MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulog2sumlem1 Structured version   Visualization version   GIF version

Theorem mulog2sumlem1 27270
Description: Asymptotic formula for Σ𝑛 ≀ π‘₯, log(π‘₯ / 𝑛) / 𝑛 = (1 / 2)log↑2(π‘₯) + Ξ³ Β· logπ‘₯ βˆ’ 𝐿 + 𝑂(logπ‘₯ / π‘₯), with explicit constants. Equation 10.2.7 of [Shapiro], p. 407. (Contributed by Mario Carneiro, 18-May-2016.)
Hypotheses
Ref Expression
logdivsum.1 𝐹 = (𝑦 ∈ ℝ+ ↦ (Σ𝑖 ∈ (1...(βŒŠβ€˜π‘¦))((logβ€˜π‘–) / 𝑖) βˆ’ (((logβ€˜π‘¦)↑2) / 2)))
mulog2sumlem.1 (πœ‘ β†’ 𝐹 β‡π‘Ÿ 𝐿)
mulog2sumlem1.2 (πœ‘ β†’ 𝐴 ∈ ℝ+)
mulog2sumlem1.3 (πœ‘ β†’ e ≀ 𝐴)
Assertion
Ref Expression
mulog2sumlem1 (πœ‘ β†’ (absβ€˜(Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜(𝐴 / π‘š)) / π‘š) βˆ’ ((((logβ€˜π΄)↑2) / 2) + ((Ξ³ Β· (logβ€˜π΄)) βˆ’ 𝐿)))) ≀ (2 Β· ((logβ€˜π΄) / 𝐴)))
Distinct variable groups:   𝑖,π‘š,𝑦,𝐴   πœ‘,π‘š
Allowed substitution hints:   πœ‘(𝑦,𝑖)   𝐹(𝑦,𝑖,π‘š)   𝐿(𝑦,𝑖,π‘š)

Proof of Theorem mulog2sumlem1
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 fzfid 13943 . . . . . 6 (πœ‘ β†’ (1...(βŒŠβ€˜π΄)) ∈ Fin)
2 mulog2sumlem1.2 . . . . . . . . 9 (πœ‘ β†’ 𝐴 ∈ ℝ+)
3 elfznn 13535 . . . . . . . . . 10 (π‘š ∈ (1...(βŒŠβ€˜π΄)) β†’ π‘š ∈ β„•)
43nnrpd 13019 . . . . . . . . 9 (π‘š ∈ (1...(βŒŠβ€˜π΄)) β†’ π‘š ∈ ℝ+)
5 rpdivcl 13004 . . . . . . . . 9 ((𝐴 ∈ ℝ+ ∧ π‘š ∈ ℝ+) β†’ (𝐴 / π‘š) ∈ ℝ+)
62, 4, 5syl2an 595 . . . . . . . 8 ((πœ‘ ∧ π‘š ∈ (1...(βŒŠβ€˜π΄))) β†’ (𝐴 / π‘š) ∈ ℝ+)
76relogcld 26364 . . . . . . 7 ((πœ‘ ∧ π‘š ∈ (1...(βŒŠβ€˜π΄))) β†’ (logβ€˜(𝐴 / π‘š)) ∈ ℝ)
83adantl 481 . . . . . . 7 ((πœ‘ ∧ π‘š ∈ (1...(βŒŠβ€˜π΄))) β†’ π‘š ∈ β„•)
97, 8nndivred 12271 . . . . . 6 ((πœ‘ ∧ π‘š ∈ (1...(βŒŠβ€˜π΄))) β†’ ((logβ€˜(𝐴 / π‘š)) / π‘š) ∈ ℝ)
101, 9fsumrecl 15685 . . . . 5 (πœ‘ β†’ Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜(𝐴 / π‘š)) / π‘š) ∈ ℝ)
112relogcld 26364 . . . . . . . 8 (πœ‘ β†’ (logβ€˜π΄) ∈ ℝ)
1211resqcld 14095 . . . . . . 7 (πœ‘ β†’ ((logβ€˜π΄)↑2) ∈ ℝ)
1312rehalfcld 12464 . . . . . 6 (πœ‘ β†’ (((logβ€˜π΄)↑2) / 2) ∈ ℝ)
14 emre 26743 . . . . . . . 8 Ξ³ ∈ ℝ
15 remulcl 11198 . . . . . . . 8 ((Ξ³ ∈ ℝ ∧ (logβ€˜π΄) ∈ ℝ) β†’ (Ξ³ Β· (logβ€˜π΄)) ∈ ℝ)
1614, 11, 15sylancr 586 . . . . . . 7 (πœ‘ β†’ (Ξ³ Β· (logβ€˜π΄)) ∈ ℝ)
17 rpsup 13836 . . . . . . . . 9 sup(ℝ+, ℝ*, < ) = +∞
1817a1i 11 . . . . . . . 8 (πœ‘ β†’ sup(ℝ+, ℝ*, < ) = +∞)
19 logdivsum.1 . . . . . . . . . . . . 13 𝐹 = (𝑦 ∈ ℝ+ ↦ (Σ𝑖 ∈ (1...(βŒŠβ€˜π‘¦))((logβ€˜π‘–) / 𝑖) βˆ’ (((logβ€˜π‘¦)↑2) / 2)))
2019logdivsum 27269 . . . . . . . . . . . 12 (𝐹:ℝ+βŸΆβ„ ∧ 𝐹 ∈ dom β‡π‘Ÿ ∧ ((𝐹 β‡π‘Ÿ 𝐿 ∧ 𝐴 ∈ ℝ+ ∧ e ≀ 𝐴) β†’ (absβ€˜((πΉβ€˜π΄) βˆ’ 𝐿)) ≀ ((logβ€˜π΄) / 𝐴)))
2120simp1i 1138 . . . . . . . . . . 11 𝐹:ℝ+βŸΆβ„
2221a1i 11 . . . . . . . . . 10 (πœ‘ β†’ 𝐹:ℝ+βŸΆβ„)
2322feqmptd 6961 . . . . . . . . 9 (πœ‘ β†’ 𝐹 = (π‘₯ ∈ ℝ+ ↦ (πΉβ€˜π‘₯)))
24 mulog2sumlem.1 . . . . . . . . 9 (πœ‘ β†’ 𝐹 β‡π‘Ÿ 𝐿)
2523, 24eqbrtrrd 5173 . . . . . . . 8 (πœ‘ β†’ (π‘₯ ∈ ℝ+ ↦ (πΉβ€˜π‘₯)) β‡π‘Ÿ 𝐿)
2621ffvelcdmi 7086 . . . . . . . . 9 (π‘₯ ∈ ℝ+ β†’ (πΉβ€˜π‘₯) ∈ ℝ)
2726adantl 481 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ (πΉβ€˜π‘₯) ∈ ℝ)
2818, 25, 27rlimrecl 15529 . . . . . . 7 (πœ‘ β†’ 𝐿 ∈ ℝ)
2916, 28resubcld 11647 . . . . . 6 (πœ‘ β†’ ((Ξ³ Β· (logβ€˜π΄)) βˆ’ 𝐿) ∈ ℝ)
3013, 29readdcld 11248 . . . . 5 (πœ‘ β†’ ((((logβ€˜π΄)↑2) / 2) + ((Ξ³ Β· (logβ€˜π΄)) βˆ’ 𝐿)) ∈ ℝ)
3110, 30resubcld 11647 . . . 4 (πœ‘ β†’ (Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜(𝐴 / π‘š)) / π‘š) βˆ’ ((((logβ€˜π΄)↑2) / 2) + ((Ξ³ Β· (logβ€˜π΄)) βˆ’ 𝐿))) ∈ ℝ)
3231recnd 11247 . . 3 (πœ‘ β†’ (Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜(𝐴 / π‘š)) / π‘š) βˆ’ ((((logβ€˜π΄)↑2) / 2) + ((Ξ³ Β· (logβ€˜π΄)) βˆ’ 𝐿))) ∈ β„‚)
3332abscld 15388 . 2 (πœ‘ β†’ (absβ€˜(Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜(𝐴 / π‘š)) / π‘š) βˆ’ ((((logβ€˜π΄)↑2) / 2) + ((Ξ³ Β· (logβ€˜π΄)) βˆ’ 𝐿)))) ∈ ℝ)
34 rerpdivcl 13009 . . . . . . . 8 (((logβ€˜π΄) ∈ ℝ ∧ π‘š ∈ ℝ+) β†’ ((logβ€˜π΄) / π‘š) ∈ ℝ)
3511, 4, 34syl2an 595 . . . . . . 7 ((πœ‘ ∧ π‘š ∈ (1...(βŒŠβ€˜π΄))) β†’ ((logβ€˜π΄) / π‘š) ∈ ℝ)
3635recnd 11247 . . . . . 6 ((πœ‘ ∧ π‘š ∈ (1...(βŒŠβ€˜π΄))) β†’ ((logβ€˜π΄) / π‘š) ∈ β„‚)
371, 36fsumcl 15684 . . . . 5 (πœ‘ β†’ Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜π΄) / π‘š) ∈ β„‚)
3811recnd 11247 . . . . . 6 (πœ‘ β†’ (logβ€˜π΄) ∈ β„‚)
39 readdcl 11196 . . . . . . . 8 (((logβ€˜π΄) ∈ ℝ ∧ Ξ³ ∈ ℝ) β†’ ((logβ€˜π΄) + Ξ³) ∈ ℝ)
4011, 14, 39sylancl 585 . . . . . . 7 (πœ‘ β†’ ((logβ€˜π΄) + Ξ³) ∈ ℝ)
4140recnd 11247 . . . . . 6 (πœ‘ β†’ ((logβ€˜π΄) + Ξ³) ∈ β„‚)
4238, 41mulcld 11239 . . . . 5 (πœ‘ β†’ ((logβ€˜π΄) Β· ((logβ€˜π΄) + Ξ³)) ∈ β„‚)
4337, 42subcld 11576 . . . 4 (πœ‘ β†’ (Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜π΄) / π‘š) βˆ’ ((logβ€˜π΄) Β· ((logβ€˜π΄) + Ξ³))) ∈ β„‚)
4443abscld 15388 . . 3 (πœ‘ β†’ (absβ€˜(Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜π΄) / π‘š) βˆ’ ((logβ€˜π΄) Β· ((logβ€˜π΄) + Ξ³)))) ∈ ℝ)
458nnrpd 13019 . . . . . . . . 9 ((πœ‘ ∧ π‘š ∈ (1...(βŒŠβ€˜π΄))) β†’ π‘š ∈ ℝ+)
4645relogcld 26364 . . . . . . . 8 ((πœ‘ ∧ π‘š ∈ (1...(βŒŠβ€˜π΄))) β†’ (logβ€˜π‘š) ∈ ℝ)
4746, 8nndivred 12271 . . . . . . 7 ((πœ‘ ∧ π‘š ∈ (1...(βŒŠβ€˜π΄))) β†’ ((logβ€˜π‘š) / π‘š) ∈ ℝ)
4847recnd 11247 . . . . . 6 ((πœ‘ ∧ π‘š ∈ (1...(βŒŠβ€˜π΄))) β†’ ((logβ€˜π‘š) / π‘š) ∈ β„‚)
491, 48fsumcl 15684 . . . . 5 (πœ‘ β†’ Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜π‘š) / π‘š) ∈ β„‚)
5013recnd 11247 . . . . . 6 (πœ‘ β†’ (((logβ€˜π΄)↑2) / 2) ∈ β„‚)
5128recnd 11247 . . . . . 6 (πœ‘ β†’ 𝐿 ∈ β„‚)
5250, 51addcld 11238 . . . . 5 (πœ‘ β†’ ((((logβ€˜π΄)↑2) / 2) + 𝐿) ∈ β„‚)
5349, 52subcld 11576 . . . 4 (πœ‘ β†’ (Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜π‘š) / π‘š) βˆ’ ((((logβ€˜π΄)↑2) / 2) + 𝐿)) ∈ β„‚)
5453abscld 15388 . . 3 (πœ‘ β†’ (absβ€˜(Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜π‘š) / π‘š) βˆ’ ((((logβ€˜π΄)↑2) / 2) + 𝐿))) ∈ ℝ)
5544, 54readdcld 11248 . 2 (πœ‘ β†’ ((absβ€˜(Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜π΄) / π‘š) βˆ’ ((logβ€˜π΄) Β· ((logβ€˜π΄) + Ξ³)))) + (absβ€˜(Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜π‘š) / π‘š) βˆ’ ((((logβ€˜π΄)↑2) / 2) + 𝐿)))) ∈ ℝ)
56 2re 12291 . . 3 2 ∈ ℝ
5711, 2rerpdivcld 13052 . . 3 (πœ‘ β†’ ((logβ€˜π΄) / 𝐴) ∈ ℝ)
58 remulcl 11198 . . 3 ((2 ∈ ℝ ∧ ((logβ€˜π΄) / 𝐴) ∈ ℝ) β†’ (2 Β· ((logβ€˜π΄) / 𝐴)) ∈ ℝ)
5956, 57, 58sylancr 586 . 2 (πœ‘ β†’ (2 Β· ((logβ€˜π΄) / 𝐴)) ∈ ℝ)
60 relogdiv 26334 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+ ∧ π‘š ∈ ℝ+) β†’ (logβ€˜(𝐴 / π‘š)) = ((logβ€˜π΄) βˆ’ (logβ€˜π‘š)))
612, 4, 60syl2an 595 . . . . . . . . . 10 ((πœ‘ ∧ π‘š ∈ (1...(βŒŠβ€˜π΄))) β†’ (logβ€˜(𝐴 / π‘š)) = ((logβ€˜π΄) βˆ’ (logβ€˜π‘š)))
6261oveq1d 7427 . . . . . . . . 9 ((πœ‘ ∧ π‘š ∈ (1...(βŒŠβ€˜π΄))) β†’ ((logβ€˜(𝐴 / π‘š)) / π‘š) = (((logβ€˜π΄) βˆ’ (logβ€˜π‘š)) / π‘š))
6338adantr 480 . . . . . . . . . 10 ((πœ‘ ∧ π‘š ∈ (1...(βŒŠβ€˜π΄))) β†’ (logβ€˜π΄) ∈ β„‚)
6446recnd 11247 . . . . . . . . . 10 ((πœ‘ ∧ π‘š ∈ (1...(βŒŠβ€˜π΄))) β†’ (logβ€˜π‘š) ∈ β„‚)
6545rpcnne0d 13030 . . . . . . . . . 10 ((πœ‘ ∧ π‘š ∈ (1...(βŒŠβ€˜π΄))) β†’ (π‘š ∈ β„‚ ∧ π‘š β‰  0))
66 divsubdir 11913 . . . . . . . . . 10 (((logβ€˜π΄) ∈ β„‚ ∧ (logβ€˜π‘š) ∈ β„‚ ∧ (π‘š ∈ β„‚ ∧ π‘š β‰  0)) β†’ (((logβ€˜π΄) βˆ’ (logβ€˜π‘š)) / π‘š) = (((logβ€˜π΄) / π‘š) βˆ’ ((logβ€˜π‘š) / π‘š)))
6763, 64, 65, 66syl3anc 1370 . . . . . . . . 9 ((πœ‘ ∧ π‘š ∈ (1...(βŒŠβ€˜π΄))) β†’ (((logβ€˜π΄) βˆ’ (logβ€˜π‘š)) / π‘š) = (((logβ€˜π΄) / π‘š) βˆ’ ((logβ€˜π‘š) / π‘š)))
6862, 67eqtrd 2771 . . . . . . . 8 ((πœ‘ ∧ π‘š ∈ (1...(βŒŠβ€˜π΄))) β†’ ((logβ€˜(𝐴 / π‘š)) / π‘š) = (((logβ€˜π΄) / π‘š) βˆ’ ((logβ€˜π‘š) / π‘š)))
6968sumeq2dv 15654 . . . . . . 7 (πœ‘ β†’ Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜(𝐴 / π‘š)) / π‘š) = Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))(((logβ€˜π΄) / π‘š) βˆ’ ((logβ€˜π‘š) / π‘š)))
701, 36, 48fsumsub 15739 . . . . . . 7 (πœ‘ β†’ Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))(((logβ€˜π΄) / π‘š) βˆ’ ((logβ€˜π‘š) / π‘š)) = (Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜π΄) / π‘š) βˆ’ Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜π‘š) / π‘š)))
7169, 70eqtrd 2771 . . . . . 6 (πœ‘ β†’ Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜(𝐴 / π‘š)) / π‘š) = (Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜π΄) / π‘š) βˆ’ Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜π‘š) / π‘š)))
72 remulcl 11198 . . . . . . . . . . . . 13 (((logβ€˜π΄) ∈ ℝ ∧ Ξ³ ∈ ℝ) β†’ ((logβ€˜π΄) Β· Ξ³) ∈ ℝ)
7311, 14, 72sylancl 585 . . . . . . . . . . . 12 (πœ‘ β†’ ((logβ€˜π΄) Β· Ξ³) ∈ ℝ)
7413, 73readdcld 11248 . . . . . . . . . . 11 (πœ‘ β†’ ((((logβ€˜π΄)↑2) / 2) + ((logβ€˜π΄) Β· Ξ³)) ∈ ℝ)
7574recnd 11247 . . . . . . . . . 10 (πœ‘ β†’ ((((logβ€˜π΄)↑2) / 2) + ((logβ€˜π΄) Β· Ξ³)) ∈ β„‚)
7675, 50pncand 11577 . . . . . . . . 9 (πœ‘ β†’ ((((((logβ€˜π΄)↑2) / 2) + ((logβ€˜π΄) Β· Ξ³)) + (((logβ€˜π΄)↑2) / 2)) βˆ’ (((logβ€˜π΄)↑2) / 2)) = ((((logβ€˜π΄)↑2) / 2) + ((logβ€˜π΄) Β· Ξ³)))
7714recni 11233 . . . . . . . . . . . . 13 Ξ³ ∈ β„‚
7877a1i 11 . . . . . . . . . . . 12 (πœ‘ β†’ Ξ³ ∈ β„‚)
7938, 38, 78adddid 11243 . . . . . . . . . . 11 (πœ‘ β†’ ((logβ€˜π΄) Β· ((logβ€˜π΄) + Ξ³)) = (((logβ€˜π΄) Β· (logβ€˜π΄)) + ((logβ€˜π΄) Β· Ξ³)))
8012recnd 11247 . . . . . . . . . . . . . 14 (πœ‘ β†’ ((logβ€˜π΄)↑2) ∈ β„‚)
81802halvesd 12463 . . . . . . . . . . . . 13 (πœ‘ β†’ ((((logβ€˜π΄)↑2) / 2) + (((logβ€˜π΄)↑2) / 2)) = ((logβ€˜π΄)↑2))
8238sqvald 14113 . . . . . . . . . . . . 13 (πœ‘ β†’ ((logβ€˜π΄)↑2) = ((logβ€˜π΄) Β· (logβ€˜π΄)))
8381, 82eqtrd 2771 . . . . . . . . . . . 12 (πœ‘ β†’ ((((logβ€˜π΄)↑2) / 2) + (((logβ€˜π΄)↑2) / 2)) = ((logβ€˜π΄) Β· (logβ€˜π΄)))
8483oveq1d 7427 . . . . . . . . . . 11 (πœ‘ β†’ (((((logβ€˜π΄)↑2) / 2) + (((logβ€˜π΄)↑2) / 2)) + ((logβ€˜π΄) Β· Ξ³)) = (((logβ€˜π΄) Β· (logβ€˜π΄)) + ((logβ€˜π΄) Β· Ξ³)))
8573recnd 11247 . . . . . . . . . . . 12 (πœ‘ β†’ ((logβ€˜π΄) Β· Ξ³) ∈ β„‚)
8650, 50, 85add32d 11446 . . . . . . . . . . 11 (πœ‘ β†’ (((((logβ€˜π΄)↑2) / 2) + (((logβ€˜π΄)↑2) / 2)) + ((logβ€˜π΄) Β· Ξ³)) = (((((logβ€˜π΄)↑2) / 2) + ((logβ€˜π΄) Β· Ξ³)) + (((logβ€˜π΄)↑2) / 2)))
8779, 84, 863eqtr2d 2777 . . . . . . . . . 10 (πœ‘ β†’ ((logβ€˜π΄) Β· ((logβ€˜π΄) + Ξ³)) = (((((logβ€˜π΄)↑2) / 2) + ((logβ€˜π΄) Β· Ξ³)) + (((logβ€˜π΄)↑2) / 2)))
8887oveq1d 7427 . . . . . . . . 9 (πœ‘ β†’ (((logβ€˜π΄) Β· ((logβ€˜π΄) + Ξ³)) βˆ’ (((logβ€˜π΄)↑2) / 2)) = ((((((logβ€˜π΄)↑2) / 2) + ((logβ€˜π΄) Β· Ξ³)) + (((logβ€˜π΄)↑2) / 2)) βˆ’ (((logβ€˜π΄)↑2) / 2)))
89 mulcom 11199 . . . . . . . . . . 11 ((Ξ³ ∈ β„‚ ∧ (logβ€˜π΄) ∈ β„‚) β†’ (Ξ³ Β· (logβ€˜π΄)) = ((logβ€˜π΄) Β· Ξ³))
9077, 38, 89sylancr 586 . . . . . . . . . 10 (πœ‘ β†’ (Ξ³ Β· (logβ€˜π΄)) = ((logβ€˜π΄) Β· Ξ³))
9190oveq2d 7428 . . . . . . . . 9 (πœ‘ β†’ ((((logβ€˜π΄)↑2) / 2) + (Ξ³ Β· (logβ€˜π΄))) = ((((logβ€˜π΄)↑2) / 2) + ((logβ€˜π΄) Β· Ξ³)))
9276, 88, 913eqtr4rd 2782 . . . . . . . 8 (πœ‘ β†’ ((((logβ€˜π΄)↑2) / 2) + (Ξ³ Β· (logβ€˜π΄))) = (((logβ€˜π΄) Β· ((logβ€˜π΄) + Ξ³)) βˆ’ (((logβ€˜π΄)↑2) / 2)))
9392oveq1d 7427 . . . . . . 7 (πœ‘ β†’ (((((logβ€˜π΄)↑2) / 2) + (Ξ³ Β· (logβ€˜π΄))) βˆ’ 𝐿) = ((((logβ€˜π΄) Β· ((logβ€˜π΄) + Ξ³)) βˆ’ (((logβ€˜π΄)↑2) / 2)) βˆ’ 𝐿))
9490, 85eqeltrd 2832 . . . . . . . 8 (πœ‘ β†’ (Ξ³ Β· (logβ€˜π΄)) ∈ β„‚)
9550, 94, 51addsubassd 11596 . . . . . . 7 (πœ‘ β†’ (((((logβ€˜π΄)↑2) / 2) + (Ξ³ Β· (logβ€˜π΄))) βˆ’ 𝐿) = ((((logβ€˜π΄)↑2) / 2) + ((Ξ³ Β· (logβ€˜π΄)) βˆ’ 𝐿)))
9642, 50, 51subsub4d 11607 . . . . . . 7 (πœ‘ β†’ ((((logβ€˜π΄) Β· ((logβ€˜π΄) + Ξ³)) βˆ’ (((logβ€˜π΄)↑2) / 2)) βˆ’ 𝐿) = (((logβ€˜π΄) Β· ((logβ€˜π΄) + Ξ³)) βˆ’ ((((logβ€˜π΄)↑2) / 2) + 𝐿)))
9793, 95, 963eqtr3d 2779 . . . . . 6 (πœ‘ β†’ ((((logβ€˜π΄)↑2) / 2) + ((Ξ³ Β· (logβ€˜π΄)) βˆ’ 𝐿)) = (((logβ€˜π΄) Β· ((logβ€˜π΄) + Ξ³)) βˆ’ ((((logβ€˜π΄)↑2) / 2) + 𝐿)))
9871, 97oveq12d 7430 . . . . 5 (πœ‘ β†’ (Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜(𝐴 / π‘š)) / π‘š) βˆ’ ((((logβ€˜π΄)↑2) / 2) + ((Ξ³ Β· (logβ€˜π΄)) βˆ’ 𝐿))) = ((Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜π΄) / π‘š) βˆ’ Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜π‘š) / π‘š)) βˆ’ (((logβ€˜π΄) Β· ((logβ€˜π΄) + Ξ³)) βˆ’ ((((logβ€˜π΄)↑2) / 2) + 𝐿))))
9937, 49, 42, 52sub4d 11625 . . . . 5 (πœ‘ β†’ ((Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜π΄) / π‘š) βˆ’ Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜π‘š) / π‘š)) βˆ’ (((logβ€˜π΄) Β· ((logβ€˜π΄) + Ξ³)) βˆ’ ((((logβ€˜π΄)↑2) / 2) + 𝐿))) = ((Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜π΄) / π‘š) βˆ’ ((logβ€˜π΄) Β· ((logβ€˜π΄) + Ξ³))) βˆ’ (Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜π‘š) / π‘š) βˆ’ ((((logβ€˜π΄)↑2) / 2) + 𝐿))))
10098, 99eqtrd 2771 . . . 4 (πœ‘ β†’ (Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜(𝐴 / π‘š)) / π‘š) βˆ’ ((((logβ€˜π΄)↑2) / 2) + ((Ξ³ Β· (logβ€˜π΄)) βˆ’ 𝐿))) = ((Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜π΄) / π‘š) βˆ’ ((logβ€˜π΄) Β· ((logβ€˜π΄) + Ξ³))) βˆ’ (Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜π‘š) / π‘š) βˆ’ ((((logβ€˜π΄)↑2) / 2) + 𝐿))))
101100fveq2d 6896 . . 3 (πœ‘ β†’ (absβ€˜(Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜(𝐴 / π‘š)) / π‘š) βˆ’ ((((logβ€˜π΄)↑2) / 2) + ((Ξ³ Β· (logβ€˜π΄)) βˆ’ 𝐿)))) = (absβ€˜((Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜π΄) / π‘š) βˆ’ ((logβ€˜π΄) Β· ((logβ€˜π΄) + Ξ³))) βˆ’ (Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜π‘š) / π‘š) βˆ’ ((((logβ€˜π΄)↑2) / 2) + 𝐿)))))
10243, 53abs2dif2d 15410 . . 3 (πœ‘ β†’ (absβ€˜((Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜π΄) / π‘š) βˆ’ ((logβ€˜π΄) Β· ((logβ€˜π΄) + Ξ³))) βˆ’ (Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜π‘š) / π‘š) βˆ’ ((((logβ€˜π΄)↑2) / 2) + 𝐿)))) ≀ ((absβ€˜(Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜π΄) / π‘š) βˆ’ ((logβ€˜π΄) Β· ((logβ€˜π΄) + Ξ³)))) + (absβ€˜(Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜π‘š) / π‘š) βˆ’ ((((logβ€˜π΄)↑2) / 2) + 𝐿)))))
103101, 102eqbrtrd 5171 . 2 (πœ‘ β†’ (absβ€˜(Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜(𝐴 / π‘š)) / π‘š) βˆ’ ((((logβ€˜π΄)↑2) / 2) + ((Ξ³ Β· (logβ€˜π΄)) βˆ’ 𝐿)))) ≀ ((absβ€˜(Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜π΄) / π‘š) βˆ’ ((logβ€˜π΄) Β· ((logβ€˜π΄) + Ξ³)))) + (absβ€˜(Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜π‘š) / π‘š) βˆ’ ((((logβ€˜π΄)↑2) / 2) + 𝐿)))))
104 harmonicbnd4 26748 . . . . . . 7 (𝐴 ∈ ℝ+ β†’ (absβ€˜(Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))(1 / π‘š) βˆ’ ((logβ€˜π΄) + Ξ³))) ≀ (1 / 𝐴))
1052, 104syl 17 . . . . . 6 (πœ‘ β†’ (absβ€˜(Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))(1 / π‘š) βˆ’ ((logβ€˜π΄) + Ξ³))) ≀ (1 / 𝐴))
1068nnrecred 12268 . . . . . . . . . . 11 ((πœ‘ ∧ π‘š ∈ (1...(βŒŠβ€˜π΄))) β†’ (1 / π‘š) ∈ ℝ)
1071, 106fsumrecl 15685 . . . . . . . . . 10 (πœ‘ β†’ Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))(1 / π‘š) ∈ ℝ)
108107, 40resubcld 11647 . . . . . . . . 9 (πœ‘ β†’ (Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))(1 / π‘š) βˆ’ ((logβ€˜π΄) + Ξ³)) ∈ ℝ)
109108recnd 11247 . . . . . . . 8 (πœ‘ β†’ (Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))(1 / π‘š) βˆ’ ((logβ€˜π΄) + Ξ³)) ∈ β„‚)
110109abscld 15388 . . . . . . 7 (πœ‘ β†’ (absβ€˜(Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))(1 / π‘š) βˆ’ ((logβ€˜π΄) + Ξ³))) ∈ ℝ)
1112rprecred 13032 . . . . . . 7 (πœ‘ β†’ (1 / 𝐴) ∈ ℝ)
112 0red 11222 . . . . . . . 8 (πœ‘ β†’ 0 ∈ ℝ)
113 1red 11220 . . . . . . . 8 (πœ‘ β†’ 1 ∈ ℝ)
114 0lt1 11741 . . . . . . . . 9 0 < 1
115114a1i 11 . . . . . . . 8 (πœ‘ β†’ 0 < 1)
116 loge 26328 . . . . . . . . 9 (logβ€˜e) = 1
117 mulog2sumlem1.3 . . . . . . . . . 10 (πœ‘ β†’ e ≀ 𝐴)
118 epr 16156 . . . . . . . . . . 11 e ∈ ℝ+
119 logleb 26344 . . . . . . . . . . 11 ((e ∈ ℝ+ ∧ 𝐴 ∈ ℝ+) β†’ (e ≀ 𝐴 ↔ (logβ€˜e) ≀ (logβ€˜π΄)))
120118, 2, 119sylancr 586 . . . . . . . . . 10 (πœ‘ β†’ (e ≀ 𝐴 ↔ (logβ€˜e) ≀ (logβ€˜π΄)))
121117, 120mpbid 231 . . . . . . . . 9 (πœ‘ β†’ (logβ€˜e) ≀ (logβ€˜π΄))
122116, 121eqbrtrrid 5185 . . . . . . . 8 (πœ‘ β†’ 1 ≀ (logβ€˜π΄))
123112, 113, 11, 115, 122ltletrd 11379 . . . . . . 7 (πœ‘ β†’ 0 < (logβ€˜π΄))
124 lemul2 12072 . . . . . . 7 (((absβ€˜(Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))(1 / π‘š) βˆ’ ((logβ€˜π΄) + Ξ³))) ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ ∧ ((logβ€˜π΄) ∈ ℝ ∧ 0 < (logβ€˜π΄))) β†’ ((absβ€˜(Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))(1 / π‘š) βˆ’ ((logβ€˜π΄) + Ξ³))) ≀ (1 / 𝐴) ↔ ((logβ€˜π΄) Β· (absβ€˜(Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))(1 / π‘š) βˆ’ ((logβ€˜π΄) + Ξ³)))) ≀ ((logβ€˜π΄) Β· (1 / 𝐴))))
125110, 111, 11, 123, 124syl112anc 1373 . . . . . 6 (πœ‘ β†’ ((absβ€˜(Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))(1 / π‘š) βˆ’ ((logβ€˜π΄) + Ξ³))) ≀ (1 / 𝐴) ↔ ((logβ€˜π΄) Β· (absβ€˜(Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))(1 / π‘š) βˆ’ ((logβ€˜π΄) + Ξ³)))) ≀ ((logβ€˜π΄) Β· (1 / 𝐴))))
126105, 125mpbid 231 . . . . 5 (πœ‘ β†’ ((logβ€˜π΄) Β· (absβ€˜(Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))(1 / π‘š) βˆ’ ((logβ€˜π΄) + Ξ³)))) ≀ ((logβ€˜π΄) Β· (1 / 𝐴)))
12745rpcnd 13023 . . . . . . . . . . . 12 ((πœ‘ ∧ π‘š ∈ (1...(βŒŠβ€˜π΄))) β†’ π‘š ∈ β„‚)
12845rpne0d 13026 . . . . . . . . . . . 12 ((πœ‘ ∧ π‘š ∈ (1...(βŒŠβ€˜π΄))) β†’ π‘š β‰  0)
12963, 127, 128divrecd 11998 . . . . . . . . . . 11 ((πœ‘ ∧ π‘š ∈ (1...(βŒŠβ€˜π΄))) β†’ ((logβ€˜π΄) / π‘š) = ((logβ€˜π΄) Β· (1 / π‘š)))
130129sumeq2dv 15654 . . . . . . . . . 10 (πœ‘ β†’ Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜π΄) / π‘š) = Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜π΄) Β· (1 / π‘š)))
131106recnd 11247 . . . . . . . . . . 11 ((πœ‘ ∧ π‘š ∈ (1...(βŒŠβ€˜π΄))) β†’ (1 / π‘š) ∈ β„‚)
1321, 38, 131fsummulc2 15735 . . . . . . . . . 10 (πœ‘ β†’ ((logβ€˜π΄) Β· Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))(1 / π‘š)) = Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜π΄) Β· (1 / π‘š)))
133130, 132eqtr4d 2774 . . . . . . . . 9 (πœ‘ β†’ Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜π΄) / π‘š) = ((logβ€˜π΄) Β· Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))(1 / π‘š)))
134133oveq1d 7427 . . . . . . . 8 (πœ‘ β†’ (Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜π΄) / π‘š) βˆ’ ((logβ€˜π΄) Β· ((logβ€˜π΄) + Ξ³))) = (((logβ€˜π΄) Β· Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))(1 / π‘š)) βˆ’ ((logβ€˜π΄) Β· ((logβ€˜π΄) + Ξ³))))
1351, 131fsumcl 15684 . . . . . . . . 9 (πœ‘ β†’ Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))(1 / π‘š) ∈ β„‚)
13638, 135, 41subdid 11675 . . . . . . . 8 (πœ‘ β†’ ((logβ€˜π΄) Β· (Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))(1 / π‘š) βˆ’ ((logβ€˜π΄) + Ξ³))) = (((logβ€˜π΄) Β· Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))(1 / π‘š)) βˆ’ ((logβ€˜π΄) Β· ((logβ€˜π΄) + Ξ³))))
137134, 136eqtr4d 2774 . . . . . . 7 (πœ‘ β†’ (Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜π΄) / π‘š) βˆ’ ((logβ€˜π΄) Β· ((logβ€˜π΄) + Ξ³))) = ((logβ€˜π΄) Β· (Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))(1 / π‘š) βˆ’ ((logβ€˜π΄) + Ξ³))))
138137fveq2d 6896 . . . . . 6 (πœ‘ β†’ (absβ€˜(Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜π΄) / π‘š) βˆ’ ((logβ€˜π΄) Β· ((logβ€˜π΄) + Ξ³)))) = (absβ€˜((logβ€˜π΄) Β· (Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))(1 / π‘š) βˆ’ ((logβ€˜π΄) + Ξ³)))))
139135, 41subcld 11576 . . . . . . 7 (πœ‘ β†’ (Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))(1 / π‘š) βˆ’ ((logβ€˜π΄) + Ξ³)) ∈ β„‚)
14038, 139absmuld 15406 . . . . . 6 (πœ‘ β†’ (absβ€˜((logβ€˜π΄) Β· (Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))(1 / π‘š) βˆ’ ((logβ€˜π΄) + Ξ³)))) = ((absβ€˜(logβ€˜π΄)) Β· (absβ€˜(Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))(1 / π‘š) βˆ’ ((logβ€˜π΄) + Ξ³)))))
141112, 11, 123ltled 11367 . . . . . . . 8 (πœ‘ β†’ 0 ≀ (logβ€˜π΄))
14211, 141absidd 15374 . . . . . . 7 (πœ‘ β†’ (absβ€˜(logβ€˜π΄)) = (logβ€˜π΄))
143142oveq1d 7427 . . . . . 6 (πœ‘ β†’ ((absβ€˜(logβ€˜π΄)) Β· (absβ€˜(Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))(1 / π‘š) βˆ’ ((logβ€˜π΄) + Ξ³)))) = ((logβ€˜π΄) Β· (absβ€˜(Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))(1 / π‘š) βˆ’ ((logβ€˜π΄) + Ξ³)))))
144138, 140, 1433eqtrd 2775 . . . . 5 (πœ‘ β†’ (absβ€˜(Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜π΄) / π‘š) βˆ’ ((logβ€˜π΄) Β· ((logβ€˜π΄) + Ξ³)))) = ((logβ€˜π΄) Β· (absβ€˜(Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))(1 / π‘š) βˆ’ ((logβ€˜π΄) + Ξ³)))))
1452rpcnd 13023 . . . . . 6 (πœ‘ β†’ 𝐴 ∈ β„‚)
1462rpne0d 13026 . . . . . 6 (πœ‘ β†’ 𝐴 β‰  0)
14738, 145, 146divrecd 11998 . . . . 5 (πœ‘ β†’ ((logβ€˜π΄) / 𝐴) = ((logβ€˜π΄) Β· (1 / 𝐴)))
148126, 144, 1473brtr4d 5181 . . . 4 (πœ‘ β†’ (absβ€˜(Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜π΄) / π‘š) βˆ’ ((logβ€˜π΄) Β· ((logβ€˜π΄) + Ξ³)))) ≀ ((logβ€˜π΄) / 𝐴))
149 fveq2 6892 . . . . . . . . . . . . . 14 (𝑖 = π‘š β†’ (logβ€˜π‘–) = (logβ€˜π‘š))
150 id 22 . . . . . . . . . . . . . 14 (𝑖 = π‘š β†’ 𝑖 = π‘š)
151149, 150oveq12d 7430 . . . . . . . . . . . . 13 (𝑖 = π‘š β†’ ((logβ€˜π‘–) / 𝑖) = ((logβ€˜π‘š) / π‘š))
152151cbvsumv 15647 . . . . . . . . . . . 12 Σ𝑖 ∈ (1...(βŒŠβ€˜π‘¦))((logβ€˜π‘–) / 𝑖) = Ξ£π‘š ∈ (1...(βŒŠβ€˜π‘¦))((logβ€˜π‘š) / π‘š)
153 fveq2 6892 . . . . . . . . . . . . . 14 (𝑦 = 𝐴 β†’ (βŒŠβ€˜π‘¦) = (βŒŠβ€˜π΄))
154153oveq2d 7428 . . . . . . . . . . . . 13 (𝑦 = 𝐴 β†’ (1...(βŒŠβ€˜π‘¦)) = (1...(βŒŠβ€˜π΄)))
155154sumeq1d 15652 . . . . . . . . . . . 12 (𝑦 = 𝐴 β†’ Ξ£π‘š ∈ (1...(βŒŠβ€˜π‘¦))((logβ€˜π‘š) / π‘š) = Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜π‘š) / π‘š))
156152, 155eqtrid 2783 . . . . . . . . . . 11 (𝑦 = 𝐴 β†’ Σ𝑖 ∈ (1...(βŒŠβ€˜π‘¦))((logβ€˜π‘–) / 𝑖) = Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜π‘š) / π‘š))
157 fveq2 6892 . . . . . . . . . . . . 13 (𝑦 = 𝐴 β†’ (logβ€˜π‘¦) = (logβ€˜π΄))
158157oveq1d 7427 . . . . . . . . . . . 12 (𝑦 = 𝐴 β†’ ((logβ€˜π‘¦)↑2) = ((logβ€˜π΄)↑2))
159158oveq1d 7427 . . . . . . . . . . 11 (𝑦 = 𝐴 β†’ (((logβ€˜π‘¦)↑2) / 2) = (((logβ€˜π΄)↑2) / 2))
160156, 159oveq12d 7430 . . . . . . . . . 10 (𝑦 = 𝐴 β†’ (Σ𝑖 ∈ (1...(βŒŠβ€˜π‘¦))((logβ€˜π‘–) / 𝑖) βˆ’ (((logβ€˜π‘¦)↑2) / 2)) = (Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜π‘š) / π‘š) βˆ’ (((logβ€˜π΄)↑2) / 2)))
161 ovex 7445 . . . . . . . . . 10 (Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜π‘š) / π‘š) βˆ’ (((logβ€˜π΄)↑2) / 2)) ∈ V
162160, 19, 161fvmpt 6999 . . . . . . . . 9 (𝐴 ∈ ℝ+ β†’ (πΉβ€˜π΄) = (Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜π‘š) / π‘š) βˆ’ (((logβ€˜π΄)↑2) / 2)))
1632, 162syl 17 . . . . . . . 8 (πœ‘ β†’ (πΉβ€˜π΄) = (Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜π‘š) / π‘š) βˆ’ (((logβ€˜π΄)↑2) / 2)))
164163oveq1d 7427 . . . . . . 7 (πœ‘ β†’ ((πΉβ€˜π΄) βˆ’ 𝐿) = ((Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜π‘š) / π‘š) βˆ’ (((logβ€˜π΄)↑2) / 2)) βˆ’ 𝐿))
16549, 50, 51subsub4d 11607 . . . . . . 7 (πœ‘ β†’ ((Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜π‘š) / π‘š) βˆ’ (((logβ€˜π΄)↑2) / 2)) βˆ’ 𝐿) = (Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜π‘š) / π‘š) βˆ’ ((((logβ€˜π΄)↑2) / 2) + 𝐿)))
166164, 165eqtrd 2771 . . . . . 6 (πœ‘ β†’ ((πΉβ€˜π΄) βˆ’ 𝐿) = (Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜π‘š) / π‘š) βˆ’ ((((logβ€˜π΄)↑2) / 2) + 𝐿)))
167166fveq2d 6896 . . . . 5 (πœ‘ β†’ (absβ€˜((πΉβ€˜π΄) βˆ’ 𝐿)) = (absβ€˜(Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜π‘š) / π‘š) βˆ’ ((((logβ€˜π΄)↑2) / 2) + 𝐿))))
16820simp3i 1140 . . . . . 6 ((𝐹 β‡π‘Ÿ 𝐿 ∧ 𝐴 ∈ ℝ+ ∧ e ≀ 𝐴) β†’ (absβ€˜((πΉβ€˜π΄) βˆ’ 𝐿)) ≀ ((logβ€˜π΄) / 𝐴))
16924, 2, 117, 168syl3anc 1370 . . . . 5 (πœ‘ β†’ (absβ€˜((πΉβ€˜π΄) βˆ’ 𝐿)) ≀ ((logβ€˜π΄) / 𝐴))
170167, 169eqbrtrrd 5173 . . . 4 (πœ‘ β†’ (absβ€˜(Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜π‘š) / π‘š) βˆ’ ((((logβ€˜π΄)↑2) / 2) + 𝐿))) ≀ ((logβ€˜π΄) / 𝐴))
17144, 54, 57, 57, 148, 170le2addd 11838 . . 3 (πœ‘ β†’ ((absβ€˜(Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜π΄) / π‘š) βˆ’ ((logβ€˜π΄) Β· ((logβ€˜π΄) + Ξ³)))) + (absβ€˜(Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜π‘š) / π‘š) βˆ’ ((((logβ€˜π΄)↑2) / 2) + 𝐿)))) ≀ (((logβ€˜π΄) / 𝐴) + ((logβ€˜π΄) / 𝐴)))
17257recnd 11247 . . . 4 (πœ‘ β†’ ((logβ€˜π΄) / 𝐴) ∈ β„‚)
1731722timesd 12460 . . 3 (πœ‘ β†’ (2 Β· ((logβ€˜π΄) / 𝐴)) = (((logβ€˜π΄) / 𝐴) + ((logβ€˜π΄) / 𝐴)))
174171, 173breqtrrd 5177 . 2 (πœ‘ β†’ ((absβ€˜(Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜π΄) / π‘š) βˆ’ ((logβ€˜π΄) Β· ((logβ€˜π΄) + Ξ³)))) + (absβ€˜(Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜π‘š) / π‘š) βˆ’ ((((logβ€˜π΄)↑2) / 2) + 𝐿)))) ≀ (2 Β· ((logβ€˜π΄) / 𝐴)))
17533, 55, 59, 103, 174letrd 11376 1 (πœ‘ β†’ (absβ€˜(Ξ£π‘š ∈ (1...(βŒŠβ€˜π΄))((logβ€˜(𝐴 / π‘š)) / π‘š) βˆ’ ((((logβ€˜π΄)↑2) / 2) + ((Ξ³ Β· (logβ€˜π΄)) βˆ’ 𝐿)))) ≀ (2 Β· ((logβ€˜π΄) / 𝐴)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105   β‰  wne 2939   class class class wbr 5149   ↦ cmpt 5232  dom cdm 5677  βŸΆwf 6540  β€˜cfv 6544  (class class class)co 7412  supcsup 9438  β„‚cc 11111  β„cr 11112  0cc0 11113  1c1 11114   + caddc 11116   Β· cmul 11118  +∞cpnf 11250  β„*cxr 11252   < clt 11253   ≀ cle 11254   βˆ’ cmin 11449   / cdiv 11876  β„•cn 12217  2c2 12272  β„+crp 12979  ...cfz 13489  βŒŠcfl 13760  β†‘cexp 14032  abscabs 15186   β‡π‘Ÿ crli 15434  Ξ£csu 15637  eceu 16011  logclog 26296  Ξ³cem 26729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728  ax-inf2 9639  ax-cnex 11169  ax-resscn 11170  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-addrcl 11174  ax-mulcl 11175  ax-mulrcl 11176  ax-mulcom 11177  ax-addass 11178  ax-mulass 11179  ax-distr 11180  ax-i2m1 11181  ax-1ne0 11182  ax-1rid 11183  ax-rnegex 11184  ax-rrecex 11185  ax-cnre 11186  ax-pre-lttri 11187  ax-pre-lttrn 11188  ax-pre-ltadd 11189  ax-pre-mulgt0 11190  ax-pre-sup 11191  ax-addf 11192  ax-mulf 11193
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7673  df-om 7859  df-1st 7978  df-2nd 7979  df-supp 8150  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-1o 8469  df-2o 8470  df-oadd 8473  df-er 8706  df-map 8825  df-pm 8826  df-ixp 8895  df-en 8943  df-dom 8944  df-sdom 8945  df-fin 8946  df-fsupp 9365  df-fi 9409  df-sup 9440  df-inf 9441  df-oi 9508  df-card 9937  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-div 11877  df-nn 12218  df-2 12280  df-3 12281  df-4 12282  df-5 12283  df-6 12284  df-7 12285  df-8 12286  df-9 12287  df-n0 12478  df-xnn0 12550  df-z 12564  df-dec 12683  df-uz 12828  df-q 12938  df-rp 12980  df-xneg 13097  df-xadd 13098  df-xmul 13099  df-ioo 13333  df-ioc 13334  df-ico 13335  df-icc 13336  df-fz 13490  df-fzo 13633  df-fl 13762  df-mod 13840  df-seq 13972  df-exp 14033  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15019  df-cj 15051  df-re 15052  df-im 15053  df-sqrt 15187  df-abs 15188  df-limsup 15420  df-clim 15437  df-rlim 15438  df-sum 15638  df-ef 16016  df-e 16017  df-sin 16018  df-cos 16019  df-tan 16020  df-pi 16021  df-dvds 16203  df-struct 17085  df-sets 17102  df-slot 17120  df-ndx 17132  df-base 17150  df-ress 17179  df-plusg 17215  df-mulr 17216  df-starv 17217  df-sca 17218  df-vsca 17219  df-ip 17220  df-tset 17221  df-ple 17222  df-ds 17224  df-unif 17225  df-hom 17226  df-cco 17227  df-rest 17373  df-topn 17374  df-0g 17392  df-gsum 17393  df-topgen 17394  df-pt 17395  df-prds 17398  df-xrs 17453  df-qtop 17458  df-imas 17459  df-xps 17461  df-mre 17535  df-mrc 17536  df-acs 17538  df-mgm 18566  df-sgrp 18645  df-mnd 18661  df-submnd 18707  df-mulg 18988  df-cntz 19223  df-cmn 19692  df-psmet 21137  df-xmet 21138  df-met 21139  df-bl 21140  df-mopn 21141  df-fbas 21142  df-fg 21143  df-cnfld 21146  df-top 22617  df-topon 22634  df-topsp 22656  df-bases 22670  df-cld 22744  df-ntr 22745  df-cls 22746  df-nei 22823  df-lp 22861  df-perf 22862  df-cn 22952  df-cnp 22953  df-haus 23040  df-cmp 23112  df-tx 23287  df-hmeo 23480  df-fil 23571  df-fm 23663  df-flim 23664  df-flf 23665  df-xms 24047  df-ms 24048  df-tms 24049  df-cncf 24619  df-limc 25616  df-dv 25617  df-ulm 26122  df-log 26298  df-cxp 26299  df-atan 26605  df-em 26730
This theorem is referenced by:  mulog2sumlem2  27271
  Copyright terms: Public domain W3C validator