HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  elunop2 Structured version   Visualization version   GIF version

Theorem elunop2 32042
Description: An operator is unitary iff it is linear, onto, and idempotent in the norm. Similar to theorem in [AkhiezerGlazman] p. 73, and its converse. (Contributed by NM, 24-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
elunop2 (𝑇 ∈ UniOp ↔ (𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)))
Distinct variable group:   𝑥,𝑇

Proof of Theorem elunop2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 unoplin 31949 . . 3 (𝑇 ∈ UniOp → 𝑇 ∈ LinOp)
2 elunop 31901 . . . 4 (𝑇 ∈ UniOp ↔ (𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦)))
32simplbi 497 . . 3 (𝑇 ∈ UniOp → 𝑇: ℋ–onto→ ℋ)
4 unopnorm 31946 . . . 4 ((𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ) → (norm‘(𝑇𝑥)) = (norm𝑥))
54ralrimiva 3144 . . 3 (𝑇 ∈ UniOp → ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥))
61, 3, 53jca 1127 . 2 (𝑇 ∈ UniOp → (𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)))
7 eleq1 2827 . . 3 (𝑇 = if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) → (𝑇 ∈ UniOp ↔ if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) ∈ UniOp))
8 eleq1 2827 . . . . . . 7 (𝑇 = if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) → (𝑇 ∈ LinOp ↔ if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) ∈ LinOp))
9 foeq1 6817 . . . . . . 7 (𝑇 = if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) → (𝑇: ℋ–onto→ ℋ ↔ if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)): ℋ–onto→ ℋ))
10 2fveq3 6912 . . . . . . . . . 10 (𝑥 = 𝑦 → (norm‘(𝑇𝑥)) = (norm‘(𝑇𝑦)))
11 fveq2 6907 . . . . . . . . . 10 (𝑥 = 𝑦 → (norm𝑥) = (norm𝑦))
1210, 11eqeq12d 2751 . . . . . . . . 9 (𝑥 = 𝑦 → ((norm‘(𝑇𝑥)) = (norm𝑥) ↔ (norm‘(𝑇𝑦)) = (norm𝑦)))
1312cbvralvw 3235 . . . . . . . 8 (∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥) ↔ ∀𝑦 ∈ ℋ (norm‘(𝑇𝑦)) = (norm𝑦))
14 fveq1 6906 . . . . . . . . . 10 (𝑇 = if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) → (𝑇𝑦) = (if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ))‘𝑦))
1514fveqeq2d 6915 . . . . . . . . 9 (𝑇 = if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) → ((norm‘(𝑇𝑦)) = (norm𝑦) ↔ (norm‘(if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ))‘𝑦)) = (norm𝑦)))
1615ralbidv 3176 . . . . . . . 8 (𝑇 = if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) → (∀𝑦 ∈ ℋ (norm‘(𝑇𝑦)) = (norm𝑦) ↔ ∀𝑦 ∈ ℋ (norm‘(if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ))‘𝑦)) = (norm𝑦)))
1713, 16bitrid 283 . . . . . . 7 (𝑇 = if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) → (∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥) ↔ ∀𝑦 ∈ ℋ (norm‘(if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ))‘𝑦)) = (norm𝑦)))
188, 9, 173anbi123d 1435 . . . . . 6 (𝑇 = if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) → ((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)) ↔ (if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) ∈ LinOp ∧ if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)): ℋ–onto→ ℋ ∧ ∀𝑦 ∈ ℋ (norm‘(if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ))‘𝑦)) = (norm𝑦))))
19 eleq1 2827 . . . . . . 7 (( I ↾ ℋ) = if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) → (( I ↾ ℋ) ∈ LinOp ↔ if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) ∈ LinOp))
20 foeq1 6817 . . . . . . 7 (( I ↾ ℋ) = if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) → (( I ↾ ℋ): ℋ–onto→ ℋ ↔ if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)): ℋ–onto→ ℋ))
21 fveq1 6906 . . . . . . . . 9 (( I ↾ ℋ) = if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) → (( I ↾ ℋ)‘𝑦) = (if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ))‘𝑦))
2221fveqeq2d 6915 . . . . . . . 8 (( I ↾ ℋ) = if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) → ((norm‘(( I ↾ ℋ)‘𝑦)) = (norm𝑦) ↔ (norm‘(if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ))‘𝑦)) = (norm𝑦)))
2322ralbidv 3176 . . . . . . 7 (( I ↾ ℋ) = if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) → (∀𝑦 ∈ ℋ (norm‘(( I ↾ ℋ)‘𝑦)) = (norm𝑦) ↔ ∀𝑦 ∈ ℋ (norm‘(if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ))‘𝑦)) = (norm𝑦)))
2419, 20, 233anbi123d 1435 . . . . . 6 (( I ↾ ℋ) = if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) → ((( I ↾ ℋ) ∈ LinOp ∧ ( I ↾ ℋ): ℋ–onto→ ℋ ∧ ∀𝑦 ∈ ℋ (norm‘(( I ↾ ℋ)‘𝑦)) = (norm𝑦)) ↔ (if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) ∈ LinOp ∧ if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)): ℋ–onto→ ℋ ∧ ∀𝑦 ∈ ℋ (norm‘(if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ))‘𝑦)) = (norm𝑦))))
25 idlnop 32021 . . . . . . 7 ( I ↾ ℋ) ∈ LinOp
26 f1oi 6887 . . . . . . . 8 ( I ↾ ℋ): ℋ–1-1-onto→ ℋ
27 f1ofo 6856 . . . . . . . 8 (( I ↾ ℋ): ℋ–1-1-onto→ ℋ → ( I ↾ ℋ): ℋ–onto→ ℋ)
2826, 27ax-mp 5 . . . . . . 7 ( I ↾ ℋ): ℋ–onto→ ℋ
29 fvresi 7193 . . . . . . . . 9 (𝑦 ∈ ℋ → (( I ↾ ℋ)‘𝑦) = 𝑦)
3029fveq2d 6911 . . . . . . . 8 (𝑦 ∈ ℋ → (norm‘(( I ↾ ℋ)‘𝑦)) = (norm𝑦))
3130rgen 3061 . . . . . . 7 𝑦 ∈ ℋ (norm‘(( I ↾ ℋ)‘𝑦)) = (norm𝑦)
3225, 28, 313pm3.2i 1338 . . . . . 6 (( I ↾ ℋ) ∈ LinOp ∧ ( I ↾ ℋ): ℋ–onto→ ℋ ∧ ∀𝑦 ∈ ℋ (norm‘(( I ↾ ℋ)‘𝑦)) = (norm𝑦))
3318, 24, 32elimhyp 4596 . . . . 5 (if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) ∈ LinOp ∧ if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)): ℋ–onto→ ℋ ∧ ∀𝑦 ∈ ℋ (norm‘(if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ))‘𝑦)) = (norm𝑦))
3433simp1i 1138 . . . 4 if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) ∈ LinOp
3533simp2i 1139 . . . 4 if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)): ℋ–onto→ ℋ
3633simp3i 1140 . . . 4 𝑦 ∈ ℋ (norm‘(if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ))‘𝑦)) = (norm𝑦)
3734, 35, 36lnopunii 32041 . . 3 if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) ∈ UniOp
387, 37dedth 4589 . 2 ((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)) → 𝑇 ∈ UniOp)
396, 38impbii 209 1 (𝑇 ∈ UniOp ↔ (𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  w3a 1086   = wceq 1537  wcel 2106  wral 3059  ifcif 4531   I cid 5582  cres 5691  ontowfo 6561  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431  chba 30948   ·ih csp 30951  normcno 30952  LinOpclo 30976  UniOpcuo 30978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-hilex 31028  ax-hfvadd 31029  ax-hvcom 31030  ax-hvass 31031  ax-hv0cl 31032  ax-hvaddid 31033  ax-hfvmul 31034  ax-hvmulid 31035  ax-hvdistr2 31038  ax-hvmul0 31039  ax-hfi 31108  ax-his1 31111  ax-his2 31112  ax-his3 31113  ax-his4 31114
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-hnorm 30997  df-hvsub 31000  df-lnop 31870  df-unop 31872
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator