → (⌊‘𝑦) = (⌊‘𝐴)) |
154 | 153 | oveq2d 7291 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐴 → (1...(⌊‘𝑦)) = (1...(⌊‘𝐴))) |
155 | 154 | sumeq1d 15413 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝐴 → Σ𝑚 ∈ (1...(⌊‘𝑦))((log‘𝑚) / 𝑚) = Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚)) |
156 | 152, 155 | eqtrid 2790 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝐴 → Σ𝑖 ∈ (1...(⌊‘𝑦))((log‘𝑖) / 𝑖) = Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚)) |
157 | | fveq2 6774 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐴 → (log‘𝑦) = (log‘𝐴)) |
158 | 157 | oveq1d 7290 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝐴 → ((log‘𝑦)↑2) = ((log‘𝐴)↑2)) |
159 | 158 | oveq1d 7290 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝐴 → (((log‘𝑦)↑2) / 2) = (((log‘𝐴)↑2) / 2)) |
160 | 156, 159 | oveq12d 7293 |
. . . . . . . . . 10
⊢ (𝑦 = 𝐴 → (Σ𝑖 ∈ (1...(⌊‘𝑦))((log‘𝑖) / 𝑖) − (((log‘𝑦)↑2) / 2)) = (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − (((log‘𝐴)↑2) / 2))) |
161 | | ovex 7308 |
. . . . . . . . . 10
⊢
(Σ𝑚 ∈
(1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − (((log‘𝐴)↑2) / 2)) ∈ V |
162 | 160, 19, 161 | fvmpt 6875 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℝ+
→ (𝐹‘𝐴) = (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − (((log‘𝐴)↑2) / 2))) |
163 | 2, 162 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝐹‘𝐴) = (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − (((log‘𝐴)↑2) / 2))) |
164 | 163 | oveq1d 7290 |
. . . . . . 7
⊢ (𝜑 → ((𝐹‘𝐴) − 𝐿) = ((Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − (((log‘𝐴)↑2) / 2)) − 𝐿)) |
165 | 49, 50, 51 | subsub4d 11363 |
. . . . . . 7
⊢ (𝜑 → ((Σ𝑚 ∈
(1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − (((log‘𝐴)↑2) / 2)) − 𝐿) = (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿))) |
166 | 164, 165 | eqtrd 2778 |
. . . . . 6
⊢ (𝜑 → ((𝐹‘𝐴) − 𝐿) = (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿))) |
167 | 166 | fveq2d 6778 |
. . . . 5
⊢ (𝜑 → (abs‘((𝐹‘𝐴) − 𝐿)) = (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿)))) |
168 | 20 | simp3i 1140 |
. . . . . 6
⊢ ((𝐹 ⇝𝑟
𝐿 ∧ 𝐴 ∈ ℝ+ ∧ e ≤
𝐴) →
(abs‘((𝐹‘𝐴) − 𝐿)) ≤ ((log‘𝐴) / 𝐴)) |
169 | 24, 2, 117, 168 | syl3anc 1370 |
. . . . 5
⊢ (𝜑 → (abs‘((𝐹‘𝐴) − 𝐿)) ≤ ((log‘𝐴) / 𝐴)) |
170 | 167, 169 | eqbrtrrd 5098 |
. . . 4
⊢ (𝜑 → (abs‘(Σ𝑚 ∈
(1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿))) ≤ ((log‘𝐴) / 𝐴)) |
171 | 44, 54, 57, 57, 148, 170 | le2addd 11594 |
. . 3
⊢ (𝜑 → ((abs‘(Σ𝑚 ∈
(1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ)))) + (abs‘(Σ𝑚 ∈
(1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿)))) ≤ (((log‘𝐴) / 𝐴) + ((log‘𝐴) / 𝐴))) |
172 | 57 | recnd 11003 |
. . . 4
⊢ (𝜑 → ((log‘𝐴) / 𝐴) ∈ ℂ) |
173 | 172 | 2timesd 12216 |
. . 3
⊢ (𝜑 → (2 ·
((log‘𝐴) / 𝐴)) = (((log‘𝐴) / 𝐴) + ((log‘𝐴) / 𝐴))) |
174 | 171, 173 | breqtrrd 5102 |
. 2
⊢ (𝜑 → ((abs‘(Σ𝑚 ∈
(1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ)))) + (abs‘(Σ𝑚 ∈
(1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿)))) ≤ (2 · ((log‘𝐴) / 𝐴))) |
175 | 33, 55, 59, 103, 174 | letrd 11132 |
1
⊢ (𝜑 → (abs‘(Σ𝑚 ∈
(1...(⌊‘𝐴))((log‘(𝐴 / 𝑚)) / 𝑚) − ((((log‘𝐴)↑2) / 2) + ((γ ·
(log‘𝐴)) −
𝐿)))) ≤ (2 ·
((log‘𝐴) / 𝐴))) |