HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  elunop2 Structured version   Visualization version   GIF version

Theorem elunop2 29717
Description: An operator is unitary iff it is linear, onto, and idempotent in the norm. Similar to theorem in [AkhiezerGlazman] p. 73, and its converse. (Contributed by NM, 24-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
elunop2 (𝑇 ∈ UniOp ↔ (𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)))
Distinct variable group:   𝑥,𝑇

Proof of Theorem elunop2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 unoplin 29624 . . 3 (𝑇 ∈ UniOp → 𝑇 ∈ LinOp)
2 elunop 29576 . . . 4 (𝑇 ∈ UniOp ↔ (𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦)))
32simplbi 498 . . 3 (𝑇 ∈ UniOp → 𝑇: ℋ–onto→ ℋ)
4 unopnorm 29621 . . . 4 ((𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ) → (norm‘(𝑇𝑥)) = (norm𝑥))
54ralrimiva 3179 . . 3 (𝑇 ∈ UniOp → ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥))
61, 3, 53jca 1120 . 2 (𝑇 ∈ UniOp → (𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)))
7 eleq1 2897 . . 3 (𝑇 = if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) → (𝑇 ∈ UniOp ↔ if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) ∈ UniOp))
8 eleq1 2897 . . . . . . 7 (𝑇 = if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) → (𝑇 ∈ LinOp ↔ if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) ∈ LinOp))
9 foeq1 6579 . . . . . . 7 (𝑇 = if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) → (𝑇: ℋ–onto→ ℋ ↔ if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)): ℋ–onto→ ℋ))
10 2fveq3 6668 . . . . . . . . . 10 (𝑥 = 𝑦 → (norm‘(𝑇𝑥)) = (norm‘(𝑇𝑦)))
11 fveq2 6663 . . . . . . . . . 10 (𝑥 = 𝑦 → (norm𝑥) = (norm𝑦))
1210, 11eqeq12d 2834 . . . . . . . . 9 (𝑥 = 𝑦 → ((norm‘(𝑇𝑥)) = (norm𝑥) ↔ (norm‘(𝑇𝑦)) = (norm𝑦)))
1312cbvralvw 3447 . . . . . . . 8 (∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥) ↔ ∀𝑦 ∈ ℋ (norm‘(𝑇𝑦)) = (norm𝑦))
14 fveq1 6662 . . . . . . . . . 10 (𝑇 = if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) → (𝑇𝑦) = (if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ))‘𝑦))
1514fveqeq2d 6671 . . . . . . . . 9 (𝑇 = if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) → ((norm‘(𝑇𝑦)) = (norm𝑦) ↔ (norm‘(if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ))‘𝑦)) = (norm𝑦)))
1615ralbidv 3194 . . . . . . . 8 (𝑇 = if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) → (∀𝑦 ∈ ℋ (norm‘(𝑇𝑦)) = (norm𝑦) ↔ ∀𝑦 ∈ ℋ (norm‘(if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ))‘𝑦)) = (norm𝑦)))
1713, 16syl5bb 284 . . . . . . 7 (𝑇 = if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) → (∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥) ↔ ∀𝑦 ∈ ℋ (norm‘(if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ))‘𝑦)) = (norm𝑦)))
188, 9, 173anbi123d 1427 . . . . . 6 (𝑇 = if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) → ((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)) ↔ (if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) ∈ LinOp ∧ if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)): ℋ–onto→ ℋ ∧ ∀𝑦 ∈ ℋ (norm‘(if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ))‘𝑦)) = (norm𝑦))))
19 eleq1 2897 . . . . . . 7 (( I ↾ ℋ) = if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) → (( I ↾ ℋ) ∈ LinOp ↔ if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) ∈ LinOp))
20 foeq1 6579 . . . . . . 7 (( I ↾ ℋ) = if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) → (( I ↾ ℋ): ℋ–onto→ ℋ ↔ if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)): ℋ–onto→ ℋ))
21 fveq1 6662 . . . . . . . . 9 (( I ↾ ℋ) = if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) → (( I ↾ ℋ)‘𝑦) = (if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ))‘𝑦))
2221fveqeq2d 6671 . . . . . . . 8 (( I ↾ ℋ) = if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) → ((norm‘(( I ↾ ℋ)‘𝑦)) = (norm𝑦) ↔ (norm‘(if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ))‘𝑦)) = (norm𝑦)))
2322ralbidv 3194 . . . . . . 7 (( I ↾ ℋ) = if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) → (∀𝑦 ∈ ℋ (norm‘(( I ↾ ℋ)‘𝑦)) = (norm𝑦) ↔ ∀𝑦 ∈ ℋ (norm‘(if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ))‘𝑦)) = (norm𝑦)))
2419, 20, 233anbi123d 1427 . . . . . 6 (( I ↾ ℋ) = if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) → ((( I ↾ ℋ) ∈ LinOp ∧ ( I ↾ ℋ): ℋ–onto→ ℋ ∧ ∀𝑦 ∈ ℋ (norm‘(( I ↾ ℋ)‘𝑦)) = (norm𝑦)) ↔ (if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) ∈ LinOp ∧ if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)): ℋ–onto→ ℋ ∧ ∀𝑦 ∈ ℋ (norm‘(if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ))‘𝑦)) = (norm𝑦))))
25 idlnop 29696 . . . . . . 7 ( I ↾ ℋ) ∈ LinOp
26 f1oi 6645 . . . . . . . 8 ( I ↾ ℋ): ℋ–1-1-onto→ ℋ
27 f1ofo 6615 . . . . . . . 8 (( I ↾ ℋ): ℋ–1-1-onto→ ℋ → ( I ↾ ℋ): ℋ–onto→ ℋ)
2826, 27ax-mp 5 . . . . . . 7 ( I ↾ ℋ): ℋ–onto→ ℋ
29 fvresi 6927 . . . . . . . . 9 (𝑦 ∈ ℋ → (( I ↾ ℋ)‘𝑦) = 𝑦)
3029fveq2d 6667 . . . . . . . 8 (𝑦 ∈ ℋ → (norm‘(( I ↾ ℋ)‘𝑦)) = (norm𝑦))
3130rgen 3145 . . . . . . 7 𝑦 ∈ ℋ (norm‘(( I ↾ ℋ)‘𝑦)) = (norm𝑦)
3225, 28, 313pm3.2i 1331 . . . . . 6 (( I ↾ ℋ) ∈ LinOp ∧ ( I ↾ ℋ): ℋ–onto→ ℋ ∧ ∀𝑦 ∈ ℋ (norm‘(( I ↾ ℋ)‘𝑦)) = (norm𝑦))
3318, 24, 32elimhyp 4526 . . . . 5 (if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) ∈ LinOp ∧ if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)): ℋ–onto→ ℋ ∧ ∀𝑦 ∈ ℋ (norm‘(if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ))‘𝑦)) = (norm𝑦))
3433simp1i 1131 . . . 4 if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) ∈ LinOp
3533simp2i 1132 . . . 4 if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)): ℋ–onto→ ℋ
3633simp3i 1133 . . . 4 𝑦 ∈ ℋ (norm‘(if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ))‘𝑦)) = (norm𝑦)
3734, 35, 36lnopunii 29716 . . 3 if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) ∈ UniOp
387, 37dedth 4519 . 2 ((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)) → 𝑇 ∈ UniOp)
396, 38impbii 210 1 (𝑇 ∈ UniOp ↔ (𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wb 207  w3a 1079   = wceq 1528  wcel 2105  wral 3135  ifcif 4463   I cid 5452  cres 5550  ontowfo 6346  1-1-ontowf1o 6347  cfv 6348  (class class class)co 7145  chba 28623   ·ih csp 28626  normcno 28627  LinOpclo 28651  UniOpcuo 28653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-hilex 28703  ax-hfvadd 28704  ax-hvcom 28705  ax-hvass 28706  ax-hv0cl 28707  ax-hvaddid 28708  ax-hfvmul 28709  ax-hvmulid 28710  ax-hvdistr2 28713  ax-hvmul0 28714  ax-hfi 28783  ax-his1 28786  ax-his2 28787  ax-his3 28788  ax-his4 28789
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-sup 8894  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-seq 13358  df-exp 13418  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-hnorm 28672  df-hvsub 28675  df-lnop 29545  df-unop 29547
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator