HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  elunop2 Structured version   Visualization version   GIF version

Theorem elunop2 32032
Description: An operator is unitary iff it is linear, onto, and idempotent in the norm. Similar to theorem in [AkhiezerGlazman] p. 73, and its converse. (Contributed by NM, 24-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
elunop2 (𝑇 ∈ UniOp ↔ (𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)))
Distinct variable group:   𝑥,𝑇

Proof of Theorem elunop2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 unoplin 31939 . . 3 (𝑇 ∈ UniOp → 𝑇 ∈ LinOp)
2 elunop 31891 . . . 4 (𝑇 ∈ UniOp ↔ (𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦)))
32simplbi 497 . . 3 (𝑇 ∈ UniOp → 𝑇: ℋ–onto→ ℋ)
4 unopnorm 31936 . . . 4 ((𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ) → (norm‘(𝑇𝑥)) = (norm𝑥))
54ralrimiva 3146 . . 3 (𝑇 ∈ UniOp → ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥))
61, 3, 53jca 1129 . 2 (𝑇 ∈ UniOp → (𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)))
7 eleq1 2829 . . 3 (𝑇 = if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) → (𝑇 ∈ UniOp ↔ if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) ∈ UniOp))
8 eleq1 2829 . . . . . . 7 (𝑇 = if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) → (𝑇 ∈ LinOp ↔ if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) ∈ LinOp))
9 foeq1 6816 . . . . . . 7 (𝑇 = if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) → (𝑇: ℋ–onto→ ℋ ↔ if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)): ℋ–onto→ ℋ))
10 2fveq3 6911 . . . . . . . . . 10 (𝑥 = 𝑦 → (norm‘(𝑇𝑥)) = (norm‘(𝑇𝑦)))
11 fveq2 6906 . . . . . . . . . 10 (𝑥 = 𝑦 → (norm𝑥) = (norm𝑦))
1210, 11eqeq12d 2753 . . . . . . . . 9 (𝑥 = 𝑦 → ((norm‘(𝑇𝑥)) = (norm𝑥) ↔ (norm‘(𝑇𝑦)) = (norm𝑦)))
1312cbvralvw 3237 . . . . . . . 8 (∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥) ↔ ∀𝑦 ∈ ℋ (norm‘(𝑇𝑦)) = (norm𝑦))
14 fveq1 6905 . . . . . . . . . 10 (𝑇 = if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) → (𝑇𝑦) = (if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ))‘𝑦))
1514fveqeq2d 6914 . . . . . . . . 9 (𝑇 = if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) → ((norm‘(𝑇𝑦)) = (norm𝑦) ↔ (norm‘(if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ))‘𝑦)) = (norm𝑦)))
1615ralbidv 3178 . . . . . . . 8 (𝑇 = if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) → (∀𝑦 ∈ ℋ (norm‘(𝑇𝑦)) = (norm𝑦) ↔ ∀𝑦 ∈ ℋ (norm‘(if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ))‘𝑦)) = (norm𝑦)))
1713, 16bitrid 283 . . . . . . 7 (𝑇 = if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) → (∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥) ↔ ∀𝑦 ∈ ℋ (norm‘(if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ))‘𝑦)) = (norm𝑦)))
188, 9, 173anbi123d 1438 . . . . . 6 (𝑇 = if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) → ((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)) ↔ (if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) ∈ LinOp ∧ if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)): ℋ–onto→ ℋ ∧ ∀𝑦 ∈ ℋ (norm‘(if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ))‘𝑦)) = (norm𝑦))))
19 eleq1 2829 . . . . . . 7 (( I ↾ ℋ) = if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) → (( I ↾ ℋ) ∈ LinOp ↔ if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) ∈ LinOp))
20 foeq1 6816 . . . . . . 7 (( I ↾ ℋ) = if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) → (( I ↾ ℋ): ℋ–onto→ ℋ ↔ if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)): ℋ–onto→ ℋ))
21 fveq1 6905 . . . . . . . . 9 (( I ↾ ℋ) = if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) → (( I ↾ ℋ)‘𝑦) = (if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ))‘𝑦))
2221fveqeq2d 6914 . . . . . . . 8 (( I ↾ ℋ) = if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) → ((norm‘(( I ↾ ℋ)‘𝑦)) = (norm𝑦) ↔ (norm‘(if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ))‘𝑦)) = (norm𝑦)))
2322ralbidv 3178 . . . . . . 7 (( I ↾ ℋ) = if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) → (∀𝑦 ∈ ℋ (norm‘(( I ↾ ℋ)‘𝑦)) = (norm𝑦) ↔ ∀𝑦 ∈ ℋ (norm‘(if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ))‘𝑦)) = (norm𝑦)))
2419, 20, 233anbi123d 1438 . . . . . 6 (( I ↾ ℋ) = if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) → ((( I ↾ ℋ) ∈ LinOp ∧ ( I ↾ ℋ): ℋ–onto→ ℋ ∧ ∀𝑦 ∈ ℋ (norm‘(( I ↾ ℋ)‘𝑦)) = (norm𝑦)) ↔ (if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) ∈ LinOp ∧ if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)): ℋ–onto→ ℋ ∧ ∀𝑦 ∈ ℋ (norm‘(if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ))‘𝑦)) = (norm𝑦))))
25 idlnop 32011 . . . . . . 7 ( I ↾ ℋ) ∈ LinOp
26 f1oi 6886 . . . . . . . 8 ( I ↾ ℋ): ℋ–1-1-onto→ ℋ
27 f1ofo 6855 . . . . . . . 8 (( I ↾ ℋ): ℋ–1-1-onto→ ℋ → ( I ↾ ℋ): ℋ–onto→ ℋ)
2826, 27ax-mp 5 . . . . . . 7 ( I ↾ ℋ): ℋ–onto→ ℋ
29 fvresi 7193 . . . . . . . . 9 (𝑦 ∈ ℋ → (( I ↾ ℋ)‘𝑦) = 𝑦)
3029fveq2d 6910 . . . . . . . 8 (𝑦 ∈ ℋ → (norm‘(( I ↾ ℋ)‘𝑦)) = (norm𝑦))
3130rgen 3063 . . . . . . 7 𝑦 ∈ ℋ (norm‘(( I ↾ ℋ)‘𝑦)) = (norm𝑦)
3225, 28, 313pm3.2i 1340 . . . . . 6 (( I ↾ ℋ) ∈ LinOp ∧ ( I ↾ ℋ): ℋ–onto→ ℋ ∧ ∀𝑦 ∈ ℋ (norm‘(( I ↾ ℋ)‘𝑦)) = (norm𝑦))
3318, 24, 32elimhyp 4591 . . . . 5 (if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) ∈ LinOp ∧ if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)): ℋ–onto→ ℋ ∧ ∀𝑦 ∈ ℋ (norm‘(if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ))‘𝑦)) = (norm𝑦))
3433simp1i 1140 . . . 4 if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) ∈ LinOp
3533simp2i 1141 . . . 4 if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)): ℋ–onto→ ℋ
3633simp3i 1142 . . . 4 𝑦 ∈ ℋ (norm‘(if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ))‘𝑦)) = (norm𝑦)
3734, 35, 36lnopunii 32031 . . 3 if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) ∈ UniOp
387, 37dedth 4584 . 2 ((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)) → 𝑇 ∈ UniOp)
396, 38impbii 209 1 (𝑇 ∈ UniOp ↔ (𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  w3a 1087   = wceq 1540  wcel 2108  wral 3061  ifcif 4525   I cid 5577  cres 5687  ontowfo 6559  1-1-ontowf1o 6560  cfv 6561  (class class class)co 7431  chba 30938   ·ih csp 30941  normcno 30942  LinOpclo 30966  UniOpcuo 30968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-hilex 31018  ax-hfvadd 31019  ax-hvcom 31020  ax-hvass 31021  ax-hv0cl 31022  ax-hvaddid 31023  ax-hfvmul 31024  ax-hvmulid 31025  ax-hvdistr2 31028  ax-hvmul0 31029  ax-hfi 31098  ax-his1 31101  ax-his2 31102  ax-his3 31103  ax-his4 31104
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-hnorm 30987  df-hvsub 30990  df-lnop 31860  df-unop 31862
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator