| Step | Hyp | Ref
| Expression |
| 1 | | fzfid 13996 |
. . . . . 6
⊢ (𝜑 → (1...(⌊‘𝐴)) ∈ Fin) |
| 2 | | mulog2sumlem1.2 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈
ℝ+) |
| 3 | | elfznn 13575 |
. . . . . . . . . 10
⊢ (𝑚 ∈
(1...(⌊‘𝐴))
→ 𝑚 ∈
ℕ) |
| 4 | 3 | nnrpd 13054 |
. . . . . . . . 9
⊢ (𝑚 ∈
(1...(⌊‘𝐴))
→ 𝑚 ∈
ℝ+) |
| 5 | | rpdivcl 13039 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ+
∧ 𝑚 ∈
ℝ+) → (𝐴 / 𝑚) ∈
ℝ+) |
| 6 | 2, 4, 5 | syl2an 596 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → (𝐴 / 𝑚) ∈
ℝ+) |
| 7 | 6 | relogcld 26589 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → (log‘(𝐴 / 𝑚)) ∈ ℝ) |
| 8 | 3 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → 𝑚 ∈ ℕ) |
| 9 | 7, 8 | nndivred 12299 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → ((log‘(𝐴 / 𝑚)) / 𝑚) ∈ ℝ) |
| 10 | 1, 9 | fsumrecl 15755 |
. . . . 5
⊢ (𝜑 → Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘(𝐴 / 𝑚)) / 𝑚) ∈ ℝ) |
| 11 | 2 | relogcld 26589 |
. . . . . . . 8
⊢ (𝜑 → (log‘𝐴) ∈
ℝ) |
| 12 | 11 | resqcld 14148 |
. . . . . . 7
⊢ (𝜑 → ((log‘𝐴)↑2) ∈
ℝ) |
| 13 | 12 | rehalfcld 12493 |
. . . . . 6
⊢ (𝜑 → (((log‘𝐴)↑2) / 2) ∈
ℝ) |
| 14 | | emre 26973 |
. . . . . . . 8
⊢ γ
∈ ℝ |
| 15 | | remulcl 11219 |
. . . . . . . 8
⊢ ((γ
∈ ℝ ∧ (log‘𝐴) ∈ ℝ) → (γ ·
(log‘𝐴)) ∈
ℝ) |
| 16 | 14, 11, 15 | sylancr 587 |
. . . . . . 7
⊢ (𝜑 → (γ ·
(log‘𝐴)) ∈
ℝ) |
| 17 | | rpsup 13888 |
. . . . . . . . 9
⊢
sup(ℝ+, ℝ*, < ) =
+∞ |
| 18 | 17 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → sup(ℝ+,
ℝ*, < ) = +∞) |
| 19 | | logdivsum.1 |
. . . . . . . . . . . . 13
⊢ 𝐹 = (𝑦 ∈ ℝ+ ↦
(Σ𝑖 ∈
(1...(⌊‘𝑦))((log‘𝑖) / 𝑖) − (((log‘𝑦)↑2) / 2))) |
| 20 | 19 | logdivsum 27501 |
. . . . . . . . . . . 12
⊢ (𝐹:ℝ+⟶ℝ ∧
𝐹 ∈ dom
⇝𝑟 ∧ ((𝐹 ⇝𝑟 𝐿 ∧ 𝐴 ∈ ℝ+ ∧ e ≤
𝐴) →
(abs‘((𝐹‘𝐴) − 𝐿)) ≤ ((log‘𝐴) / 𝐴))) |
| 21 | 20 | simp1i 1139 |
. . . . . . . . . . 11
⊢ 𝐹:ℝ+⟶ℝ |
| 22 | 21 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:ℝ+⟶ℝ) |
| 23 | 22 | feqmptd 6952 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 = (𝑥 ∈ ℝ+ ↦ (𝐹‘𝑥))) |
| 24 | | mulog2sumlem.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ⇝𝑟 𝐿) |
| 25 | 23, 24 | eqbrtrrd 5148 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (𝐹‘𝑥)) ⇝𝑟 𝐿) |
| 26 | 21 | ffvelcdmi 7078 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ+
→ (𝐹‘𝑥) ∈
ℝ) |
| 27 | 26 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝐹‘𝑥) ∈ ℝ) |
| 28 | 18, 25, 27 | rlimrecl 15601 |
. . . . . . 7
⊢ (𝜑 → 𝐿 ∈ ℝ) |
| 29 | 16, 28 | resubcld 11670 |
. . . . . 6
⊢ (𝜑 → ((γ ·
(log‘𝐴)) −
𝐿) ∈
ℝ) |
| 30 | 13, 29 | readdcld 11269 |
. . . . 5
⊢ (𝜑 → ((((log‘𝐴)↑2) / 2) + ((γ
· (log‘𝐴))
− 𝐿)) ∈
ℝ) |
| 31 | 10, 30 | resubcld 11670 |
. . . 4
⊢ (𝜑 → (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘(𝐴 / 𝑚)) / 𝑚) − ((((log‘𝐴)↑2) / 2) + ((γ ·
(log‘𝐴)) −
𝐿))) ∈
ℝ) |
| 32 | 31 | recnd 11268 |
. . 3
⊢ (𝜑 → (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘(𝐴 / 𝑚)) / 𝑚) − ((((log‘𝐴)↑2) / 2) + ((γ ·
(log‘𝐴)) −
𝐿))) ∈
ℂ) |
| 33 | 32 | abscld 15460 |
. 2
⊢ (𝜑 → (abs‘(Σ𝑚 ∈
(1...(⌊‘𝐴))((log‘(𝐴 / 𝑚)) / 𝑚) − ((((log‘𝐴)↑2) / 2) + ((γ ·
(log‘𝐴)) −
𝐿)))) ∈
ℝ) |
| 34 | | rerpdivcl 13044 |
. . . . . . . 8
⊢
(((log‘𝐴)
∈ ℝ ∧ 𝑚
∈ ℝ+) → ((log‘𝐴) / 𝑚) ∈ ℝ) |
| 35 | 11, 4, 34 | syl2an 596 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → ((log‘𝐴) / 𝑚) ∈ ℝ) |
| 36 | 35 | recnd 11268 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → ((log‘𝐴) / 𝑚) ∈ ℂ) |
| 37 | 1, 36 | fsumcl 15754 |
. . . . 5
⊢ (𝜑 → Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) ∈ ℂ) |
| 38 | 11 | recnd 11268 |
. . . . . 6
⊢ (𝜑 → (log‘𝐴) ∈
ℂ) |
| 39 | | readdcl 11217 |
. . . . . . . 8
⊢
(((log‘𝐴)
∈ ℝ ∧ γ ∈ ℝ) → ((log‘𝐴) + γ) ∈
ℝ) |
| 40 | 11, 14, 39 | sylancl 586 |
. . . . . . 7
⊢ (𝜑 → ((log‘𝐴) + γ) ∈
ℝ) |
| 41 | 40 | recnd 11268 |
. . . . . 6
⊢ (𝜑 → ((log‘𝐴) + γ) ∈
ℂ) |
| 42 | 38, 41 | mulcld 11260 |
. . . . 5
⊢ (𝜑 → ((log‘𝐴) · ((log‘𝐴) + γ)) ∈
ℂ) |
| 43 | 37, 42 | subcld 11599 |
. . . 4
⊢ (𝜑 → (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ))) ∈
ℂ) |
| 44 | 43 | abscld 15460 |
. . 3
⊢ (𝜑 → (abs‘(Σ𝑚 ∈
(1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ)))) ∈
ℝ) |
| 45 | 8 | nnrpd 13054 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → 𝑚 ∈ ℝ+) |
| 46 | 45 | relogcld 26589 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → (log‘𝑚) ∈ ℝ) |
| 47 | 46, 8 | nndivred 12299 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → ((log‘𝑚) / 𝑚) ∈ ℝ) |
| 48 | 47 | recnd 11268 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → ((log‘𝑚) / 𝑚) ∈ ℂ) |
| 49 | 1, 48 | fsumcl 15754 |
. . . . 5
⊢ (𝜑 → Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) ∈ ℂ) |
| 50 | 13 | recnd 11268 |
. . . . . 6
⊢ (𝜑 → (((log‘𝐴)↑2) / 2) ∈
ℂ) |
| 51 | 28 | recnd 11268 |
. . . . . 6
⊢ (𝜑 → 𝐿 ∈ ℂ) |
| 52 | 50, 51 | addcld 11259 |
. . . . 5
⊢ (𝜑 → ((((log‘𝐴)↑2) / 2) + 𝐿) ∈
ℂ) |
| 53 | 49, 52 | subcld 11599 |
. . . 4
⊢ (𝜑 → (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿)) ∈ ℂ) |
| 54 | 53 | abscld 15460 |
. . 3
⊢ (𝜑 → (abs‘(Σ𝑚 ∈
(1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿))) ∈ ℝ) |
| 55 | 44, 54 | readdcld 11269 |
. 2
⊢ (𝜑 → ((abs‘(Σ𝑚 ∈
(1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ)))) + (abs‘(Σ𝑚 ∈
(1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿)))) ∈ ℝ) |
| 56 | | 2re 12319 |
. . 3
⊢ 2 ∈
ℝ |
| 57 | 11, 2 | rerpdivcld 13087 |
. . 3
⊢ (𝜑 → ((log‘𝐴) / 𝐴) ∈ ℝ) |
| 58 | | remulcl 11219 |
. . 3
⊢ ((2
∈ ℝ ∧ ((log‘𝐴) / 𝐴) ∈ ℝ) → (2 ·
((log‘𝐴) / 𝐴)) ∈
ℝ) |
| 59 | 56, 57, 58 | sylancr 587 |
. 2
⊢ (𝜑 → (2 ·
((log‘𝐴) / 𝐴)) ∈
ℝ) |
| 60 | | relogdiv 26559 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ+
∧ 𝑚 ∈
ℝ+) → (log‘(𝐴 / 𝑚)) = ((log‘𝐴) − (log‘𝑚))) |
| 61 | 2, 4, 60 | syl2an 596 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → (log‘(𝐴 / 𝑚)) = ((log‘𝐴) − (log‘𝑚))) |
| 62 | 61 | oveq1d 7425 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → ((log‘(𝐴 / 𝑚)) / 𝑚) = (((log‘𝐴) − (log‘𝑚)) / 𝑚)) |
| 63 | 38 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → (log‘𝐴) ∈ ℂ) |
| 64 | 46 | recnd 11268 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → (log‘𝑚) ∈ ℂ) |
| 65 | 45 | rpcnne0d 13065 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0)) |
| 66 | | divsubdir 11940 |
. . . . . . . . . 10
⊢
(((log‘𝐴)
∈ ℂ ∧ (log‘𝑚) ∈ ℂ ∧ (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0)) → (((log‘𝐴) − (log‘𝑚)) / 𝑚) = (((log‘𝐴) / 𝑚) − ((log‘𝑚) / 𝑚))) |
| 67 | 63, 64, 65, 66 | syl3anc 1373 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → (((log‘𝐴) − (log‘𝑚)) / 𝑚) = (((log‘𝐴) / 𝑚) − ((log‘𝑚) / 𝑚))) |
| 68 | 62, 67 | eqtrd 2771 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → ((log‘(𝐴 / 𝑚)) / 𝑚) = (((log‘𝐴) / 𝑚) − ((log‘𝑚) / 𝑚))) |
| 69 | 68 | sumeq2dv 15723 |
. . . . . . 7
⊢ (𝜑 → Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘(𝐴 / 𝑚)) / 𝑚) = Σ𝑚 ∈ (1...(⌊‘𝐴))(((log‘𝐴) / 𝑚) − ((log‘𝑚) / 𝑚))) |
| 70 | 1, 36, 48 | fsumsub 15809 |
. . . . . . 7
⊢ (𝜑 → Σ𝑚 ∈ (1...(⌊‘𝐴))(((log‘𝐴) / 𝑚) − ((log‘𝑚) / 𝑚)) = (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚))) |
| 71 | 69, 70 | eqtrd 2771 |
. . . . . 6
⊢ (𝜑 → Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘(𝐴 / 𝑚)) / 𝑚) = (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚))) |
| 72 | | remulcl 11219 |
. . . . . . . . . . . . 13
⊢
(((log‘𝐴)
∈ ℝ ∧ γ ∈ ℝ) → ((log‘𝐴) · γ) ∈
ℝ) |
| 73 | 11, 14, 72 | sylancl 586 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((log‘𝐴) · γ) ∈
ℝ) |
| 74 | 13, 73 | readdcld 11269 |
. . . . . . . . . . 11
⊢ (𝜑 → ((((log‘𝐴)↑2) / 2) +
((log‘𝐴) ·
γ)) ∈ ℝ) |
| 75 | 74 | recnd 11268 |
. . . . . . . . . 10
⊢ (𝜑 → ((((log‘𝐴)↑2) / 2) +
((log‘𝐴) ·
γ)) ∈ ℂ) |
| 76 | 75, 50 | pncand 11600 |
. . . . . . . . 9
⊢ (𝜑 → ((((((log‘𝐴)↑2) / 2) +
((log‘𝐴) ·
γ)) + (((log‘𝐴)↑2) / 2)) − (((log‘𝐴)↑2) / 2)) =
((((log‘𝐴)↑2) /
2) + ((log‘𝐴)
· γ))) |
| 77 | 14 | recni 11254 |
. . . . . . . . . . . . 13
⊢ γ
∈ ℂ |
| 78 | 77 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → γ ∈
ℂ) |
| 79 | 38, 38, 78 | adddid 11264 |
. . . . . . . . . . 11
⊢ (𝜑 → ((log‘𝐴) · ((log‘𝐴) + γ)) =
(((log‘𝐴) ·
(log‘𝐴)) +
((log‘𝐴) ·
γ))) |
| 80 | 12 | recnd 11268 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((log‘𝐴)↑2) ∈
ℂ) |
| 81 | 80 | 2halvesd 12492 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((((log‘𝐴)↑2) / 2) +
(((log‘𝐴)↑2) /
2)) = ((log‘𝐴)↑2)) |
| 82 | 38 | sqvald 14166 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((log‘𝐴)↑2) = ((log‘𝐴) · (log‘𝐴))) |
| 83 | 81, 82 | eqtrd 2771 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((((log‘𝐴)↑2) / 2) +
(((log‘𝐴)↑2) /
2)) = ((log‘𝐴)
· (log‘𝐴))) |
| 84 | 83 | oveq1d 7425 |
. . . . . . . . . . 11
⊢ (𝜑 → (((((log‘𝐴)↑2) / 2) +
(((log‘𝐴)↑2) /
2)) + ((log‘𝐴)
· γ)) = (((log‘𝐴) · (log‘𝐴)) + ((log‘𝐴) · γ))) |
| 85 | 73 | recnd 11268 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((log‘𝐴) · γ) ∈
ℂ) |
| 86 | 50, 50, 85 | add32d 11468 |
. . . . . . . . . . 11
⊢ (𝜑 → (((((log‘𝐴)↑2) / 2) +
(((log‘𝐴)↑2) /
2)) + ((log‘𝐴)
· γ)) = (((((log‘𝐴)↑2) / 2) + ((log‘𝐴) · γ)) +
(((log‘𝐴)↑2) /
2))) |
| 87 | 79, 84, 86 | 3eqtr2d 2777 |
. . . . . . . . . 10
⊢ (𝜑 → ((log‘𝐴) · ((log‘𝐴) + γ)) =
(((((log‘𝐴)↑2) /
2) + ((log‘𝐴)
· γ)) + (((log‘𝐴)↑2) / 2))) |
| 88 | 87 | oveq1d 7425 |
. . . . . . . . 9
⊢ (𝜑 → (((log‘𝐴) · ((log‘𝐴) + γ)) −
(((log‘𝐴)↑2) /
2)) = ((((((log‘𝐴)↑2) / 2) + ((log‘𝐴) · γ)) +
(((log‘𝐴)↑2) /
2)) − (((log‘𝐴)↑2) / 2))) |
| 89 | | mulcom 11220 |
. . . . . . . . . . 11
⊢ ((γ
∈ ℂ ∧ (log‘𝐴) ∈ ℂ) → (γ ·
(log‘𝐴)) =
((log‘𝐴) ·
γ)) |
| 90 | 77, 38, 89 | sylancr 587 |
. . . . . . . . . 10
⊢ (𝜑 → (γ ·
(log‘𝐴)) =
((log‘𝐴) ·
γ)) |
| 91 | 90 | oveq2d 7426 |
. . . . . . . . 9
⊢ (𝜑 → ((((log‘𝐴)↑2) / 2) + (γ
· (log‘𝐴))) =
((((log‘𝐴)↑2) /
2) + ((log‘𝐴)
· γ))) |
| 92 | 76, 88, 91 | 3eqtr4rd 2782 |
. . . . . . . 8
⊢ (𝜑 → ((((log‘𝐴)↑2) / 2) + (γ
· (log‘𝐴))) =
(((log‘𝐴) ·
((log‘𝐴) + γ))
− (((log‘𝐴)↑2) / 2))) |
| 93 | 92 | oveq1d 7425 |
. . . . . . 7
⊢ (𝜑 → (((((log‘𝐴)↑2) / 2) + (γ
· (log‘𝐴)))
− 𝐿) =
((((log‘𝐴) ·
((log‘𝐴) + γ))
− (((log‘𝐴)↑2) / 2)) − 𝐿)) |
| 94 | 90, 85 | eqeltrd 2835 |
. . . . . . . 8
⊢ (𝜑 → (γ ·
(log‘𝐴)) ∈
ℂ) |
| 95 | 50, 94, 51 | addsubassd 11619 |
. . . . . . 7
⊢ (𝜑 → (((((log‘𝐴)↑2) / 2) + (γ
· (log‘𝐴)))
− 𝐿) =
((((log‘𝐴)↑2) /
2) + ((γ · (log‘𝐴)) − 𝐿))) |
| 96 | 42, 50, 51 | subsub4d 11630 |
. . . . . . 7
⊢ (𝜑 → ((((log‘𝐴) · ((log‘𝐴) + γ)) −
(((log‘𝐴)↑2) /
2)) − 𝐿) =
(((log‘𝐴) ·
((log‘𝐴) + γ))
− ((((log‘𝐴)↑2) / 2) + 𝐿))) |
| 97 | 93, 95, 96 | 3eqtr3d 2779 |
. . . . . 6
⊢ (𝜑 → ((((log‘𝐴)↑2) / 2) + ((γ
· (log‘𝐴))
− 𝐿)) =
(((log‘𝐴) ·
((log‘𝐴) + γ))
− ((((log‘𝐴)↑2) / 2) + 𝐿))) |
| 98 | 71, 97 | oveq12d 7428 |
. . . . 5
⊢ (𝜑 → (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘(𝐴 / 𝑚)) / 𝑚) − ((((log‘𝐴)↑2) / 2) + ((γ ·
(log‘𝐴)) −
𝐿))) = ((Σ𝑚 ∈
(1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚)) − (((log‘𝐴) · ((log‘𝐴) + γ)) − ((((log‘𝐴)↑2) / 2) + 𝐿)))) |
| 99 | 37, 49, 42, 52 | sub4d 11648 |
. . . . 5
⊢ (𝜑 → ((Σ𝑚 ∈
(1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚)) − (((log‘𝐴) · ((log‘𝐴) + γ)) − ((((log‘𝐴)↑2) / 2) + 𝐿))) = ((Σ𝑚 ∈
(1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ))) − (Σ𝑚 ∈
(1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿)))) |
| 100 | 98, 99 | eqtrd 2771 |
. . . 4
⊢ (𝜑 → (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘(𝐴 / 𝑚)) / 𝑚) − ((((log‘𝐴)↑2) / 2) + ((γ ·
(log‘𝐴)) −
𝐿))) = ((Σ𝑚 ∈
(1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ))) − (Σ𝑚 ∈
(1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿)))) |
| 101 | 100 | fveq2d 6885 |
. . 3
⊢ (𝜑 → (abs‘(Σ𝑚 ∈
(1...(⌊‘𝐴))((log‘(𝐴 / 𝑚)) / 𝑚) − ((((log‘𝐴)↑2) / 2) + ((γ ·
(log‘𝐴)) −
𝐿)))) =
(abs‘((Σ𝑚
∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ))) − (Σ𝑚 ∈
(1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿))))) |
| 102 | 43, 53 | abs2dif2d 15482 |
. . 3
⊢ (𝜑 → (abs‘((Σ𝑚 ∈
(1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ))) − (Σ𝑚 ∈
(1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿)))) ≤ ((abs‘(Σ𝑚 ∈
(1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ)))) + (abs‘(Σ𝑚 ∈
(1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿))))) |
| 103 | 101, 102 | eqbrtrd 5146 |
. 2
⊢ (𝜑 → (abs‘(Σ𝑚 ∈
(1...(⌊‘𝐴))((log‘(𝐴 / 𝑚)) / 𝑚) − ((((log‘𝐴)↑2) / 2) + ((γ ·
(log‘𝐴)) −
𝐿)))) ≤
((abs‘(Σ𝑚
∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ)))) + (abs‘(Σ𝑚 ∈
(1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿))))) |
| 104 | | harmonicbnd4 26978 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ+
→ (abs‘(Σ𝑚
∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ))) ≤ (1 / 𝐴)) |
| 105 | 2, 104 | syl 17 |
. . . . . 6
⊢ (𝜑 → (abs‘(Σ𝑚 ∈
(1...(⌊‘𝐴))(1 /
𝑚) −
((log‘𝐴) + γ)))
≤ (1 / 𝐴)) |
| 106 | 8 | nnrecred 12296 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → (1 / 𝑚) ∈ ℝ) |
| 107 | 1, 106 | fsumrecl 15755 |
. . . . . . . . . 10
⊢ (𝜑 → Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) ∈ ℝ) |
| 108 | 107, 40 | resubcld 11670 |
. . . . . . . . 9
⊢ (𝜑 → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ)) ∈
ℝ) |
| 109 | 108 | recnd 11268 |
. . . . . . . 8
⊢ (𝜑 → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ)) ∈
ℂ) |
| 110 | 109 | abscld 15460 |
. . . . . . 7
⊢ (𝜑 → (abs‘(Σ𝑚 ∈
(1...(⌊‘𝐴))(1 /
𝑚) −
((log‘𝐴) + γ)))
∈ ℝ) |
| 111 | 2 | rprecred 13067 |
. . . . . . 7
⊢ (𝜑 → (1 / 𝐴) ∈ ℝ) |
| 112 | | 0red 11243 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈
ℝ) |
| 113 | | 1red 11241 |
. . . . . . . 8
⊢ (𝜑 → 1 ∈
ℝ) |
| 114 | | 0lt1 11764 |
. . . . . . . . 9
⊢ 0 <
1 |
| 115 | 114 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 0 < 1) |
| 116 | | loge 26552 |
. . . . . . . . 9
⊢
(log‘e) = 1 |
| 117 | | mulog2sumlem1.3 |
. . . . . . . . . 10
⊢ (𝜑 → e ≤ 𝐴) |
| 118 | | epr 16231 |
. . . . . . . . . . 11
⊢ e ∈
ℝ+ |
| 119 | | logleb 26569 |
. . . . . . . . . . 11
⊢ ((e
∈ ℝ+ ∧ 𝐴 ∈ ℝ+) → (e ≤
𝐴 ↔ (log‘e) ≤
(log‘𝐴))) |
| 120 | 118, 2, 119 | sylancr 587 |
. . . . . . . . . 10
⊢ (𝜑 → (e ≤ 𝐴 ↔ (log‘e) ≤ (log‘𝐴))) |
| 121 | 117, 120 | mpbid 232 |
. . . . . . . . 9
⊢ (𝜑 → (log‘e) ≤
(log‘𝐴)) |
| 122 | 116, 121 | eqbrtrrid 5160 |
. . . . . . . 8
⊢ (𝜑 → 1 ≤ (log‘𝐴)) |
| 123 | 112, 113,
11, 115, 122 | ltletrd 11400 |
. . . . . . 7
⊢ (𝜑 → 0 < (log‘𝐴)) |
| 124 | | lemul2 12099 |
. . . . . . 7
⊢
(((abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ))) ∈ ℝ ∧ (1 /
𝐴) ∈ ℝ ∧
((log‘𝐴) ∈
ℝ ∧ 0 < (log‘𝐴))) → ((abs‘(Σ𝑚 ∈
(1...(⌊‘𝐴))(1 /
𝑚) −
((log‘𝐴) + γ)))
≤ (1 / 𝐴) ↔
((log‘𝐴) ·
(abs‘(Σ𝑚 ∈
(1...(⌊‘𝐴))(1 /
𝑚) −
((log‘𝐴) +
γ)))) ≤ ((log‘𝐴) · (1 / 𝐴)))) |
| 125 | 110, 111,
11, 123, 124 | syl112anc 1376 |
. . . . . 6
⊢ (𝜑 → ((abs‘(Σ𝑚 ∈
(1...(⌊‘𝐴))(1 /
𝑚) −
((log‘𝐴) + γ)))
≤ (1 / 𝐴) ↔
((log‘𝐴) ·
(abs‘(Σ𝑚 ∈
(1...(⌊‘𝐴))(1 /
𝑚) −
((log‘𝐴) +
γ)))) ≤ ((log‘𝐴) · (1 / 𝐴)))) |
| 126 | 105, 125 | mpbid 232 |
. . . . 5
⊢ (𝜑 → ((log‘𝐴) ·
(abs‘(Σ𝑚 ∈
(1...(⌊‘𝐴))(1 /
𝑚) −
((log‘𝐴) +
γ)))) ≤ ((log‘𝐴) · (1 / 𝐴))) |
| 127 | 45 | rpcnd 13058 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → 𝑚 ∈ ℂ) |
| 128 | 45 | rpne0d 13061 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → 𝑚 ≠ 0) |
| 129 | 63, 127, 128 | divrecd 12025 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → ((log‘𝐴) / 𝑚) = ((log‘𝐴) · (1 / 𝑚))) |
| 130 | 129 | sumeq2dv 15723 |
. . . . . . . . . 10
⊢ (𝜑 → Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) = Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) · (1 / 𝑚))) |
| 131 | 106 | recnd 11268 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → (1 / 𝑚) ∈ ℂ) |
| 132 | 1, 38, 131 | fsummulc2 15805 |
. . . . . . . . . 10
⊢ (𝜑 → ((log‘𝐴) · Σ𝑚 ∈
(1...(⌊‘𝐴))(1 /
𝑚)) = Σ𝑚 ∈
(1...(⌊‘𝐴))((log‘𝐴) · (1 / 𝑚))) |
| 133 | 130, 132 | eqtr4d 2774 |
. . . . . . . . 9
⊢ (𝜑 → Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) = ((log‘𝐴) · Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚))) |
| 134 | 133 | oveq1d 7425 |
. . . . . . . 8
⊢ (𝜑 → (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ))) = (((log‘𝐴) · Σ𝑚 ∈
(1...(⌊‘𝐴))(1 /
𝑚)) −
((log‘𝐴) ·
((log‘𝐴) +
γ)))) |
| 135 | 1, 131 | fsumcl 15754 |
. . . . . . . . 9
⊢ (𝜑 → Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) ∈ ℂ) |
| 136 | 38, 135, 41 | subdid 11698 |
. . . . . . . 8
⊢ (𝜑 → ((log‘𝐴) · (Σ𝑚 ∈
(1...(⌊‘𝐴))(1 /
𝑚) −
((log‘𝐴) + γ)))
= (((log‘𝐴) ·
Σ𝑚 ∈
(1...(⌊‘𝐴))(1 /
𝑚)) −
((log‘𝐴) ·
((log‘𝐴) +
γ)))) |
| 137 | 134, 136 | eqtr4d 2774 |
. . . . . . 7
⊢ (𝜑 → (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ))) = ((log‘𝐴) · (Σ𝑚 ∈
(1...(⌊‘𝐴))(1 /
𝑚) −
((log‘𝐴) +
γ)))) |
| 138 | 137 | fveq2d 6885 |
. . . . . 6
⊢ (𝜑 → (abs‘(Σ𝑚 ∈
(1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ)))) =
(abs‘((log‘𝐴)
· (Σ𝑚 ∈
(1...(⌊‘𝐴))(1 /
𝑚) −
((log‘𝐴) +
γ))))) |
| 139 | 135, 41 | subcld 11599 |
. . . . . . 7
⊢ (𝜑 → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ)) ∈
ℂ) |
| 140 | 38, 139 | absmuld 15478 |
. . . . . 6
⊢ (𝜑 →
(abs‘((log‘𝐴)
· (Σ𝑚 ∈
(1...(⌊‘𝐴))(1 /
𝑚) −
((log‘𝐴) +
γ)))) = ((abs‘(log‘𝐴)) · (abs‘(Σ𝑚 ∈
(1...(⌊‘𝐴))(1 /
𝑚) −
((log‘𝐴) +
γ))))) |
| 141 | 112, 11, 123 | ltled 11388 |
. . . . . . . 8
⊢ (𝜑 → 0 ≤ (log‘𝐴)) |
| 142 | 11, 141 | absidd 15446 |
. . . . . . 7
⊢ (𝜑 →
(abs‘(log‘𝐴)) =
(log‘𝐴)) |
| 143 | 142 | oveq1d 7425 |
. . . . . 6
⊢ (𝜑 →
((abs‘(log‘𝐴))
· (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ)))) = ((log‘𝐴) ·
(abs‘(Σ𝑚 ∈
(1...(⌊‘𝐴))(1 /
𝑚) −
((log‘𝐴) +
γ))))) |
| 144 | 138, 140,
143 | 3eqtrd 2775 |
. . . . 5
⊢ (𝜑 → (abs‘(Σ𝑚 ∈
(1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ)))) = ((log‘𝐴) ·
(abs‘(Σ𝑚 ∈
(1...(⌊‘𝐴))(1 /
𝑚) −
((log‘𝐴) +
γ))))) |
| 145 | 2 | rpcnd 13058 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 146 | 2 | rpne0d 13061 |
. . . . . 6
⊢ (𝜑 → 𝐴 ≠ 0) |
| 147 | 38, 145, 146 | divrecd 12025 |
. . . . 5
⊢ (𝜑 → ((log‘𝐴) / 𝐴) = ((log‘𝐴) · (1 / 𝐴))) |
| 148 | 126, 144,
147 | 3brtr4d 5156 |
. . . 4
⊢ (𝜑 → (abs‘(Σ𝑚 ∈
(1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ)))) ≤ ((log‘𝐴) / 𝐴)) |
| 149 | | fveq2 6881 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑚 → (log‘𝑖) = (log‘𝑚)) |
| 150 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑚 → 𝑖 = 𝑚) |
| 151 | 149, 150 | oveq12d 7428 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑚 → ((log‘𝑖) / 𝑖) = ((log‘𝑚) / 𝑚)) |
| 152 | 151 | cbvsumv 15717 |
. . . . . . . . . . . 12
⊢
Σ𝑖 ∈
(1...(⌊‘𝑦))((log‘𝑖) / 𝑖) = Σ𝑚 ∈ (1...(⌊‘𝑦))((log‘𝑚) / 𝑚) |
| 153 | | fveq2 6881 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝐴 → (⌊‘𝑦) = (⌊‘𝐴)) |
| 154 | 153 | oveq2d 7426 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐴 → (1...(⌊‘𝑦)) = (1...(⌊‘𝐴))) |
| 155 | 154 | sumeq1d 15721 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝐴 → Σ𝑚 ∈ (1...(⌊‘𝑦))((log‘𝑚) / 𝑚) = Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚)) |
| 156 | 152, 155 | eqtrid 2783 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝐴 → Σ𝑖 ∈ (1...(⌊‘𝑦))((log‘𝑖) / 𝑖) = Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚)) |
| 157 | | fveq2 6881 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐴 → (log‘𝑦) = (log‘𝐴)) |
| 158 | 157 | oveq1d 7425 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝐴 → ((log‘𝑦)↑2) = ((log‘𝐴)↑2)) |
| 159 | 158 | oveq1d 7425 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝐴 → (((log‘𝑦)↑2) / 2) = (((log‘𝐴)↑2) / 2)) |
| 160 | 156, 159 | oveq12d 7428 |
. . . . . . . . . 10
⊢ (𝑦 = 𝐴 → (Σ𝑖 ∈ (1...(⌊‘𝑦))((log‘𝑖) / 𝑖) − (((log‘𝑦)↑2) / 2)) = (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − (((log‘𝐴)↑2) / 2))) |
| 161 | | ovex 7443 |
. . . . . . . . . 10
⊢
(Σ𝑚 ∈
(1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − (((log‘𝐴)↑2) / 2)) ∈ V |
| 162 | 160, 19, 161 | fvmpt 6991 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℝ+
→ (𝐹‘𝐴) = (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − (((log‘𝐴)↑2) / 2))) |
| 163 | 2, 162 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝐹‘𝐴) = (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − (((log‘𝐴)↑2) / 2))) |
| 164 | 163 | oveq1d 7425 |
. . . . . . 7
⊢ (𝜑 → ((𝐹‘𝐴) − 𝐿) = ((Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − (((log‘𝐴)↑2) / 2)) − 𝐿)) |
| 165 | 49, 50, 51 | subsub4d 11630 |
. . . . . . 7
⊢ (𝜑 → ((Σ𝑚 ∈
(1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − (((log‘𝐴)↑2) / 2)) − 𝐿) = (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿))) |
| 166 | 164, 165 | eqtrd 2771 |
. . . . . 6
⊢ (𝜑 → ((𝐹‘𝐴) − 𝐿) = (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿))) |
| 167 | 166 | fveq2d 6885 |
. . . . 5
⊢ (𝜑 → (abs‘((𝐹‘𝐴) − 𝐿)) = (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿)))) |
| 168 | 20 | simp3i 1141 |
. . . . . 6
⊢ ((𝐹 ⇝𝑟
𝐿 ∧ 𝐴 ∈ ℝ+ ∧ e ≤
𝐴) →
(abs‘((𝐹‘𝐴) − 𝐿)) ≤ ((log‘𝐴) / 𝐴)) |
| 169 | 24, 2, 117, 168 | syl3anc 1373 |
. . . . 5
⊢ (𝜑 → (abs‘((𝐹‘𝐴) − 𝐿)) ≤ ((log‘𝐴) / 𝐴)) |
| 170 | 167, 169 | eqbrtrrd 5148 |
. . . 4
⊢ (𝜑 → (abs‘(Σ𝑚 ∈
(1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿))) ≤ ((log‘𝐴) / 𝐴)) |
| 171 | 44, 54, 57, 57, 148, 170 | le2addd 11861 |
. . 3
⊢ (𝜑 → ((abs‘(Σ𝑚 ∈
(1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ)))) + (abs‘(Σ𝑚 ∈
(1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿)))) ≤ (((log‘𝐴) / 𝐴) + ((log‘𝐴) / 𝐴))) |
| 172 | 57 | recnd 11268 |
. . . 4
⊢ (𝜑 → ((log‘𝐴) / 𝐴) ∈ ℂ) |
| 173 | 172 | 2timesd 12489 |
. . 3
⊢ (𝜑 → (2 ·
((log‘𝐴) / 𝐴)) = (((log‘𝐴) / 𝐴) + ((log‘𝐴) / 𝐴))) |
| 174 | 171, 173 | breqtrrd 5152 |
. 2
⊢ (𝜑 → ((abs‘(Σ𝑚 ∈
(1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ)))) + (abs‘(Σ𝑚 ∈
(1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿)))) ≤ (2 · ((log‘𝐴) / 𝐴))) |
| 175 | 33, 55, 59, 103, 174 | letrd 11397 |
1
⊢ (𝜑 → (abs‘(Σ𝑚 ∈
(1...(⌊‘𝐴))((log‘(𝐴 / 𝑚)) / 𝑚) − ((((log‘𝐴)↑2) / 2) + ((γ ·
(log‘𝐴)) −
𝐿)))) ≤ (2 ·
((log‘𝐴) / 𝐴))) |